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Here we shall discuss some uncommon convex functions and show to prove
their convexity.

Example

Cobb-Douglas Functions

In the world of quantitative economics there is a famous functional form
called the Cobb-Douglas function. This function is defined on Rn

++ and is
given as

f (x) = xα1
1 xα2

2 . . . xαn
n ,

where αi > 0 for all i = 1, . . . , n and α1 + α2 + · · ·+ αn ≤ 1. It is now a
well known fact that the above function is concave ( thus -f is convex)
under the stated assumptions on the power of the individual variables.
However for n-variables proving the convexity may not be so easy. We

consider the special case where αi =
1

n
for each i = 1, . . . , n. We prove

below the convexity of −f in this particular case by following the approach
in Hiriart-Urruty and Lemarachal (1993)
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Thus our function is

f (x) = −(x1x2 . . . xn)
1
n

ϕ(x) = −(x1x2 . . . xn)
1
n , x ∈ Rn

++.

A simple calculation would show that

∂2ϕ

∂xi∂xj
=

f (x)

n2xixj
(1− nδij),

where δij is the Kronecker delta symbol.
Thus we have

〈d ,∇2ϕ(x)d〉 =
f (x)

n2

( n∑
i=1

di
xi

)2

− n
n∑

i=1

(
di
xi

)2
 .

Now noting that ‖.‖1 ≤
√
n‖.‖2. This shows that(

n∑
i=1

di
xi

)2

− n
n∑

i=1

(
di
xi

)2

≤ 0.

This shows that 〈d ,∇2ϕ(x)d〉 ≥ 0 for all x ∈ Rn
++.
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We can gain a much better insight into the nature of the Cobb-Douglas
function if we look at its graph when we have two variables. Find below

the graph of the function f (x) = (x1x2)

1

n

Figure : Graph of a Cobb-Douglas function
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Example

A problem from a red and yellow book

Consider the following real-variable problem of detecting convexity. In
Borwein and Lewis (2006) it has been asked to verify the convexity of the
function f given below for a ≥ 1.

f (x) = ln
sinh(ax)

sinh x
.

To begin with note that the function sinh(ax)
sinh x is not defined at x = 0 since

sinh x = 0 at x = 0. Thus there appears to be a discontinuity at x = 0.
However the discontinuity is removal since

lim
x→0

sinh(ax)

sinh x
= a

Thus we can consider the function ln( sinh(ax)
sinh x ) to be ln a at x = 0.
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As before we shall take the help of MAPLE to make a decision on the
convexity of the the function. Let us first consider a = 2 and take a look
at its graph as drawn in MAPLE. See Figure 2

Figure : Graph of ln sinh(ax)
sinh x : a= 2
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Note that if 0 < a < 1 then log(a) is negative and the functional values
will be negative since sinh(ax) ≤ sinh(x). In fact for 0 < a < 1 the
function becomes concave. Let us consider a = 0.5 and sketch the graph
below ( see Figure 4)

Figure : Graph of ln sinh(ax)
sinh x : a = 0.5
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We can now try to take a more analytical look at the problem. Again

using MAPLE we compute the second derivative of f (x) = ln
(

sinh(ax)
sinh(x)

)
which is given as

f ′′(x) :=
− (cosh (x))2 a2 + (cosh (ax))2 + a2 − 1

(sinh (x))2
(

(cosh (ax))2 − 1
)

Note that the second derivative has a point of discontinuity at x = 0
which is not a removable discontinuity. By further simplification we have

f ′′(x) =
−(sinh(x))2a2 + (sinh(ax))2

(sinh(x))2(sinh(ax))2
.
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Using the series expansion of the exponential function it is not difficult to
show that for a ≥ 1 we have for x ≥ 0

sinh(ax)

sinh(x)
≥ a,

by using the convention that

sinh(a0)

sinh(0)
= a.

