
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

On the Subdifferential and Recession Function of
the Fitzpatrick Function

Andrew Eberhard RMIT University

Jon Borwein Memorial Comemorative Conference
28th September 2017

Andrew Eberhard RMIT University On the Subdifferential and Recession Function of the Fitzpatrick Function



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

It Began with a Question by Jon

Given that the Fitzpartick function has extended our
knowledge on monotone operators and simplified proofs of
known facts.

Are there any similar outcomes in the area of
single-valuedness of monotone mapping.

Recall M : X Ñ X ˚ is monotone iff

xx ´ y , x˚ ´ y˚y ě 0 for all px , x˚q , py , y˚q P M.

We also say M is a monotone set and we identify M with its
graph when needed. It is maximal if its graph is not contained
in any larger monotone set.
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It Began with a Question by Jon

Theorem

Suppose X (an Asplund space) and M : D Ñ X ˚ is a maximal
monotone operator with int domM ‰ H. Then there exists a Gδ

subset of int domM on which M is single valued.

The Fitzpatrick function of M is given by

FM px , x˚q “ sup
pu,u˚qPM

txpx , x˚q , pu, u˚qy ´ xu, u˚yu “ px¨, ¨y ` δM p¨qq
˚

px , x˚q

When M is maximal it is a representative function of M in
that FM px , x˚q ě xx , x˚y for all px , x˚q P X ˆ X ˚ and

M “ tpx , x˚q | FM px , x˚q “ xx , x˚yu .
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Still Open

Question: Given that FM is convex and so differentiable on a Gδ

subset of int domFM Ě int coM can we use information about the
differentiability properties of FM to deduce results about the single
valuedness of M? Jon had hoped to be able to say something this
for non-maximal representable operators.

To my knowledge this question remains unanswer to date. This
talk will contain a number of partial results that are suggestive
that it is worth while to study the differentiability properties of M
on X an Asplund space for possibly other reasons as well.
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Some More Background

Any convex function f : X ˆ X ˚ Ñ R`8 :“ RY t`8u is
called representative if f px , x˚q ě xx , x˚y for all
px , x˚q P X ˆ X ˚ in which case

Mf :“ tpx , x˚q | f px , x˚q “ xx , x˚yu

is a monotone set. Call R pMq all the representative functions
f that represent M in that M Ď Mf .

When M is not maximal monotone then FM is not
representative and indeed

pMf q
µ :“ tpx , x˚q | FM px , x˚q ď xx , x˚yu

“ tpx , x˚q | xu ´ x , u˚ ´ x˚y ě 0 for all pu, u˚q P Mu

are the set of monotonically related points i.e.
pMf q

µ
“ Y tT | T montone and T Ě Mu .
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Even when M is only monotone then we have

PM px , x˚q :“ F˚†
M px , x˚q “ co px¨, ¨y ` δM p¨qq px , x˚q

is representative (here F˚
M : X ˚ ˆ X ˚˚ Ñ R`8 and on

restricting to X Ď X ˚˚ and using the transpose
† : px˚, xq Ñ px , x˚q we get PM : X ˆ X ˚ Ñ R`8).

Indeed
M Ď tpx , x˚q | PM px , x˚q “ xx , x˚yu .

As FM ď PM , when M is maximal we say FM is a bigger
conjugate representative and we denote all f P R pMq with
f ď f ˚ by bR pMq . It turns out that FM is the minimal
element of bR pMq under the partial order f ď h iff
f py , y˚q ď h py , y˚q for all py , y˚q.

It has long been recognised that representable monotone
operators Mf possess some properties that make them similar
to maximal ones. We will discuss this more.
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What can we say about BFM?

In general not a lot.

But we really only need to consider the very special case
where px , x˚q P pMhq

µ and h P bR pT q to have a useful tool.

Recall the the ε-sub-differential is given by Bεf px , x˚q “

tpy , y˚q | f pv , v˚q ´ f px , x˚q ě xpy , y˚q , pv , v˚q ´ px , x˚qy ´ εu .

Andrew Eberhard RMIT University On the Subdifferential and Recession Function of the Fitzpatrick Function



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

What can we say about BFM?

In general not a lot.

But we really only need to consider the very special case
where px , x˚q P pMhq

µ and h P bR pT q to have a useful tool.

Recall the the ε-sub-differential is given by Bεf px , x˚q “

tpy , y˚q | f pv , v˚q ´ f px , x˚q ě xpy , y˚q , pv , v˚q ´ px , x˚qy ´ εu .

