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A polytope is the convex hull of a finite set.



A polytope is the convex hull of a finite set.
In a standard optimisation problem, we have a domain P (possibly
a polytope), a reasonable function g : P — R (possibly convex),
and we wish to find

min f(x

xeP ( )
or perhaps

max f(x).

xeP ( )
We will be interested in another optimisation problem; our domain
P will be a collection of polytopes (of the same dimension), and
for some natural functions f : P — R we want to find

in f(P).
pp?)



Given a d-dimensional polytope with a certain number of vertices,
it is interesting to bound the total number of m-dimensional faces
(for 1 < m < d).



Given a d-dimensional polytope with a certain number of vertices,
it is interesting to bound the total number of m-dimensional faces
(for 1 < m < d).

Precise upper bounds for the numbers of m-dimensional faces were
obtained in 1970 by McMullen and Shephard, so we will
concentrate on lower bounds.

Barnette (1973) established a precise lower bound for simplicial
polytopes, but for general polytopes, lower bounds are not so easy
to obtain.



Let us define Fr,(v,d) = {n: there is a d-polytope with v vertices
and n faces of dimension m}.



Let us define Fr,(v,d) = {n: there is a d-polytope with v vertices
and n faces of dimension m}.
Following Griinbaum (1967), we set

d+1 d 2d+1—v
Om(v,d) = <m—|—1)+<m+l> _< m+ 1 )



Let us define Fr,(v,d) = {n: there is a d-polytope with v vertices
and n faces of dimension m}.
Following Griinbaum (1967), we set

d+1 d 2d+1—v
Om(v,d) = <m—|—1)+<m+l> _< m+ 1 )

Griinbaum conjectured that ¢, (v, d) = min F,,(v, d) for
d <v<2d.
(Easy to show that this is false for v > 2d 4 1.)



Let us define Fr,(v,d) = {n: there is a d-polytope with v vertices
and n faces of dimension m}.
Following Griinbaum (1967), we set

d+1 d 2d+1—v
Om(v,d) = <m—|—1)+<m+l> _< m+ 1 )

Griinbaum conjectured that ¢, (v, d) = min F,,(v, d) for

d <v<2d.

(Easy to show that this is false for v > 2d 4 1.)

He proved that this conjecture is true for every m and v < d + 4.



Let us define Fr,(v,d) = {n: there is a d-polytope with v vertices
and n faces of dimension m}.
Following Griinbaum (1967), we set

d+1 d 2d+1—v
Om(v,d) = <m—|—1)+<m+l> _< m+ 1 )

Griinbaum conjectured that ¢, (v, d) = min F,,(v, d) for

d <v<2d.

(Easy to show that this is false for v > 2d 4 1.)

He proved that this conjecture is true for every m and v < d + 4.
McMullen (1971) proved this conjecture for facets, i.e. for the case
m = d — 1 and for all v < 2d; he actually calculated

min Fy_1(v,d) for all v < 2d + +d2.



Let us define Fr,(v,d) = {n: there is a d-polytope with v vertices
and n faces of dimension m}.
Following Griinbaum (1967), we set
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Griinbaum conjectured that ¢, (v, d) = min F,,(v, d) for

d <v<2d.

(Easy to show that this is false for v > 2d 4 1.)

He proved that this conjecture is true for every m and v < d + 4.
McMullen (1971) proved this conjecture for facets, i.e. for the case
m = d — 1 and for all v < 2d; he actually calculated

min Fy_1(v,d) for all v < 2d + +d2.

Until 2014, no further progress had been made on this problem.
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Then, we proved that Griinbaum'’s conjecture is true in the case
m=1, ie.

min Fi(v, d) = ¢1(v, d)
for d < v < 2d, and moreover that the minimising polytope is

unique.

We have also obtained precise values for min F1(2d + 1, d) and
min F1(2d + 2, d).

Let us remark that for all d, and all sufficiently large v, we have
min F1(v, d) =)dif either vor dis even (known), and

min F1(v,d) = 3(v +1)d — 1 if both v and d are odd (new).



Theorem

Let P be a d-dimensional polytope with d + k vertices, where
0< k <d.

(i) If P is a (d — k)-fold pyramid over the k-dimensional prism
based on a simplex, then P has ¢1(d + k, d) edges.

(ii) Otherwise P has > ¢1(d + k, d) edges.
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FIGURE 1. Triplices



Theorem

Let P be a d-dimensional polytope with d + k vertices, where

0< k <d.

(i) If P is a (d — k)-fold pyramid over the k-dimensional prism
based on a simplex, then P has ¢1(d + k, d) edges.

(ii) Otherwise P has > ¢1(d + k, d) edges.

The polytope described in (i) will be called a triplex, and denoted
Mi,d—k-

In fact, the set Fi(d + k, d) contains gaps if k > 4; the number of
edges of a non-minimising polytope is at least

o1(d + k,d) + max{2, k — 3}.
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Recently, we have proved that Griinbaum’s conjecture is true for all
faces of sufficiently high dimension.

Theorem
Let P be a d-dimensional polytope with v vertices, where

d < v <2d. Suppose that @d <m<d-2. Then

min Fp(v,d) = ¢m(v, d),
and the corresponding triplex M, _q 24—, is the unique minimiser.

The hypothesis m > @d can be weakened to

m>

o1l W

(d - 1)7

provided d < 15, or d = 16 is we drop the uniqueness claim.