For x < 0 we have

sinh(ax) ≤ a sinh(x)

Since for x < 0 the hyperbolic sine is negative we have

sinh(ax)

sinh(x)
≥ a,

Thus for all x ∈ Rn

sinh(ax)

sinh(x)
≥ a, (1)

This will immediately show that f ′′(x) ≥ 0 for all x > 0 and x < 0. Since
ln is an increasing function from (1) we see that f (x) ≥ f (0). Thus we
have that the function f is convex for x > 0 and x < 0 but since the
function f is minimized at x = 0 we prove that f is convex over R which
we do in the next proposition.
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Proposition

Let f : R→ R is a function which convex for x > 0 and x < 0. Let x = 0
be a minimizer of f over R. Then f is convex over R.

By our assumption, for any λ ∈ (0, 1), y > 0 and n ∈ N,

f (λ
1

n
+ (1− λ)y) ≤ λf (

1

n
) + (1− λ)f (y).

Now as n→∞, we have

f (λ.0 + (1− λ)y) ≤ λf (0) + (1− λ)f (y).

Hence, f is convex on R+. Similarly, taking the convex combination of − 1
n

and x < 0, we can show that f is convex on R−.
Now our aim is to show that for any x < 0 and y > 0,

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

For that let us consider three cases.
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Case-I: λx + (1− λ)y) = 0.
If possible let, λf (x) + (1− λ)f (y) < f (0). But this contradicts the fact
that

f (0) = λf (0) + (1− λ)f (0) ≤ λf (x) + (1− λ)f (y)

,since x = 0 is the global minimizer of f . Therefore,

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).
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Case-II: λx + (1− λ)y) > 0.
Since λx + (1− λ)y) < y , there exists 0 < µ < 1 such that
λx + (1− λ)y) = µy . If possible let
f (λx + (1− λ)y)) > λf (x) + (1− λ)f (y). Then,

λf (x) + (1− λ)f (y) < f (λx + (1− λ)y)) = f (µy) ≤ (1− µ)f (0) + µf (y)

Which implies that,

λf (x) + (1− λ− µ)f (y) < (1− µ)f (0) (2)

Since x = 0 is a global minimizer of f , we have

λf (x) + (1− λ− µ)f (y) ≥ λf (0) + (1− λ− µ)f (0) = (1− µ)f (0),

which is a contradiction to (2). Hence
f (λx + (1− λ)y)) ≤ λf (x) + (1− λ)f (y).
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Case-III: λx + (1− λ)y) < 0.
Since x < λx + (1− λ)y) < 0, there exists 0 < ν < 1 such that
λx + (1− λ)y) = νx . Again if possible let
f (λx + (1− λ)y)) > λf (x) + (1− λ)f (y). Then,

λf (x) + (1− λ)f (y) < f (νx) ≤ νf (x) + (1− ν)f (0)

Which implies that

(λ− ν)f (x) + (1− λ)f (y) < (1− ν)f (0). (3)

Arguing similarly as Case-II, we can say that this is a contradiction to the
fact that x = 0 is a global minimizer of f . Therefore our assumption was
wrong and f (λx + (1− λ)y)) ≤ λf (x) + (1− λ)f (y).
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Example

The BAG function

For n = 3, the Borwein, Affleck and Girgrnsohn (BAG) function is given by

f (x1, x2, x3) =
1

x1
+

1

x2
+

1

x3
− 1

x1 + x2
− 1

x2 + x3
− 1

x1 + x3
+

1

x1 + x2 + x3
. (4)

defined on the set {(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0, x3 > 0}.
Then the Hessian matrix of f at point
x = (x1, x2, x3) ∈ {(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0, x3 > 0} is given by

Hf (x) =


∂2f (x)
∂x2

1

∂2f (x)
∂x1∂x2

∂2f (x)
∂x1∂x3

∂2f (x)
∂x1∂x2

∂2f (x)
∂x2

2

∂2f (x)
∂x2∂x3

∂2f (x)
∂x1∂x3

∂2f (x)
∂x2∂x3

∂2f (x)
∂x2

3


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Where

∂2f (x)

∂x2
1

=
2

x3
1

− 2

(x1 + x2)3
− 2

(x1 + x3)3
+

2

(x1 + x2 + x3)3

∂2f (x)

∂x2
2

=
2

x3
2

− 2

(x1 + x2)3
− 2

(x2 + x3)3
+

2

(x1 + x2 + x3)3

∂2f (x)

∂x2
3

=
2

x3
3

− 2

(x2 + x3)3
− 2

(x1 + x3)3
+

2

(x1 + x2 + x3)3

∂2f (x)