Andrew Eberhard RMIT University On the Subdifferential and Recession Function of the Fitzpatrick Function



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

What can we say about BFM?

In general not a lot.

But we really only need to consider the very special case
where px , x˚q P pMhq

µ and h P bR pT q to have a useful tool.

Recall the the ε-sub-differential is given by Bεf px , x˚q “

tpy , y˚q | f pv , v˚q ´ f px , x˚q ě xpy , y˚q , pv , v˚q ´ px , x˚qy ´ εu .

Andrew Eberhard RMIT University On the Subdifferential and Recession Function of the Fitzpatrick Function



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

What can we say about BF˚
M?

Proposition

Suppose M is monotone and ε ě 0.

1 If xx , x˚y ď FM px , x˚q ´ δ for some δ ě 0 then we have

BεFM px , x˚q “ BεFM px , x˚q X coM†

Ď

!

pz˚, zq P coM† | xx ´ z , x˚ ´ z˚y ď ε ´ δ
)

.

2 When xx , x˚y ě FM px , x˚q ´ δ for some δ ě 0, we have

Bε`δFM px , x˚q Ě co
!

pz˚, zq P M† | xx ´ z , x˚ ´ z˚y ď ε
)

.

3 Assume FM px , x˚q “ xx , x˚y and px , x˚q P pMq
µ. Then we

have:

BFMh
px , x˚q X M† “

!

pz˚, zq P M† | xx ´ z , x˚ ´ z˚y “ 0
)

.
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Question: Under the assumptions FM px , x˚q “ xx , x˚y and
px , x˚q P pMq

µ plus (??) can we say that

BFM px , x˚q “ co
!

pz˚, zq P M† | xx ´ z , x˚ ´ z˚y “ 0
)

?
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What can we say about single valuedness of M?

The first result Jon and I obtained was the following: Let
MMpy , y˚q :“

␣`

z˚, z
˘

P X˚ ˆ X | xz ´ y , z˚ ´ y˚y ď 0
(

Theorem

Suppose M : X Ñ X˚ is monotone. If there exists py , y˚q, py , z˚q P M with
y˚ ‰ z˚ (i.e. T pyq Ě

␣

y˚, z˚
(

is not unique) then py˚, yq,

pz˚, yq P BFMpy , y˚q and so BFT py , y˚q X M† is also not a singleton.
Consequently when

`

y , y˚
˘

P M and ∇FMpy , y˚q exists then Mpyq is a
singleton. More generally we have

diam
␣

z˚
|
`

z˚, y
˘

P BFMpy , y˚
q
(

ď ε

ùñ diam
!

z˚
|
`

z˚, y
˘

P MMpy , y˚
q X T †

)

ðñ diam
!

z˚
|
`

z˚, y
˘

P BFT py , y˚
q X T †

)

ď ε

ùñ diam
␣

z˚
|
`

z˚, y
˘

P BFT py , y˚
q X pT pyq, yq

(

ď ε

ùñ diamT pyq ď ε. (1)
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When int domM ‰ H we have many example where ∇FM

abundantly exists but there are two short coming to this result.

1 Even if ∇FMpy , y˚q “ pz , z˚q how do we know if pz , z˚q P M?
2 Again: if ∇FMpy , y˚q how do we know that py , y˚q P M?
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A fix for the first problem when X ˆ X ˚ is Asplund?

The following is well known.

Proposition

Suppose A is a convex set in an Asplund space X . If x is strongly
exposed point of coA then x P A.

We now wish to exploit the fact that PM is largest closed
convex function that interpolates the points py , y˚, xy , y˚yq

for py , y˚q P M.
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The Fix

Corollary

Suppose M : X Ñ X ˚ is a monotone operator with closed graph,
py , y˚q P X ˆ X ˚, an Asplund spaced and ∇FMpy , y˚q “ pa˚, aq

exists as a Fréchet derivative. Then pa, a˚q P M.

Proof.

As ∇FT py , y˚q “ pa, a˚q
† exists as a Fréchet derivative in the

Asplund space X ˆ X ˚ then pa, a˚,FMpa, a˚qq is strongly exposed
by py , y˚,´1q in epiPM . Now epiPM is the closed convex hull of
the set

A :“ tpu, u˚, xu, u˚y ` γq | pu, u˚q P M, γ ě 0u .

