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Context: Convex Functions and Variational Analysis

−→ another domain in which Jon Borwein participated heavily!

Optimization: starting with a research explosion in the 1950s, it
was realized that convex versus nonconvex was the real watershed
in optimization, instead of the traditional linear versus nonlinear.

Convex functions: studies of the role of convexity and inequality
constraints in optimization led to very new prespectives where:

• real-valued functions could instead be extended-real-valued,
• their graphs needed to be replaced by their epigraphs,
• set-valued subgradient mappings can generalize differentiation.

Variational analysis: extensions beyond convexity led to:

• variational geometry with unilateral tangents and normals,
• variational convergence/epiconvergence replacing pointwise,
• variational ineqs./generalized equations, variational principles,
• monotonicity properties that generalize “positive definiteness.”



Overview of This Talk

• Problems of finding a zero of a maximal monotone mapping
have many applications in optimization, equilibrium, and elsewhere

• The proximal point algorithm generates, from any starting
point, a sequence that converges to some particular solution

• Spingarn (1983) invoked that for a partial inverse of the
mapping to get a procedure conducive to problem decomposition

• Rock. and Wets (1991) followed that lead in developing the
progressive hedging algorithm in convex stochastic programmming

• Penannen (2002) showed how localized max monotonicity in
the proximal point algorithm guarantees local convergence

These ideas can be articulated even if local max monotonicity is
just elicitable. In optimization that is how augmented Lagrangians
are able to support multiplier methods through second-order theory



Problem Format for Discussion and Elaboration

Ingredients:
• a Hilbert space H, taken here to be finite-dimensional
• some subspace L ⊃ H with orthogonal complement L⊥

• some set-valued mapping T : H →→ H
gphT =

{
(z ,w)

∣∣w ∈ T (z)
}
⊂ H × H

Basic Problem

determine z̄ ∈ L and w̄ ∈ L⊥ such that w̄ ∈ T (z̄)

The “monotone” case of this: T being maximal monotone
monotonicity: 〈w ′ − w , z ′ − z〉 ≥ 0 when w ∈ T (z), w ′ ∈ T (z ′)

maximality: 6 ∃ monotone T ′ 6= T with gphT ′ ⊃ gphT

Subspace interpretation: L stands for a “linkage constraint”



Connection with Variational Inequalities

Variational inequality: −F (z̄) ∈ NC (z̄) for
F : H → H some continuous mapping
C ⊂ H some nonempty closed convex set
NC = the normal cone mapping associated with C ,
v ∈ NC (z) ⇐⇒ z ∈ C , 〈v , z ′ − z〉 ≤ 0, ∀z ′ ∈ C

Variational inequality with linkage: C = L ∩ B
where L ⊂ H is a subspace, B ⊂ H is a closed convex set

Normal cone formula: assuming L ∩ riB 6= ∅, say

NL∩B(z) = NL(z) + NB(z) with NL(z) =

{
L⊥ if z ∈ L
∅ if z /∈ L

Reduction to the basic problem: taking T = F + NB

−F (z̄) ∈ NL∩B(z̄) ⇐⇒ z̄ ∈ L and ∃w̄ ∈ L⊥ ∩ (F + NB)(z̄)

Monotone case: T is max mono. if F is monotone rel. to B,
〈F (z ′)− F (z), z ′ − z〉 ≥ 0 ∀z ′, z ∈ B



Partial Inverse Approach of Spingarn, 1983

• Represent H as the product space L× L⊥

• Write z and w as (x , u) and (v , y) with x , v ∈ L, u, y ∈ L⊥

Then L =
{

(x , u)
∣∣ u = 0

}
, L⊥ =

{
(v , y)

∣∣ v = 0
}
, so that

z̄ ∈ L, w̄ ∈ L⊥, w̄ ∈ T (z̄) corresponds to (0, ȳ) ∈ T (x̄ , 0)

Partial inverse: of T with respect to L

T̃ : H →→ H defined by (v , u) ∈ T̃ (x , y) ⇐⇒ (v , y) ∈ T (x , u)

Then (0, ȳ) ∈ T (x̄ , 0) corresponds to (0, 0) ∈ T̃ (x̄ , ȳ)

Spingarn’s observation: T is max mono. ⇐⇒ T̃ is max mono.