∂x1∂x2
= − 2

(x1 + x2)3
+

2

(x1 + x2 + x3)3

∂2f (x)

∂x2∂x3
= − 2

(x2 + x3)3
+

2

(x1 + x2 + x3)3

∂2f (x)

∂x1∂x3
= − 2

(x1 + x3)3
+

2

(x1 + x2 + x3)3
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Also note that for any point x = (x1, x2, x3) ∈ (0,∞)3,

∂2f (x)

∂x2
1

=
2

x3
1

+
2

(x1 + x2 + x3)3
− 2

(x1 + x2)3
− 2

(x1 + x3)3

= 2
(2x1 + x2 + x3)3 − 3x1(x1 + x2 + x3)(2x1 + x2 + x3)

x3
1 (x1 + x2 + x3)3

−

2
(2x1 + x2 + x3)3 − 3(x1 + x2)(x1 + x3)(2x1 + x2 + x3)

(x1 + x2)3(x1 + x3)3

= (2x1 + x2 + x3)3[
1

x3
1 (x1 + x2 + x3)3

− 1

(x1 + x2)3(x1 + x3)3
−

3(2x1 + x2 + x3)[
1

x2
1 (x1 + x2 + x3)2

− 1

(x1 + x2)2(x1 + x3)2
]

=
(2x1 + x2 + x3)3x3

2x
3
3

x3
1 (x1 + x2)3(x1 + x3)3(x1 + x2 + x3)3

+

3
(2x1 + x2 + x3)x2x3

x2
1 (x1 + x2)2(x1 + x3)2(x1 + x2 + x3)2

[(2x1 + x2 + x3)2 − (2x2
1 + 2x1x2 + 2x1x3 + x2x3)]

=
(2x1 + x2 + x3)3x3

2x
3
3

x3
1 (x1 + x2)3(x1 + x3)3(x1 + x2 + x3)3

+

3
(2x1 + x2 + x3)x2x3

x2
1 (x1 + x2)2(x1 + x3)2(x1 + x2 + x3)2

(2x2
1 + x2

2 + x2
3 + 2x1x2 + 2x1x3 + x2x3)

> 0

Similarly we can show that ∂2f (x)
∂x2

1
> 0 and ∂2f (x)

∂x2
3
> 0. But showing that

the determinant of the Hessian matrix is non-negative is a tough job.
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As earlier we shall take the help of MAPLE to decide whether the function
looks convex or not. Let us first consider n = 2 and take a look at the
graph of the BAG function f (x1, x2) = 1

x1
+ 1

x2
− 1

x1+x2
as drawn in

MAPLE. See Figure 4

Figure : Graph of 1
x1

+ 1
x2
− 1

x1+x2
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Example

The inverse square-root function

We had found the following interesting problem in the second edition of
the book titled Optimization by Kenneth Lange (2013). He asks the
reader to show that the following function is convex

f (x) =
1

√
x1 + · · ·+√xn

over all non-negative xi , i = 1, . . . n such that all of them are not
simultaneously zero. Thus we have to show the convexity of the function
on Rn

+ \ {(0, 0)}. We shall just call the function f as the inverse square
root function. If we want to show that the Hessian matrix is non-negative
on the domain, the question would be how to define the Hessian matrix on
the boundary of the domain. This may appear as a bottleneck but it is
not. Note that f is actually continuous on the whole domain but f is twice
continuously differentiable on the interior. It is in simple to show that if a
function is convex on the interior of a convex set and continuous on the
boundary of its domain then f is convex.
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For simplicity we shall just prove it for n = 2 since the case for higher
values of n can be done in an analogous way. To begin with it is a better
idea to have a look at the graph of the function when n = 2

Figure : Graph of the inverse square-root function
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Let us now analytically look at the function f (x1, x2) = 1√
x1+
√
x2

over the

set R2
++ = {(x1, x2) ∈ R2 : x1 > 0, x2 > 0}. Then

∂2f (x)

∂x2
1

=
1

4

3
√
x1 +

√
x2

(
√
x1)3(

√
x1 +

√
x2)3

∂2f (x)