Thus by Proposition 4 we have pa, a˚, xa, a˚yq P M and so pa, a˚q

is in the closure of M so pa, a˚q P M.

Andrew Eberhard RMIT University On the Subdifferential and Recession Function of the Fitzpatrick Function



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Fix

Corollary

Suppose M : X Ñ X ˚ is a monotone operator with closed graph,
py , y˚q P X ˆ X ˚, an Asplund spaced and ∇FMpy , y˚q “ pa˚, aq
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More on the Fix

For convenience we will refer to pa, a˚q rather than
pa, a˚,FMpa, a˚qq as a strongly exposed point of epiFM .

Corollary

Suppose M : X Ñ X ˚ a monotone operator with closed graph and
X ˆ X ˚ is and Asplund space. Then the strongly exposed points of
epiPM are all contained in M.

Proof.

For pa, a˚q to be a strongly exposed point of epiPM we need
∇FMpy , y˚q “ pa, a˚q

† for some y P domFM but then
pa, a˚q P M.
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Recall that a fundamental property of the Fitzpatrick function is

M Ď tpz , z˚q | pz˚, zq P BFMpz , z˚qu when M is monotone

and M “ tpz , z˚q | pz˚, zq P BFMpz , z˚qu when M is maximal monotone.

Corollary

Suppose M : X Ñ X ˚ is a monotone operator with a closed graph,
py , y˚q P X ˆ X ˚ and ∇FMpy , y˚q “ pa˚, aq exists as a Fréchet
derivative with py , y˚q ‰ pa, a˚q. Then BPMpa, a˚q is not a
singleton, indeed py , y˚q, pa, a˚q P BPMpa, a˚q.

Proof.

As ∇FMpy , y˚q “ pa˚, aq ‰ py˚, yq by duality
py˚, yq P BPMpa, a˚q. As pa, a˚q P M we have
xa, a˚y “ FMpa, a˚q “ PMpa, a˚q and FM ď PM . Thus
pa˚, aq P BFMpa, a˚q Ď BPMpa, a˚q.
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What we have so far

Thus ∇FMpy , y˚q “ pa˚, aq exists and ∇PMpa, a˚q exists
implies ∇FMpy , y˚q “ py˚, yq “ ∇PMpy , y˚q with
py , y˚q P M.

When X is reflexive then X ˆ X ˚ is reflexive and so X ˆ X ˚

Asplund.

Question: Outside of X reflexive is X ˆ X ˚ ever Asplund? Has
anyone studies the differentiability properties of convex functions
f : X ˆ X ˚ Ñ R`8 when X is Asplunds?
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More Problems

The simplest of examples is the mod function x Ñ f pxq “ |x |

where we have f ˚ px˚q “ δB1 px˚q and

FBf px , x˚q “ f pxq ` f ˚ px˚q “

"

|x | if |x˚| ď 1
`8 otherwise.

Here
Graph Bf pxq R int domFBf “ int domPBf .

Hence we can never apply the previous theory to some simple
cases.
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An improved version

It make sense to only look for partial differentiability instead.

Corollary

Suppose M : X Ñ X ˚ is monotone and py , y˚q P M. Suppose in
addition ∇xFMpy , y˚q exists then Mpyq “ ty˚u is a singleton.

Proof.

Suppose ∇xFMpy , y˚q exists. First note that we always have
py , y˚q P MM py , y˚q XM Ď BFMpy , y˚q and so y˚ P BxFMpy , y˚q

and ∇xFMpy , y˚q “ ty˚u. Thus
BFMpy , y˚q “ ty˚u ˆ Bx˚FMpy , y˚q.
If Mpyq is not a singleton then there exists
py , y˚q, py , z˚q P GraphM with y˚ ‰ z˚ which implies by Theorem
3 that

py˚, yq, pz˚, yq P BFMpy , y˚q “ ty˚u ˆ Bx˚FMpy , y˚q

in which case y˚ “ z˚, a contradiction. Thus Mpyq “ ty˚u.
Andrew Eberhard RMIT University On the Subdifferential and Recession Function of the Fitzpatrick Function



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

An improved version

It make sense to only look for partial differentiability instead.

Corollary

Suppose M : X Ñ X ˚ is monotone and py , y˚q P M. Suppose in
addition ∇xFMpy , y˚q exists then Mpyq “ ty˚u is a singleton.

Proof.

