
CARMA Workshop on Computer-Aided Proof

University of Newcastle, Australia

5 – 7 June 2019

Contents

Introduction to Interactive Theorem Proving in Coq
Rajeev Gore . 1

Modular Synthesis of Certifying STV Counting Programs
Rajeev Gore . 2

Formalized mathematics in the Lean proof assistant I
Robert Y. Lewis . 2

Formalized mathematics in the Lean proof assistant II
Robert Y. Lewis . 2

Proof synthesis and differential linear logic
Daniel Murfet . 2

Mechanising Computability and Kolmogorov Complexity in HOL
Michael Norrish . 3

Calculation-Assisted Proof
Nicole Sutherland . 3

Theorem Proving and Program Development with Magma
Don Taylor . 3

On average length of Game
Thotsaporn Thanatipanonda . 3

A Probabilistic Two-Pile Game
Thotsaporn Thanatipanonda . 3

Specifying and reasoning about operational semantics in the Abella theorem prover
Alwen Tiu . 4

Experimental Mathematics: a Brave new Paradigm
Doron Zeilberger . 4

A case-study in experimental-yet-rigorous mathematics: Analyzing the running time of Quicksort
Doron Zeilberger . 4

Introduction to Interactive Theorem Proving in Coq

Rajeev Gore (ANU)

I will give an introduction to interactive theorem proving using Coq by showing how to encode the natural
numbers and the notions of even and odd numbers into Coq. I will show how to prove a simple theorem about the
relationship between odd and even integers using Coq. I will then show how to specify a function for addition
over the natural numbers and finally show how to turn that specification into an ML program to compute the
sum of two natural numbers. I will not cover the mathematical foundations of Coq as this talk is aimed at people
who have some mathematical background but who do not have any background in interactive theorem proving
or program synthesis.

1

Modular Synthesis of Certifying STV Counting Programs

Rajeev Gore (ANU)

I will first explain STV counting and the parlous state of computer-counting code implemented by various
Election Commissions from around Australia. I will then explain how we used Coq to specify a “vanilla” version
of STV as a proof-calculus and used it to extract a computer program which not only counts votes according to
this specification but also produces a certificate during the count. The specification of the certificate is derived
from the counting rules. We have proved, in Coq, that if the certificate is correct with respect to its specification,
then the result it encapsulates must be correct with respect to the relevant specification of STV. The certificate
is designed so that an average third-year computer science student could write a computer program to check
the correctness of the certificate. In particular, each political party could hire their own programmer to easily
scrutiny the count produced by any computer program, including our own, that produces such certificates. The
only caveat is that we require the publication of all ballots.

Formalized mathematics in the Lean proof assistant I

Robert Y. Lewis (Amsterdam)

Lean is a young proof assistant under development at Microsoft Research. It has attracted a growing commu-
nity interested in formalizing results in pure mathematics. A number of groups, including the Formal Abstracts
team in Pittsburgh and the Lean Forward team in Amsterdam, are exploring different ways to use Lean toward
this goal.

The first talk in this series will introduce Lean from the bottom up. We will examine the system’s language,
logic, and metaprogramming capabilities, and see why it is a promising tool for these projects. We will touch on
mathlib, the community-driven project to build a library of formalized mathematics in Lean.

Formalized mathematics in the Lean proof assistant II

Robert Y. Lewis (Amsterdam)

The second talk will present a Lean formalization of Ellenberg and Gijswijt’s recent solution to the cap set
problem. Their proof, resolving a combinatorial question that stood open for decades, was celebrated for its
ingenuity and use of “elementary” methods. It is extremely rare for cutting-edge mathematics to be formalized
in a proof assistant. Our formalization builds on mathlib, and we will discuss how various features of the library
were used in our project. This talk will not assume familiarity with the cap set problem, but it will build on the
first talk.

Proof synthesis and differential linear logic

Daniel Murfet (Melbourne)

Linear logic is a refinement of intuitionistic logic which, viewed as a functional programming language in the
sense of the Curry-Howard correspondence, has an explicit mechanism for copying and discarding information.
It turns out that, due to these mechanisms, linear logic is naturally related to constructions in linear algebra and
calculus, whereas such connections are not as obvious for intuitionistic logic. I will explain these connections
and why they point to a natural “derivative” of proofs (and programs) in linear logic, and how these derivatives
lead to new approaches to the problem of synthesising proofs and programs.

2

Mechanising Computability and Kolmogorov Complexity in HOL

Michael Norrish (Data61, CSIRO)

I will describe ongoing work to render large chunks of the fundamental theories of computability and Kol-
mogorov complexity in HOL. Being a classical system, the HOL systems built-in notion of function does not
correspond to the computable functions, so one has to carve out these specially. We show that the (partial) re-
cursive functions correspond (in computational power) to the terms of the (untyped) lambda-calculus, and prove
a number of standard results (e.g., Rices Theorem) about the computable functions. Attacking Kolmogorov
complexity, we continue in similar vein, managing to dodge the standard assumption that the underlying com-
putational model is the Turing Machine.

