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We shall begin with some definitions.

Definition
Let X be a set and let f : X → (−∞,∞] be a function. Then

Dom(f ) := {x ∈ X : f (x) <∞}.

Definition
Let X be a set and let f : X → (−∞,∞] be a function. We shall
say that f is a proper function if Dom(f ) 6= ∅.
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We shall now consider some notation from optimisation theory.

Definition
Let X be a set and let f : X → [−∞,∞) be a function. Then

argmax(f ) := {x ∈ X : f (y) ≤ f (x) for all y ∈ X}.

Definition
We shall say that a function f : X → [−∞,∞) defined on a
normed linear space (X , ‖ · ‖) attains a (or has a) strong
maximum at x0 ∈ X if, f (x0) = sup{f (x) : x ∈ X} and
lim

n→∞
xn = x0 whenever (xn : n ∈ N) is a sequence in X such

that lim
n→∞

f (xn) = sup{f (x) : x ∈ X} = f (x0).
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Definition
Let (X , ‖ · ‖) be a normed linear space and f : X → (−∞,∞] be
a proper function. Then the Fenchel conjugate of f is the
function f ∗ : X ∗ → (−∞,∞] defined by, (here, and elsewhere,
X ∗ denotes the dual space of X )

f ∗(x∗) := sup{x∗(x)− f (x) : x ∈ X}.

The final notion that we need before we can precisely state our
theorem is that of a Gδ set

Definition
A subset Y of a topological space (X , τ) is called a Gδ set if
there exists a countable family {On : n ∈ N} of open subsets of
X such that Y =

⋂
n∈N On.
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We can now precisely state our Variational Theorem.

Theorem (Abstract Variational Theorem)

Let f : X → (∞,∞] be a proper function on a Banach space
(X , ‖ · ‖). If there exists a nonempty open subset A of Dom(f ∗)
such that argmax(x∗ − f ) 6= ∅ for each x∗ ∈ A, then there exists
a dense and Gδ subset R′ of A such that

(x∗ − f ) : X → [−∞,∞)

has a strong maximum for each x∗ ∈ R′. In addition, if 0 ∈ A
and ε > 0 then there exists an x∗0 ∈ X ∗ with ‖x∗0‖ < ε such that
(x∗0 − f ) : X → [−∞,∞) has a strong maximum.
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There are three main tools required to prove this general
theorem.

The first one is a generalisation of James’ weak compactness
theorem - we need a convex analyst’s version of this theorem.

The second one is a result from topology concerning norm
continuity of minimal usco mappings.

The third one is the “Brøndsted-Rockafellar Theorem”.
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Definition
Suppose that f : X → (−∞,∞] is a convex function defined on
a normed linear space (X , ‖ · ‖) and x ∈ Dom(f ). Then we
define the subdifferential ∂f (x) by,
∂f (x) := {x∗ ∈ X ∗ : x∗(y − x) ≤ f (y)− f (x) for all y ∈ Dom(f )}.

We now state a convex analysts’ version of James’ theorem.

Theorem (GJT - Generalised James’ Theorem)

Let (X , ‖ · ‖) be a Banach space and let A be a nonempty,
open, convex subset of X ∗. If ϕ : A→ R is a continuous,
convex function and ∂ϕ(x∗) ∩ X̂ 6= ∅ for all x∗ ∈ A, then
∂ϕ(x∗) ⊆ X̂ for all x∗ ∈ A.

Here, and elsewhere, X̂ denotes the natural embedding of X
into X ∗∗.
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To see that Theorem GJT is indeed a generalisation of James’
Theorem consider the following:

Suppose that C is a nonempty closed and bounded convex
subset of a Banach space (X , ‖ · ‖) with 0 ∈ C.

Define p : X ∗ → R by,

p(x∗) := sup
c∈C

x∗(c) = sup
c∈C

ĉ(x∗) for all x∗ ∈ X ∗.

Then Ĉ ⊆ ∂p(0), since p(0) = 0, and so

∂p(0) = {F ∈ X ∗∗ : F (x∗) ≤ p(x∗) for all x∗ ∈ X ∗}.

If every x∗ ∈ X ∗ attains its supremum over C then

∂p(x∗) ∩ X̂ 6= ∅ for every x∗ ∈ X ∗.
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This last fact follows because, if x∗ ∈ X ∗ \ {0}, c ∈ C and
p(x∗) = x∗(c), then ĉ ∈ ∂p(x∗), since for any y∗ ∈ X ∗

ĉ(y∗)− ĉ(x∗) = y∗(c)− x∗(c)

= y∗(c)− p(x∗)
≤ p(y∗)− p(x∗), by the definition of p(y∗).

Thus, by the GJT,

Ĉ
w∗

⊆ ∂p(0) ⊆ X̂ since, ∂p(0) is weak∗-closed.

Hence, C is weakly compact since the relative weak and weak∗

topologies agree on X̂ .
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Definition
A set-valued mapping ϕ from a topological space A into
subsets of a topological space (X , τ) is τ -upper
semicontinuous at a point x0 ∈ A if for each τ -open set W in X ,
containing ϕ(x0), there exists an open neighbourhood U of x0
such that ϕ(U) ⊆W .

