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Setting: Help!



Setting: It worked!



Problem:

How can you quickly convince your students that those identities
are true?



Reminder:



Dynamical Visual Models - One:

Figure: The sum of the first n positive odd integers

http://people.math.sfu.ca/~vjungic/CLF/sum-odd.html


Facts:

I Known to Pythagoras, c. 570 – 500 BCE

I The first inductive proof has been attributed to Francesco
Maurolico, 1494 – 1575,
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Dynamical Visual Models - Two:

Figure: The sum of the first n positive integers

http://people.math.sfu.ca/~vjungic/CLF/sum-int.html


Fact:

We follow Pythagoras’ proof.



Dynamical Visual Models - Three:

Figure: The sum of the squares of the first n positive integers

http://people.math.sfu.ca/~vjungic/CLF/sum-square-int.html


Facts:

I Known to Aryabhata, 476–550

I Nelsen attributed the idea of this proof to Martin Gardner and
Dan Kalman.

I Sometimes it is called the Greek rectangle method.
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Dynamical Visual Models - Four:

Figure: The sum of the cubes of the first n positive integers

http://people.math.sfu.ca/~vjungic/CLF/sum-cube-int.html


Facts:

I Known as Nicomachus’s theorem

I Nicomachus, 60 – 120; Aryabhata, 476–550; Abu Bakr
Al-Karaji, 953-1029; Al-Qabisi, ? – 967; Gersonides,
1288–1344; Nilakantha Somayaji, 1444 – 1544.

I We follow the idea that is attributed to Abu Bakr al-Karaji.



Facts:

I Known as Nicomachus’s theorem

I Nicomachus, 60 – 120; Aryabhata, 476–550; Abu Bakr
Al-Karaji, 953-1029; Al-Qabisi, ? – 967; Gersonides,
1288–1344; Nilakantha Somayaji, 1444 – 1544.

I We follow the idea that is attributed to Abu Bakr al-Karaji.



Facts:

I Known as Nicomachus’s theorem

I Nicomachus, 60 – 120; Aryabhata, 476–550; Abu Bakr
Al-Karaji, 953-1029; Al-Qabisi, ? – 967; Gersonides,
1288–1344; Nilakantha Somayaji, 1444 – 1544.

I We follow the idea that is attributed to Abu Bakr al-Karaji.



Proof:

I Let n ∈ N and let A =
[
0, n(n+1)

2

]
×
[
0, n(n+1)

2

]
.

I A is a square and µ(A) =
(
n(n+1)

2

)2
.

For i ∈ [1, n], let Ai =
[
0, i(i−1)

2

]
×[

i(i−1)
2 , i(i+1)

2

]
∪
[
i(i−1)

2 , i(i+1)
2

]
×
[
0, i(i+1)

2

]
.

I

I ∪ni=1Ai = A, i 6= j ⇒ µ(Ai ∩ Aj) = 0, and µ(Ai ) = i3

I
∑n

i=1 µ(Ai ) = µ(A)⇒
∑n

i=1 i
3 =

(
n(n+1)

2

)2



Proof:

I Let n ∈ N and let A =
[
0, n(n+1)

2

]
×
[
0, n(n+1)

2

]
.

I A is a square and µ(A) =
(
n(n+1)

2

)2
.

For i ∈ [1, n], let Ai =
[
0, i(i−1)

2

]
×[

i(i−1)
2 , i(i+1)

2

]
∪
[
i(i−1)

2 , i(i+1)
2

]
×
[
0, i(i+1)

2

]
.

I

I ∪ni=1Ai = A, i 6= j ⇒ µ(Ai ∩ Aj) = 0, and µ(Ai ) = i3

I
∑n

i=1 µ(Ai ) = µ(A)⇒
∑n

i=1 i
3 =

(
n(n+1)

2

)2



Proof:

I Let n ∈ N and let A =
[
0, n(n+1)

2

]
×
[
0, n(n+1)

2

]
.

I A is a square and µ(A) =
(
n(n+1)

2

)2
.

For i ∈ [1, n], let Ai =
[
0, i(i−1)

2

]
×[

i(i−1)
2 , i(i+1)

2

]
∪
[
i(i−1)

2 , i(i+1)
2

]
×
[
0, i(i+1)

2

]
.

I

I ∪ni=1Ai = A, i 6= j ⇒ µ(Ai ∩ Aj) = 0, and µ(Ai ) = i3

I
∑n

i=1 µ(Ai ) = µ(A)⇒
∑n

i=1 i
3 =

(
n(n+1)

2

)2



Proof:

I Let n ∈ N and let A =
[
0, n(n+1)

2

]
×
[
0, n(n+1)

2

]
.

I A is a square and µ(A) =
(
n(n+1)

2

)2
.

For i ∈ [1, n], let Ai =
[
0, i(i−1)

2

]
×[

i(i−1)
2 , i(i+1)

2

]
∪
[
i(i−1)

2 , i(i+1)
2

]
×
[
0, i(i+1)

2

]
.

I

I ∪ni=1Ai = A, i 6= j ⇒ µ(Ai ∩ Aj) = 0, and µ(Ai ) = i3

I
∑n

i=1 µ(Ai ) = µ(A)⇒
∑n

i=1 i
3 =

(
n(n+1)

2

)2



Proof:

I Let n ∈ N and let A =
[
0, n(n+1)

2

]
×
[
0, n(n+1)

2

]
.

I A is a square and µ(A) =
(
n(n+1)

2

)2
.

For i ∈ [1, n], let Ai =
[
0, i(i−1)

2

]
×[

i(i−1)
2 , i(i+1)

2

]
∪
[
i(i−1)

2 , i(i+1)
2

]
×
[
0, i(i+1)

2

]
.

I

I ∪ni=1Ai = A, i 6= j ⇒ µ(Ai ∩ Aj) = 0, and µ(Ai ) = i3

I
∑n

i=1 µ(Ai ) = µ(A)⇒
∑n

i=1 i
3 =

(
n(n+1)

2

)2



Disclamer:

Figure: Fibonacci Jigsaw Puzzle

http://people.math.sfu.ca/~vjungic/CLF/64-equals-65.html


Why Dynamical Visual Models in a Math Classroom?

Gaining insight and intuition or just knowledge.

– the first of “Eight Rules for Computation” by David Bailey and
Jonathan Borwein.
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