The proximal point algorithm can then be applied to T̃ to solve
(0, 0) ∈ T̃ (x̄ , ȳ) and thereby solve z̄ ∈ L, w̄ ∈ L⊥, w̄ ∈ T (z̄)

The topic here: extending this beyond just the monotone case



Spingarn’s Application of the Proximal Point Algorithm

Recall context: solving (0, 0) ∈ T̃ (x̄ , ȳ) for the partial inverse
T̃ (x , y) =

{
(v , u)

∣∣ (v , y) ∈ T (x , u)
}

under max monotonicity

Proximal point iterations: generating (xk , yk) for k = 1, 2, . . .
(xk+1, yk+1) = [ I + r−1T̃ ]−1(xk , yk), r > 0

Elaboration: this works out in terms of T and the notation
uk+1 = r−1[yk+1 − yk ], yk+1 = yk − ruk+1,

to mean (0, 0) ∈ Tk(xk+1, uk+1) for the max monotone mapping
Tk(x , u) = T (x , u)− (0, yk) + r [(x , u)− (xk , 0)]

Reverting to earlier notation by letting zk and wk stand for (xk , 0)
and (0, yk), and ẑk+1 for (xk+1, uk+1), we get iterations as follows

• from zk ∈ L and wk ∈ L⊥ determine ẑk+1 by solving
0 ∈ Tk(ẑk+1) where Tk(z) = [T + rI ](z)− [wk + rzk ]

• take zk+1 = PL(ẑk) (projection), wk+1 = wk − r [zk+1 − ẑk+1]



Motivating Background in Optimization Duality

Framework: Hilbert spaces X and U, finite-dimensional,
some lsc proper function f : X × U → (−∞,∞]

Optimization problem: minimize f (x , 0) with respect to x
perturbed version: minimize f (x , u) in x for some u 6= 0

Typical first-order condition: utilizing general subgradients
x̄ locally optimal ←→ ∃ȳ ∈ U such that (0, ȳ) ∈ ∂f (x̄ , 0)

Connection to the basic problem: through its portrayal above

H = X × U, L = X × {0}, L⊥ = {0}, T = ∂f

Convex case of this: f (x , u) is a convex function of (x , u)
then T = ∂f is maximal monotone

Duality: then too, (0, ȳ) ∈ ∂f (x̄ , 0) ⇐⇒ (x̄ , 0) ∈ ∂f ∗(0, ȳ)

Associated dual problem: minimize f ∗(0, y) with respect to y
peturbed version: minimize f ∗(v , y) in y for some v 6= 0



Partial Inverse Interpretation in the Optimization Setting

Lagrangian function: l(x , y) = infu
{
f (x , u)− 〈y , u〉

}
f (x , u) convex in u ⇒ f (x , u) = supy

{
l(x , y) + 〈y , u〉

}
Common situation in subgradient calculus:

(v , y) ∈ ∂f (x , u) ⇐⇒ (v ,−u) ∈ ∂l(x , y)
and then the partial inverse of ∂f can be identified with

T̃ : (x , y)→→
{

(v , u)
∣∣ (v ,−u) ∈ ∂l(x , y)

}
Specialization to the convex case:
• this holds with l(x , y) convex in x , concave in y
• (v ,−u) ∈ ∂l(x , y) ⇐⇒ v ∈ ∂x l(x , y), u ∈ ∂y [−l ](x , y)
• (0, ȳ) ∈ ∂f (x̄ , 0) ⇐⇒ (x̄ , ȳ) is a Lagrangian saddle point
• Spingarn’s application of the proximal point algorithm to

T̃ leads to subproblems involving the corresponding
Augmented Lagrangian function:

lr (x , y) = infu
{
f (x , u)− 〈y , u〉+ r

2 ||u||
2
}

, r > 0



Augmented Lagrangian Details in Nonlinear Programming

Problem: minimize f (x , 0) with respect to x where
f (x , u) = δC (x) + g(x) + δK (G (x) + u)

in the case of g : X → IR and G : X → U both smooth,
C ⊂ X closed convex, K ⊂ U closed convex cone

Corresponding Lagrangians — in terms of Y = K ∗ = polar cone

l(x , y) = δC (x) + g(x) + 〈y ,G (x)〉 − δY (y)

lr (x , y)=δC (x)+g(x)+〈y ,G (x)〉+ r
2 ||G (x)||2− r

2dist
2
Y (y +rG (x))

Convex case: g(x) + 〈y ,G (x)〉 convex in x ∈ C when y ∈ Y

Corresponding execution of Spingarn’s algorithm

xk+1 = argmin
x

{
lr (x , yk) + r

2 ||x − xk ||2
}

, yk+1 = yk− r [xk+1− xk ]

= the proximal method of multipliers of Rockafellar (1976)!