Suppose ∇xFMpy , y˚q exists. First note that we always have
py , y˚q P MM py , y˚q XM Ď BFMpy , y˚q and so y˚ P BxFMpy , y˚q

and ∇xFMpy , y˚q “ ty˚u. Thus
BFMpy , y˚q “ ty˚u ˆ Bx˚FMpy , y˚q.
If Mpyq is not a singleton then there exists
py , y˚q, py , z˚q P GraphM with y˚ ‰ z˚ which implies by Theorem
3 that

py˚, yq, pz˚, yq P BFMpy , y˚q “ ty˚u ˆ Bx˚FMpy , y˚q

in which case y˚ “ z˚, a contradiction. Thus Mpyq “ ty˚u.
Andrew Eberhard RMIT University On the Subdifferential and Recession Function of the Fitzpatrick Function



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

More Improvements?

We need a replacement of the strong exposure result to now
turn the last result into a useful tool.

This is much more involved, mainly due to the use or partial
conjugates. This makes contact with the older approach to
representative characterisation of monotone operator due to
Krauss.

Krauss, Eckehard (1985) A representation of arbitrary maximal
monotone operators via subgradients of skew-symmetric saddle
functions. Nonlinear Anal. 9, no. 12, 1381–1399.

Indeed when we form the (partial) conjugate

F˚
Mp¨, y˚q pa˚q

we obtain a skew saddle functions.

Clearly there is a need to return to the use of saddle functions
arising from convex bi-functions, which representative
functions are a classic example.
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representative characterisation of monotone operator due to
Krauss.

Krauss, Eckehard (1985) A representation of arbitrary maximal
monotone operators via subgradients of skew-symmetric saddle
functions. Nonlinear Anal. 9, no. 12, 1381–1399.

Indeed when we form the (partial) conjugate

F˚
Mp¨, y˚q pa˚q

we obtain a skew saddle functions.

Clearly there is a need to return to the use of saddle functions
arising from convex bi-functions, which representative
functions are a classic example.
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Open Question

Question: What can be said about the case when we have

∇FMp¨, y˚q pyq “ a˚ and ∇F˚
Mp¨, y˚q pa˚q existing.

Can we have
∇FMp¨, y˚q pyq “ ∇F˚

Mp¨, y˚q pa˚q “ a˚ “ y˚ P M pyq?

Or something that relates these points to the graph of M? Does
this enlighten the structure of BFM py , y˚q given it is determined
via limits.
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Minimality in bR pMq and Maximality?

One of the seminal results on monotone operators in reflexive
spaces if due to Burachik and Svaiter that relates maximal
monotone representable sets Mf to f P bR pMq . In reflexive spaces
all Mf for f P bR pMq are maximal:

T : X Ñ X ˚ maximal and
f representative for T

*

ðñ
f px , x˚q ě xx , x˚y and
f ˚ px˚, xq ě xx˚, xy ,@ px , x˚q

R. S. Burachik and B. F. Svaiter (2003), Maximal Monotonicity,

Conjugation, and the Duality Product, Proc. Amer. Math. Soc. 132(8),

2379–2383.

Later Mart́ınez-Legaz and Svaiter pointed out that the existence of
a minimal element in bR pMq is a consequence of this result.
J.-E. Mart́ınez-Legaz and B. F. Svaiter (2008), Minimal convex functions

bounded below by the duality product. Proc. Amer. Math. Soc. 136(3),

873–878.
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Minimality and Maximality?

From Fitzpatrick we know that the minimal element exists, indeed:

Proposition

Let M be a maximal monotone extension of T . Then FM is a
minimal element of rbRpT q,ďs. Hence also, FM is the unique
minimal element of bR pMq.

Via Simons we know:

Lemma

Let T : X Ñ X ˚ be a monotone operator, let k, h P bR pT q for
which h ď k. Then Mk “ Mh Ě T.

It is not immediately clear that within an arbitrary Banach space
all such minimal elements of rFT ,PT s are Fitzpatrick functions.
We shall call BMLS (Burachik, Mart́ınez-Legaz, Svaiter) spaces to
be those Banach spaces X for which (for all monotone operators T
on X ) all minimal elements of rFT ,PT s are Fitzpatrick functions.
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BMLS Spaces

The following are shown to be equivalent to X being a BMLS space
in:
A. Eberhard, R. Wenczel, On the Maximal Extensions of Monotone

Operators and Criteria for Maximality, J. Convex Analysis, Vol 23, no. 4,

2016.