∂x2
2

=
1

4

√
x1 + 3

√
x2

(
√
x2)3(

√
x1 +

√
x2)3

∂2f (x)

∂x1∂x2
=

1

2

1
√
x1x2(

√
x1 +

√
x2)3

Therefore the Hessian matrix of f at any point x = (x1, x2) is given by

Hf (x) =
1

4

1

(
√
x1 +

√
x2)3

3
√
x1+
√
x2

(
√
x1)3

2√
x1x2

2√
x1x2

√
x1+3

√
x2

(
√
x2)3


whose diagonal elements are positive as x1 > 0 and x2 > 0. Also

det(Hf (x)) =
3(
√
x1 +

√
x2)2

x1x2
√
x1x2

> 0
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Hence, the Hessian matrix of f at any point
x ∈ {(x1, x2) ∈ R2 : x1 > 0, x2 > 0} is positive semi-definite. Which
implies that f is convex on the mentioned set. Note that the f is
continuous on R2

+ \ {0} and the interior of R2
+ \ {0} is exactly R2

++. Thus
f is also convex on R2

+ \ {0}.
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Example

Log-convexity

Let us consider the continuous function f : R→ R defined as

f (x) =

{
1−e−xt

x x 6= 0

t x = 0

In order to get a fair idea of how the function may look like let us look at
the graph of the function drawn using MAPLE below ( see Figure ??).

Figure : Graph of the function f

Looking at the graph of the function for t = 1 we feel confident that the
function is indeed convex.
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For the general case let us compute the first and second order derivatives
computing them separately for x = 0 Then if x 6= 0,

f ′(x) =
1

x2
[(1 + xt)e−xt − 1] (5)

and f ′(0) = − t2

2 . If x 6= 0,

f ′′(x) =
1

x3
[2− 2(1 + xt +

x2t2

2
)e−xt ] (6)

and f ′′(0) = t3

3 .

As t > 0, f ′′(0) > 0. For x > 0, (1 + xt + x2t2

2 ) < ext . Hence f ′′(x) > 0
for all x > 0. As x → −∞, f ′′(x)→ +∞. But for x < 0 it appears in
general that it is difficult to show that f ′′(x) > 0.
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We will try to see if f ′′(x) > 0 for x < 0 using MAPLE. The following
figure make us more confident to say so.

Figure : Graph of the function f ′′(x)
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We know that if any function is log-convex, it is convex also. Hence we
will try to show that f is a log-convex function i.e. g(x) = log(f (x)) is a
convex function. Then,

g
′′

(x) =
f
′′

(x)f (x)− (f
′
(x))2

(f (x))2

Now, for any x 6= 0

g
′′

(x) =
e−xt

x2(1− e−xt)2
(ext + e−xt − 2− x2t2)

=
2e−xt

x2(1− e−xt)2
(
x4t4

4!
+

x6t6

6!
+ · · · ) > 0

Also g
′′

(0) = 1
12 t

2 > 0. Hence g(x) is a convex function on R, implying
that f (x) is a convex function on R.
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The max function approach

In this approach we try to express the given function as a supremum of a
family of convex functions. Our first example is the maximum eigenvalue
function of a symmetric matrix which is described as follows.

λ1(A) = max
‖x‖=1

〈x ,Ax〉.

Thus λ1 : Sn → R can be concluded to be a convex function by noting the
following steps.

λ1(A) = max
‖x‖=1

〈xxT ,A〉

= max
xxT :‖x‖=1

〈xxT ,A〉

= max
co{xxT :‖x‖=1}

〈xxT ,A〉

= max
Y∈Sn

+:trace(Y )=1
〈Y ,A〉

Note that for each Y the function 〈Y ,A〉 is a linear function in Sn. Thus
λ1 is a convex function.

J. Dutta, T. Pandit and D. Ghosh Detecting the Convexity of a Function and Related IssuesSeptember 27, 2017 26 / 43



For any matrix A ∈ Sn let us arrange the eigenvalues in a descending
manner, i.e. λ1(A) ≥ λ2(A), . . . , λK (A), . . . , λn(A). Let us consider the
function

fk(A) =
k∑

i=1

λi (A).