For the case m = d — 1, i.e. for facets, we recall the results of
McMullen:

Theorem
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(ii) the minimum is attained by M 4_;
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d + k vertices and d + 2 facets, if and only if k — 1 is not
composite (i.e. k =2 or k — 1 is a prime number).
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Fix k with 2 < k < d. Then

(f) min Fd_l(d + k, d) = ¢d_1(d + k, d) =d+ 2;

(ii) the minimum is attained by M 4_;

(iii) the minimiser is unique, i.e. there is only one polytope with
d + k vertices and d + 2 facets, if and only if k — 1 is not
composite (i.e. k =2 or k — 1 is a prime number).

And for more than 2d vertices:

Theorem

Fix k > d. Then there is a polytope P with d + k vertices and

d + 2 facets if, and only if, k — 1 is a product of integers, say mn,
with m 4+ n < d. Different decompositions of k — 1 give rise to
combinatorially distinct polytopes.



And now, 2d + 1 vertices: we can also calculate min Fp,(2d + 1, d)
form=1 m=d—1and m=d — 2. The answer depends on
some number theory.

Slicing one corner from the base of a square pyramid yields a
polyhedron with 7 vertices and 6 faces, one of them a pentagon.
We call this a pentasm.



(a) Pentasm3 (b) Pentasm4

FIGURE 2. Pentasms



And now, 2d + 1 vertices: we can also calculate min Fp,(2d + 1, d)
form=1 m=d—1and m=d — 2. The answer depends on
some number theory.

Slicing one corner from the base of a square pyramid yields a
polyhedron with 7 vertices and 6 faces, one of them a pentagon.
We call this a pentasm.

We will use the same name for the higher-dimensional version,
obtained by slicing one corner from the quadrilateral base of a

(d — 2)-fold pyramid. It has 2d + 1 vertices and can also be
represented as the Minkowski sum of a d-dimensional simplex, and
a line segment which lies in the affine span of one 2-face but is not
parallel to any edge.
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First, edges:

Theorem

Let P be a d-dimensional polytope with 2d + 1 vertices.

(i) If P is d-dimensional pentasm, then P has d? + d — 1 edges.
(i) Otherwise the numbers of edges is > d*> +d — 1, or P is the
sum of two triangles.

This shows that the pentasm is the unique minimiser of the
number of edges if d > 5.

If d =4, the sum of two triangles has 9 vertices, and is the unique
minimiser, with only 18 edges.

If d =3, the sum of two triangles can have 7, 8 or 9 vertices; the
example with v =7 has 11 edges, the same as the pentasm.
Summarising, min F1(9,4) = 18, and

min F1(2d +1,d) = d? + d — 1 for all d # 4.



Then, facets (McMullen):

Theorem

Consider the class of d-polytopes with 2d + 1 vertices.

(i) If d is a prime, then the pentasm has the minimal number of

facets, namely d + 3, but it is not the unique minimiser.

(ii) If d is a product of 2 primes, the minimal number of facets is
d + 2, and the minimiser is unique.

(iii) If d is a product of 3 or more primes, the minimal number of
facets is d 4+ 2, and the minimiser is not unique.



Finally, ridges:

Theorem

Consider the class of d-polytopes with 2d + 1 vertices.

(i) If d is a prime, the minimal number of ridges is 3(d? +5d — 2),
and the pentasm is the unique minimiser.

(ii) If d is a product of two primes, the minimal number of ridges is
3(d? +3d +2), and the minimiser is unique.

(iii) If d is a product of three or more primes, the minimal number
of ridges is 5(d? + 3d + 2), and the minimiser is not unique.
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Theorem

Let P be a d-dimensional polytope with 2d + 2 vertices, where
d>8,d=6ord=23.

(i) If P is one of two particular polytopes, then P has d? 4 2d — 3
edges.

(i) Otherwise the numbers of edges is > d? + 2d — 3.

If d =7, there is a third minimising polytope with 16 vertices and
60 edges.

If d =4, there two more minimising polytopes with 10 vertices and
21 edges.

If d =5, the unique minimiser is the sum of a tetrahedron and
triangle; this clearly has 12 vertices and 30 edges; 30 < 32.
Summarising, min F1(12,5) = 30, and

min F1(2d + 2,d) = d? + 2d — 3 for all d # 5.

The case of 2d + 3 vertices appears to be difficult.
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expressed as a Minkowski sum A= B + C, where B, C are not
similar to A. For example, a euclidean disc is decomposable
because it is the Minkowski sum of two Reuleaux triangles.

It is well known (to those who know it) that a d-polytope with
< 2d vertices is indecomposable; and that a d-polytope with
exactly 2d vertices is decomposable if and only if it is a prism
based on a simplex.

We have completely characterised all decomposable d-polytopes
with 2d + 1 vertices; for d > 5, the only examples are prisms,
pentasms and capped prisms.

With K. Przestawski, we have completely characterised all
decomposable d-polytopes with < d? 4+ 2d — 2 edges. In 3
dimensions, we can do more. There are 301 polyhedra with 8 or
fewer vertices; we have classified them all as decomposable or
indecomposable.

There are 708 polyhedra with 16 or fewer edges; with D. Briggs, we
have classified 703 of them as decomposable or indecomposable.
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Some discussion of methods?

Let us say that three vertices form a triangle if they are pairwise
adjacent. It is worth noting that a triangle is not necessarily a face.
Many authors have shown that a polytope is indecomposable if it
contains “sufficiently many” triangles.

What is the 3-dimensional analogue of a triangle?

Hint: a triangle is a 3-cycle whose vertices are not colinear.
Answer: 4-cycles whose vertices are not coplanar are the right
objects to consider.

More generally, affinely independent cycles are (with a suitable
definition) indecomposable geometric graphs.

In particular, if a polytope contains an affinely independent cycle,
which touches every maximal face, then it is indecomposable.
Some examples:
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Figure 2: BD173 and BD179



Figure 3: BD187 and BD190



Figure 4: BD192 and BD199
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