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A polytope is the convex hull of a finite set.

In a standard optimisation problem, we have a domain P (possibly
a polytope), a reasonable function g : P → R (possibly convex),
and we wish to find

min
x∈P

f (x)

or perhaps
max
x∈P

f (x).

We will be interested in another optimisation problem; our domain
P will be a collection of polytopes (of the same dimension), and
for some natural functions f : P → R we want to find

min
P∈P

f (P).
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Given a d-dimensional polytope with a certain number of vertices,
it is interesting to bound the total number of m-dimensional faces
(for 1 ≤ m < d).

Precise upper bounds for the numbers of m-dimensional faces were
obtained in 1970 by McMullen and Shephard, so we will
concentrate on lower bounds.
Barnette (1973) established a precise lower bound for simplicial
polytopes, but for general polytopes, lower bounds are not so easy
to obtain.
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Let us define Fm(v , d) = {n : there is a d-polytope with v vertices
and n faces of dimension m}.

Following Grünbaum (1967), we set

φm(v , d) =

(
d + 1

m + 1

)
+

(
d

m + 1

)
−
(

2d + 1− v

m + 1

)
.

Grünbaum conjectured that φm(v , d) = min Fm(v , d) for
d < v ≤ 2d .
(Easy to show that this is false for v ≥ 2d + 1.)
He proved that this conjecture is true for every m and v ≤ d + 4.
McMullen (1971) proved this conjecture for facets, i.e. for the case
m = d − 1 and for all v ≤ 2d ; he actually calculated
min Fd−1(v , d) for all v ≤ 2d + 1

4d2.
Until 2014, no further progress had been made on this problem.
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Following Grünbaum (1967), we set

φm(v , d) =

(
d + 1

m + 1

)
+

(
d

m + 1

)
−
(

2d + 1− v

m + 1

)
.
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Then, we proved that Grünbaum’s conjecture is true in the case
m = 1, i.e.

min F1(v , d) = φ1(v , d)

for d < v ≤ 2d ,

and moreover that the minimising polytope is
unique.
This is joint work with Julien Ugon and Guillermo
Pineda-Villavicencio.
We have also obtained precise values for min F1(2d + 1, d) and
min F1(2d + 2, d).
Let us remark that for all d , and all sufficiently large v , we have
min F1(v , d) = 1

2vd if either v or d is even (known), and
min F1(v , d) = 1

2(v + 1)d − 1 if both v and d are odd (new).
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Theorem
Let P be a d-dimensional polytope with d + k vertices, where
0 < k ≤ d.
(i) If P is a (d − k)-fold pyramid over the k-dimensional prism
based on a simplex, then P has φ1(d + k , d) edges.
(ii) Otherwise P has > φ1(d + k, d) edges.

The polytope described in (i) will be called a triplex, and denoted
Mk,d−k .
In fact, the set F1(d + k , d) contains gaps if k ≥ 4; the number of
edges of a non-minimising polytope is at least

φ1(d + k, d) + max{2, k − 3}.



(a) P2 = M(2, 0) (b) M(2, 1) (c) M(2, 2) (d) P3 (e) M(3, 1)

FIGURE 1. MultiplexesTriplices
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Recently, we have proved that Grünbaum’s conjecture is true for all
faces of sufficiently high dimension.

Theorem
Let P be a d-dimensional polytope with v vertices, where

d < v ≤ 2d. Suppose that
√
5−1
2 d ≤ m ≤ d − 2. Then

min Fm(v , d) = φm(v , d),

and the corresponding triplex Mv−d ,2d−v is the unique minimiser.

The hypothesis m ≥
√
5−1
2 d can be weakened to

m ≥ 3

5
(d − 1),

provided d ≤ 15, or d = 16 is we drop the uniqueness claim.
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For the case m = d − 1, i.e. for facets, we recall the results of
McMullen:

Theorem
Fix k with 2 ≤ k ≤ d. Then
(i) min Fd−1(d + k, d) = φd−1(d + k, d) = d + 2;
(ii) the minimum is attained by Mk,d−k ;
(iii) the minimiser is unique, i.e. there is only one polytope with
d + k vertices and d + 2 facets, if and only if k − 1 is not
composite (i.e. k = 2 or k − 1 is a prime number).

And for more than 2d vertices:

Theorem
Fix k > d. Then there is a polytope P with d + k vertices and
d + 2 facets if, and only if, k − 1 is a product of integers, say mn,
with m + n ≤ d. Different decompositions of k − 1 give rise to
combinatorially distinct polytopes.
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And now, 2d + 1 vertices: we can also calculate min Fm(2d + 1, d)
for m = 1, m = d − 1 and m = d − 2. The answer depends on
some number theory.
Slicing one corner from the base of a square pyramid yields a
polyhedron with 7 vertices and 6 faces, one of them a pentagon.
We call this a pentasm.

We will use the same name for the higher-dimensional version,
obtained by slicing one corner from the quadrilateral base of a
(d − 2)-fold pyramid. It has 2d + 1 vertices and can also be
represented as the Minkowski sum of a d-dimensional simplex, and
a line segment which lies in the affine span of one 2-face but is not
parallel to any edge.