Thus this function is generated by summing the k-largest eigenvalues of
the symmetric matrix A. Consider the the linear space Dn of n × n
diagonal matrices. Consider the set

Φn,k = {U ∈ Dn : U ∈ Sn+, I − U ∈ Sn+, trace(U) = k}

The second condition tells us that Φn,k is bounded. It is further easy to
show that Φn,k is closed and convex and thus compact. Our aim is to
show that

fk(A) = max
U∈Φn,k

〈A,U〉.

The proof of the convexity of this function was first proved in Overton and
Womersley [?]. They prove it by arriving at the same conclusion as the
previous expression.
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We had in fact borrowed the idea of the set Φn,k from Overton and
Womersley (1993) where instead of U ∈ Sn we have chosen U ∈ Dn. Since
A is a real symmetric matrix there exits an orthogonal matrix Q whose
columns are normalized eigenvectors of A. Thus we have

QTAQ = Λ,

where Λ = diag(λ1, λ2, . . . , λn). Also note that for any U ∈ Φn,k we have
0 ≥ ui ≤ 1 for all i = 1, . . . , n and

u1 + u2 + · · ·+ uk + uk+1 + · · · un = k

This shows that

uk+1 + · · ·+ un = (1− u1) + (1− u2) + · · ·+ (1− uk) (7)

Observe that we have the following

〈A,U〉 = trace(AU)

= trace(AUQQT )

= trace(QTAUQ)

= trace(QTAQU)

= trace(ΛU)

= λ1u1 + · · ·+ λnun.
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Now using ( ??) and the fact the eigenvalues are arranged in a descending
order allows us to show that,

〈A,U〉 ≤ λ1u1 + · · ·λkuk + (uk+1 + · · ·+ un)λk+1

= λ1u1 + · · ·λkuk + (1− u1)λk+1 + · · ·+ (1− uk)λk+1

≤ λ1u1 + · · ·λkuk + (1− u1)λ1 + · · ·+ (1− uk)λk

= λ1 + λ2 + · · ·+ λk

= fk(A).

Since the above result holds for any U ∈ Φn,k we conclude that

max
U∈Φn,k

〈A,U〉 ≤ fk(A).

Now let us consider Û ∈ Φn,k such that u=1 for all i = 1, . . . , k and ui = 0
for all i = k + 1, . . . , n. Then we have

〈A, Û〉 = λ1 + · · ·+ λk = fk(A).

. This shows that

fk(A) = max
U∈Φn,k

〈A,U〉.

Hence fk is a convex function.
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The Hormander criterion ( f = f ∗∗)

Example

f (x) = x log x

Let us consider the function f (x) = x log x defined on the set
x ∈ R : x > 0. Since this function satisfies the Hormander criterion
f ∗∗(x) = f (x), we can say that f is convex on the above mentioned set.
Here

f ∗(y) = sup
y∈R++

{xy − x log x}

= ey−1.

and

f ∗∗(x) = sup
x∈R
{xy − ey−1}

= x log x .
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Let us again consider the function f (x) = ln sinh nx
sinh x . For n = 2 we will

show that the Hormander criterion satisfies i.e. f = f ∗∗. Here we calculate
the conjugate and biconjugate of f (x) = lnfracsinh 2xsinh x using the
MAPLE package SCAT.

f ∗(y) =



∞ y < −1

0 y = −1
y
2 ln(1 + y)− y

2 ln(1− y)−
ln(cosh( 1

2 ln(1 + y)− 1
2 ln(−y + 1)))− ln 2 −1 < y < 0

0 y = 1

∞ y > 1

0 100 ≤ x

and f ∗∗(x) = ln 2 + ln(cosh x) = f (x)
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The Convexity of Polynomials

Let us now start to discuss on the very interesting issue of convexity of
polynomials. Consider the function f : R→ R given as
f (x) = x6 + x5 + x4 + x3 + x2 + 1. The first thing we do is take a look at
the graph of f by plotting it using MAPLE. See Figure ??.

.

Figure : Graph of x6 + x5 + x4 + x3 + x2 + x + 1
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The graph definitely looks like the graph of a convex function however the
region between x = −2 to x = 2 is not clear. Thus let us zoom in on the
graph in the interval [−2, 2]. This is what is shown in Figure ?? .

.