Localization of the General Procedure and its Convergence

Definition: a mapping T : H →→ H is max monotone locally at
(z̄ , w̄) ∈ gphT if ∃ neighborhood N of (z̄ , w̄) such that
• 〈w ′ − w , z ′ − z〉 ≥ 0 for all (z ,w), (z ′,w ′), in N ∩ gphT ,
• gphT can’t be extended in N without violating this condition

Local convergence theorem of Pennanen, 2002

The proximal point algorithm for finding (z̄ , 0) ∈ gphT converges
locally to a solution if T is max monotone locally at a solution
(z̄ , 0) and the iterations proceed from some zk close enough to z̄

Application here: finding z̄ ∈ L, w̄ ∈ L⊥, with w̄ ∈ T (z̄)
Pennanen’s convergence result can be invoked for T̃ instead of T

Local convergence of Spingarn’s partial inverse procedure

The algorithm for finding (z̄ , w̄) ∈ (L× L⊥) ∩ gphT converges
locally to a solution if T is max monotone locally at a solution
(z̄ , w̄) and the iterations go from (zk ,wk) close enough to (z̄ , w̄)



Extension to Problems With “Elicitable” Monotonicity

Problem to be solved: find z̄ ∈ L, w̄ ∈ L⊥, with w̄ ∈ T (z̄)

Projection device: Let PL⊥ be the projection on L⊥, so that
PL⊥ = I − PL and z ∈ L⇔ PL⊥(z) = 0

Observation: solutions are unaffected if T is replaced by
Ts = T + sPL⊥ for some s > 0

Definition of elicitability

Local maximal monotonicity is elicitable at a solution (z̄ , w̄) at
level s̄ > 0 if Ts is maximal monotone locally at (z̄ , w̄) for s ≥ s̄

=⇒ the algorithm can be applied to Ts in place of T

Corresponding modification of the algorithm

• there are two parameters: s > 0 sufficiently high and r > s
• the w update is now wk+1 = wk − (r − s)[zk+1 − ẑk+1]



Elicitation Via Augmented Lagrangians in Optimization

Recall framework: T = ∂f for lsc f (x , u) on X × U convex in u
T̃ : (x , y)→→

{
(v , u)

∣∣ (v ,−u) ∈ ∂l(x , y)
}

, where
l(x , y) = inf

u

{
f (x , u)− 〈y , u〉

}
Lagrangian

Algorithm derivation: apply the proximal point algorithm to T̃
elicitation with s > 0: apply it instead to the partial inverse T̃s

where Ts = T + sPL⊥ for the projection PL⊥ : (x , u)→ (0, u)

New perspective: T̃s : (x , y)→→
{

(v , u)
∣∣ (v ,−u) ∈ ∂ls(x , y)

}
for

ls(x , y) = inf
u

{
f (x , u)− 〈y , u〉+ s

2 ||u||
2
}

augmented Lagrangian

Key insight for elicitation

Local max monotonicity of T̃s at a solution (x̄ , ȳ) means that the
augmented Lagrangian ls(x , y) is locally convex-concave at (x̄ , ȳ)

How realistic is it to rely on this holding when s is high enough?



Elicitation Specialized to Nonlinear Programming

Problem: minimize g(x) subject to x ∈ C , G (x) ∈ K
i.e., min f (x , 0) for f (x , u) = δC (x) + g(x) + δK (G (x) + u)
C = closed convex set, K = closed convex cone, Y = polar

Augmented Lagrangian: with parameter r > 0

lr (x , y)=δC (x)+g(x)+〈y ,G (x)〉+ r
2 ||G (x)||2− r

2dist
2
Y (y +rG (x))

Standard case of NLP: C = IRn, Y = IRq
+ × IRm−q

Known fact for the standard case of NLP

The so-called strong second-order sufficient conditions for
optimality of x̄ with multiplier vector ȳ induce lr (x , y) to be
convex-concave around (x̄ , ȳ) when r > 0 is sufficiently high

Conjecture: this holds beyond the standard case and even for
much more general problem formats in optimization

second-order optimality theory needs further work to resolve this



More the Role of Second-Order Optimality

Traditional paradigm: develop second-order sufficient conditions
that are as close as possible to second-order necessary conditions

Contemporary reality: problems are solved numerically and
second-order conditions are the key to understanding convergence

Duality result in standard NLP — Rock. (1974)

(x̄ , ȳ) is a local saddle point of the augmented Lagrangian lr (x , y)
⇐⇒ x̄ is locally optimal and the function p(u) = infx f (x , u)

has the property that p(u) ≥ p(0)− 〈ȳ , u〉 − r
2 ||u||

2 for u near 0

convexity-concavity of lr (x , y) near (x̄ , ȳ) extends this to a nbhood

Conjecture about the general analog of SSOC beyond NLP

For the theory of augmented Lagrangians much more broadly, this
should be the existence of a neighborhood of (x̄ , ȳ) on which, for
r high enough, lr (x , y) is concave in y but strongly convex in x
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