(a) Pentasm3 (b) Pentasm4

FIGURE 2. Pentasms
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First, edges:

Theorem
Let P be a d-dimensional polytope with 2d + 1 vertices.
(i) If P is d-dimensional pentasm, then P has d2 + d − 1 edges.
(ii) Otherwise the numbers of edges is > d2 + d − 1,

or P is the
sum of two triangles.

This shows that the pentasm is the unique minimiser of the
number of edges if d ≥ 5.
If d = 4, the sum of two triangles has 9 vertices, and is the unique
minimiser, with only 18 edges.
If d = 3, the sum of two triangles can have 7, 8 or 9 vertices; the
example with v = 7 has 11 edges, the same as the pentasm.
Summarising, min F1(9, 4) = 18, and
min F1(2d + 1, d) = d2 + d − 1 for all d 6= 4.
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Then, facets (McMullen):

Theorem
Consider the class of d-polytopes with 2d + 1 vertices.
(i) If d is a prime, then the pentasm has the minimal number of
facets, namely d + 3, but it is not the unique minimiser.
(ii) If d is a product of 2 primes, the minimal number of facets is
d + 2, and the minimiser is unique.
(iii) If d is a product of 3 or more primes, the minimal number of
facets is d + 2, and the minimiser is not unique.



Finally, ridges:

Theorem
Consider the class of d-polytopes with 2d + 1 vertices.
(i) If d is a prime, the minimal number of ridges is 1

2(d2 + 5d − 2),
and the pentasm is the unique minimiser.
(ii) If d is a product of two primes, the minimal number of ridges is
1
2(d2 + 3d + 2), and the minimiser is unique.
(iii) If d is a product of three or more primes, the minimal number
of ridges is 1

2(d2 + 3d + 2), and the minimiser is not unique.



Theorem
Let P be a d-dimensional polytope with 2d + 2 vertices, where
d ≥ 8, d = 6 or d = 3.
(i) If P is one of two particular polytopes, then P has d2 + 2d − 3
edges.
(ii) Otherwise the numbers of edges is > d2 + 2d − 3.

If d = 7, there is a third minimising polytope with 16 vertices and
60 edges.
If d = 4, there two more minimising polytopes with 10 vertices and
21 edges.
If d = 5, the unique minimiser is the sum of a tetrahedron and
triangle; this clearly has 12 vertices and 30 edges; 30 < 32.
Summarising, min F1(12, 5) = 30, and
min F1(2d + 2, d) = d2 + 2d − 3 for all d 6= 5.
The case of 2d + 3 vertices appears to be difficult.



Theorem
Let P be a d-dimensional polytope with 2d + 2 vertices, where
d ≥ 8, d = 6 or d = 3.
(i) If P is one of two particular polytopes, then P has d2 + 2d − 3
edges.
(ii) Otherwise the numbers of edges is > d2 + 2d − 3.

If d = 7, there is a third minimising polytope with 16 vertices and
60 edges.
If d = 4, there two more minimising polytopes with 10 vertices and
21 edges.
If d = 5, the unique minimiser is the sum of a tetrahedron and
triangle; this clearly has 12 vertices and 30 edges; 30 < 32.
Summarising, min F1(12, 5) = 30, and
min F1(2d + 2, d) = d2 + 2d − 3 for all d 6= 5.
The case of 2d + 3 vertices appears to be difficult.



A compact convex set A is said to be decomposable if it can be
expressed as a Minkowski sum A = B + C , where B,C are not
similar to A. For example, a euclidean disc is

decomposable
because it is the Minkowski sum of two Reuleaux triangles.
It is well known (to those who know it) that a d-polytope with
< 2d vertices is indecomposable; and that a d-polytope with
exactly 2d vertices is decomposable if and only if it is a prism
based on a simplex.
We have completely characterised all decomposable d-polytopes
with 2d + 1 vertices; for d ≥ 5, the only examples are prisms,
pentasms and capped prisms.
With K. Przes lawski, we have completely characterised all
decomposable d-polytopes with < d2 + 2d − 2 edges. In 3
dimensions, we can do more. There are 301 polyhedra with 8 or
fewer vertices; we have classified them all as decomposable or
indecomposable.
There are 708 polyhedra with 16 or fewer edges; with D. Briggs, we
have classified 703 of them as decomposable or indecomposable.
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decomposable d-polytopes with < d2 + 2d − 2 edges. In 3
dimensions, we can do more. There are 301 polyhedra with 8 or
fewer vertices; we have classified them all as decomposable or
indecomposable.
There are 708 polyhedra with 16 or fewer edges; with D. Briggs, we
have classified 703 of them as decomposable or indecomposable.



Some discussion of methods?

Let us say that three vertices form a triangle if they are pairwise
adjacent. It is worth noting that a triangle is not necessarily a face.
Many authors have shown that a polytope is indecomposable if it
contains “sufficiently many” triangles.
What is the 3-dimensional analogue of a triangle?
Hint: a triangle is a 3-cycle whose vertices are not colinear.
Answer: 4-cycles whose vertices are not coplanar are the right
objects to consider.
More generally, affinely independent cycles are (with a suitable
definition) indecomposable geometric graphs.
In particular, if a polytope contains an affinely independent cycle,
which touches every maximal face, then it is indecomposable.
Some examples:
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Figure 2: BD173 and BD179



Figure 3: BD187 and BD190



Figure 4: BD192 and BD199

fewer edges. In dimension 5, the only polytope with 15 or fewer edges is the
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