Figure : Graph of x6 + x5 + x4 + x3 + x2 + x + 1 magnified

This appears to confirm our assertion that the function is convex.
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In order to get an analytical proof let us now calculate its second derivative

f ′′(x) = 30x4 + 20x3 + 12x2 + 6x + 2.

However since from the computer experimentation as we are confident
that f is convex then f ′′(x) is non-negative and we will be able to indeed
show that the second derivative can be expressed as a sum of squares.
Indeed observe that

f ′′(x) = (
√

5x2)2 + (5x2 + 2x)2 +

(√
7

2
x

)2

+

(
3x + 2√

2

)2

.

Thus we are now confirmed that that f ′′(x) ≥ 0 for all x ∈ R and thus we
have actually proved that f is convex.
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The Approach of the Parrillo Group:

1 The key idea : Reduce the problem to the problem of checking the
non-negativity of a biquadratic polynomial

2 The non-negativity of the bi-quadratic can be reduced to the clique.
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The notion of a polynomial :
In general a polynomial of n-variables is a function p : Rn → R given as

p(x) =
∑
α

cαx
α.

where cαx
α = cα1,...,αnx

α
1 , · · · xαn . The term xα = xα1 · · · xαn is called a

monomial and the degree of the monomial is α1 + · · ·+ αn. The degree of
the polynomial is the highest degree of the component monomials. A
polynomial is called non-negative or positive semidefinite ( psd) if p(x) ≥ 0

for all x . A polynomial in n-variables of degree d has
(n + d)!

d!n!
coefficients
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Biquadratic polynomial. :
We start by the notion of a biquadratic form b(x , y) in the variables
x = (x1, . . . , xn)T and y = (y1, . . . , ym)T is given as follows

b(x , y) =
∑

i≤j ,k≤l
αijklxixjykyl .

The key steps

1 Ling et al (2010) showed that the minimization of a biquadratic
polynomial over the bi-sphere can be reduced from the CLIQUE

2 Ahmadi et al (2013) showed that problem of deciding the
non-negativity of a bi-quadratic can be reduced from the CLIQUE
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Ling et al 2010 considers the following biquadratic function. Let
x = (x1, . . . , xn)T and y = (y1, . . . , yn)T and consider the function

bG (x , y) = −2
∑

(i ,j)∈E

xixjyiyj .

where G denotes the graph G (V ,E ) with vertex set V and edge set E . It
was shown in Ling et al (2010) that

min
‖x‖=1,‖y‖=1

bG (x , y) = −1 +
1

ω(G )
,

where ω(G ) is clique number of the graph, which is nothing but the
cardinality of the maximal clique. Now let us ask the following question.
Now a simple calculation will show that ω(G ) ≤ k if and only if

min
‖x‖=1,‖y‖=1

bG (x , y) ≥ 1− k

k
.

This shows that for all x , y ∈ R such that ‖x‖ = 1 and ‖y‖ = 1 we have

bG (x , y) ≥ 1− k

k
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The discussion continued :
Now by using the standard trick of homogenization, which absorbs in the
constraints and this we can now say that ω(G ) ≤ k if and only if the
biquadratic function

b̂G (x , y) = −2k
∑

(i ,j)∈E

xixjyiyj − (1− k)(
n∑

i=1

x2
i )(

n∑
i=1

y2
i ),

is non-negative.
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The main result of Ahmadi et al (2013)
Given the biquadratic form b(x , y) define the n × n polynomial matrix
C (x , y) given as

[C (x , y)]ij =
∂b(x , y)

∂xi∂j
.

Further let γ be the largest coefficient, in absolute value, of any monomial
present in some entry of any monomial present in some entry of the matrix
C (x , y). Now let us consider the function f given as

f (x , y) = b(x , y) +

n2γ

2


n∑

i=1

x4
i +

n∑
i=1

y4
i +

∑
i ,j=1,...,n,i<j

x2
i x

2
j +

∑
i ,j=1,...,n,i<j

y2
i y

2
j

 .

Then b(x , y) is non-negative if and only if f is convex.
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THANK YOU

J. Dutta, T. Pandit and D. Ghosh Detecting the Convexity of a Function and Related IssuesSeptember 27, 2017 43 / 43