Calculation-Assisted Proof

Nicole Sutherland (Sydney)

We will discuss how mathematical software can be used to assist in proofs. We will consider the computer
algebra software Magma as an example and investigate results in a number of papers were Magma has been used
to aid a proof.

Theorem Proving and Program Development with Magma

Don Taylor (Sydney)

Using reflection groups and groups of Lie type as examples I will describe how the Magma Computational
Algebra System can be used to prove theorems and develop algorithms.

Let P be a parabolic subgroup of a finite unitary reflection group G. Then the normaliser of P in G is the
semidirect product of P and a complement H . For almost all G this can be proved without resort to computer-
assisted calculations but for a small number of cases Magma was used to find a set of roots whose stabiliser is a
complement.

Let G be a simply connected finite group of Lie type over a finite field of characteristic p and let ρ : G →
GL(V) be a rational highest weight representation in charactersitic p. Given an element A in the image of ρ
I will describe how Magma assisted the development of an algorithm which constructs a word g (in Chevalley
normal form) in the Steinberg generators of G such that ρ(g) = A.

On average length of Game

Thotsaporn Thanatipanonda (Mahidol)

My family liked to play Monopoly back when I was a kid. But we never finished the game as it took too
long. In this talk, we will analyze the average length of other simple probability games like Gamble ruin, Pile,
Bingo, snakes and ladders, Camel up, etc. using Doron Zeilberger’s favorite method, the method of “Guess and
Check”.

A Probabilistic Two-Pile Game

Thotsaporn Thanatipanonda (Mahidol)

We consider a game with two piles, in which two players take turn to add a or b chips (a, b are not necessarily
positive) randomly and independently to their respective piles. The player who collects n chips first wins the
game. We derive formulas for pn, the probability of the second player winning the game by collecting n chips
first for the cases a, b are both positive, {a, b} = {−1, 1} and {−1, 2}. The symbolic sum plays a crucial role in
this project.

3

Specifying and reasoning about operational semantics in the Abella theorem
prover

Alwen Tiu (ANU)

Computation systems or semantics of programming languages and type systems can often be specified in
a relational model, for example, as a state transtion system, or a deduction system. A widely used relational
specification for modelling programming languages and type systems is the so-called operational semantics, e.g.,
Plotkin’s structured operational semantics (also called the small-step semantics), and Kahn’s natural semantics
(the big-step semantics). A challenge in specifying operational semantics and reasoning about its properties in a
proof assitant is how we represent variable binding constructs in programming languages, and more importantly,
how we reason about these binding constructs. The Abella theorem prover is an interactive proof assistant based
on intuitionistic logic, enriched with facilities to represent syntax with bindings (called lambda-tree syntax), and
a nominal quantifier to model the dynamics of name bindings in proofs. In this talk I will give an overview of
the foundational aspects of Abella, and give some examples of specifying operational semantics and reasoning
about their properties.

References

1. The Abella theorem prover source code: http://abella-prover.org/

2. A tutorial paper on Abella: https://doi.org/10.6092/issn.1972-5787/4650

Experimental Mathematics: a Brave new Paradigm

Doron Zeilberger (Rutgers)

Jon Borwein, the great pioneer of Experimental Mathematics (and co-author, with David Bailey) of its bible,
asserted that experimental mathematics is a paradigm shift, but even he still adhered to the old orthodoxy of
proof-centric mathematics. I will describe some of the facets of experimental mathematics, and try and predict
how mathematics will look like in fifty years.

A case-study in experimental-yet-rigorous mathematics: Analyzing the running
time of Quicksort

Doron Zeilberger (Rutgers)

The shoemaker’s children go barefoot. The analysis of algorithms, that attempts to find explicit expressions,
or failing this, upper bounds, for the running time of COMPUTER algorithms, until recently, was a branch of
traditional, paper-and-pencil mathematics. But one can get so much further if the computer is used to analyze
the algorithms it runs, all by itself.

In this case study, I will illustrate this by describing a computer-aided (or rather computer-generated) analysis
of the run-time of the famous Quicksort algorithm.

[Joint work with Shalosh B. Ekhad.]

4

	Introduction to Interactive Theorem Proving in Coq Rajeev Gore
	Modular Synthesis of Certifying STV Counting Programs Rajeev Gore
	Formalized mathematics in the Lean proof assistant I Robert Y. Lewis
	Formalized mathematics in the Lean proof assistant II Robert Y. Lewis
	Proof synthesis and differential linear logic Daniel Murfet
	Mechanising Computability and Kolmogorov Complexity in HOL Michael Norrish
	Calculation-Assisted Proof Nicole Sutherland
	Theorem Proving and Program Development with Magma Don Taylor
	On average length of Game Thotsaporn Thanatipanonda
	A Probabilistic Two-Pile Game Thotsaporn Thanatipanonda
	Specifying and reasoning about operational semantics in the Abella theorem prover Alwen Tiu
	Experimental Mathematics: a Brave new Paradigm Doron Zeilberger
	A case-study in experimental-yet-rigorous mathematics: Analyzing the running time of Quicksort Doron Zeilberger