1 The space X has the property that for every monotone T ,
every minimal element f in rR pT q ,ďs represents a maximal
monotone set Mf .

2 The space X has the property that for every monotone T ,
every f P bR pT q represent a maximal monotone set Mf .

It is an open question as to whether exist any non-reflexive BMLS

spaces or indeed if all real Banach spaces which are BMLS spaces.
All desirable properties of monotone operators hold here and we
have the ”sum theorem” holding in such spaces. In this paper all
conditions have been made necessary and sufficient in order to set
up a straw man.
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Equivalences in a BMLS Space

Proposition

Suppose f is minimal in bR pT q. Then the following are all
equivalent to the condition f “ FMf

.

1 Mf is maximal monotone.

2 FMf
P bR pT q .

3 For any maximal monotone extension M Ě Mf , the function
maxtco tf ,FMu , x¨, ¨yu is convex.

4 For any maximal monotone extension M Ě Mf , we have that
FMf

ď FM ď f .

5 For all k P bR pT q (with k ě f ) and any maximal monotone
extension M Ě Mk , we have FMk

ď FM ď k.

6 For any g P R pT q with g ě f (and hence Mg Ď Mf ) the
function co tFMf

, gu is representative.
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The Recession Function?

Suppose h P bR pT q. Then

FMh
0` “ δ˚†

coMh
(2)

Furthermore, for any α ą inf FMh
,

0`rFMh
ď αs Ď dom δ˚†

coMh
Ď 0` domFMh

. (3)

One can use this to show results like the following.

Proposition

Let h P bR pT q, and suppose Mh is not maximal, and that domMh

is bounded. Then there exists px , x˚q P pMhq
µ

X pMhq
c for which

FMh
px , x˚q “ xx , x˚y ă h px , x˚q . (4)
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We observe that ε-subdifferentials of the Fitzpatrick function is
then nonempty and meets the graph of the operator.

Proposition (Eberhard and Wenczel)

Suppose h P bR pT q and px , x˚q P pMhq
µ with

FMh
px , x˚q “ xx , x˚y. Then

BεFMh
px , x˚q X M†

h ‰ H for all ε ą 0.

Extending this to the following (under the assumption that
FMh

px , x˚q “ xx , x˚y) seems possible

BFMh
px , x˚q “

č

ϵą0

co
”

BϵFMh
px , x˚q X M†

h

ı

.

to go further requires the extraction of bounded nets when
approximating.
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Subdifferentials and Maximality

In a recent publication we show the following results.

Lemma (Lemma 7, Eberhard & Wenczel)

Suppose f P bR pT q with Mf not maximal.

1 There cannot exist px , x˚q P pMf q
µ

X pMf q
c with

Bf px , x˚q X M†
f ‰ H.

2 There cannot exist px , x˚q R Mf with
Bεf px , x˚q X ptpx˚, xquq

µ
‰ H, for any ε such that

0 ă ε ă f px , x˚q ´ xx , x˚y.

Question: Can we get similar results using the Fitzpatrick function
instead?
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What we know about these subdifferentials

Proposition

Suppose h P bR pT q, and px , x˚q P pMhq
µ (so xx , x˚y ă hpx , x˚q).

Then given γ :“ hpx , x˚q ´ xx , x˚y

Bγh px , x˚q X tpx˚, xqu
µ

“ Bγh px , x˚q X M†
h

and when FMh
px , x˚q “ xx , x˚y, we also have

BεFMh
px , x˚q Ď Bγ`εh px , x˚q for all ε ě 0 and

BεFMh
px , x˚q X Mh “ Bγ`εh px , x˚q X M†

h for all ε ě 0.

In particular, when FMh
px , x˚q “ xx , x˚y, we have that

Bγh px , x˚q X tpx˚, xqu
µ

‰ H iff BFMh
px , x˚q X M†

h ‰ H and
moreover

Bγh px , x˚qXtpx˚, xqu
µ

“ BFMh
px , x˚qXM†

h “ BFMh
px , x˚qXtpx˚, xqu

µ .
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Conclusion

The study of the sub-differential of representative functions
and the associated Fitzpartick function throws up an entirely
different way to pose questions about single valuedness and
maximality of representable monotone sets Mh for h P bR pT q.
These are essential those monotone sets that extend T in a
representable fashion.

Many related problems remain open regarding maximality and
differentiability.
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