If ϕ is τ -upper semicontinuous at each
point of A then we say that ϕ is τ -upper semicontinuous on A.
In the case when ϕ also has nonempty compact images then
we call ϕ a τ -usco mapping. Finally, if (X , τ) is a linear
topological space then we call a τ -usco mapping into convex
subsets of X , a τ -cusco mapping.
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Definition
A cusco from a topological space A into subsets of a linear
topological space X is said to be a minimal cusco if its graph
does not contain, as a proper subset, the graph of any other
cusco on A.

Our interest in cusco mappings is revealed in the next result.

Theorem

If ϕ : U → R is a continuous convex function defined on a
nonempty open convex subset U of a normed linear space
(X , ‖ · ‖), then the subdifferential mapping, x 7→ ∂ϕ(x), is a
minimal weak∗-cusco on U.
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minimal weak∗-cusco on U.
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We shall say that a set-valued mapping Φ : A→ 2X from a
topological space (A, τ) into subsets of a normed linear space
(X , ‖ · ‖) is single-valued and norm upper semicontinuous at a
point x0 ∈ A if: (i) Φ(x0) is a singleton and (ii) for every ε > 0
there exists an open neighbourhood U of x0 such that
Φ(U) ⊆ B[Φ(x0), ε].

Theorem (CT - J. P. R. Christensen’s Theorem, 1982)

Let Φ : A→ 2X∗∗ be a minimal weak∗ cusco from a complete
metric space A into subsets of the second dual of a Banach
space (X , ‖ · ‖). If Φ(x) ⊆ X̂ for all x ∈ A, then Φ is single-
valued and norm upper semicontinuous at the points of a dense
and Gδ subset of A.
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The key notion here is the “ε-subgradient”.

Definition
Suppose that f : X → (−∞,∞] is a convex proper lower
semicontinuous function on a normed linear space (X , ‖ · ‖)
and x ∈ Dom(f ). Then, for any ε > 0, we define the
ε-subdifferential ∂εf (x) by,

∂εf (x) :={x∗ ∈ X ∗ : x∗(y−x) ≤ f (y)−f (x)+ε for all y ∈ Dom(f )}.

Theorem (BRT - Brøndsted-Rockafellar Theorem)

Suppose that f : X → (−∞,∞] is a convex proper lower
semicontinuous function on a Banach space (X , ‖ · ‖). Then,
given any point x0 ∈ Dom(f ), ε > 0 and any x∗0 ∈ ∂εf (x0), there
exists x ∈ Dom(f ) and x∗ ∈ X ∗ such that x∗ ∈ ∂f (x),
‖x − x0‖ ≤

√
ε and ‖x∗ − x∗0‖ ≤

√
ε.
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Proposition

Suppose that f : X → (−∞,∞] is a proper function on a
Banach space (X , ‖ · ‖) Then,

(i) f ∗ is a convex and weak∗ lower semicontinuous function on
Dom(f ∗);

(ii) f ∗ is continuous on int(Dom(f ∗));
(iii) if x∗ ∈ Dom(f ∗) and x ∈ argmax(x∗ − f ) then x̂ ∈ ∂f ∗(x∗);
(iv) if ε > 0, x∗ ∈ Dom(f ∗), x ∈ X and f ∗(x∗)− ε < x∗(x)− f (x)

then x̂ ∈ ∂εf ∗(x∗);
(v) if x∗0 ∈ int(Dom(f ∗)), x ∈ argmax(x∗0 − f ) and x∗ 7→ ∂f ∗(x∗)

is single-valued and norm upper semicontinuous at x∗0 then
x∗0 − f has a strong maximum at x.
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For those people familiar with the Fenchel conjugate, they may
want to look away for a while.

(i) For each x ∈ Dom(f ) define gx : X ∗ → R by,
gx (x∗) := x̂(x∗)− f (x). Then each function gx is weak∗

continuous and affine. Now for each x∗ ∈ X ∗,

f ∗(x∗) = sup
x∈Dom(f )

gx (x∗).

Thus, as the pointwise supremum of a family of weak∗

continuous affine mappings, the Fenchel conjugate of f , is
itself convex and weak∗ lower semicontinuous. [Recall the
general fact that the pointwise supremum of a family of
convex functions is convex and the pointwise supremum of
a family of lower semicontinuous mappings is again lower
semicontinuous].
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(ii) Not done here

- requires a Baire category argument.
(iii) Let y∗ be any element of Dom(f ∗). Then,

x̂(y∗)− x̂(x∗) = y∗(x)− x∗(x)

= [y∗(x)− f (x)]− [x∗(x)− f (x)]

= [y∗(x)− f (x)]− f ∗(x∗)
≤ f ∗(y∗)− f ∗(x∗).

Therefore, x̂ ∈ ∂f ∗(x∗).
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(iv) Let y∗ be any element of Dom(f ∗). Then,

x̂(y∗)− x̂(x∗) = y∗(x)− x∗(x)

= [y∗(x)− f (x)]− [x∗(x)− f (x)]

≤ [y∗(x)− f (x)]− [f ∗(x∗)− ε]

≤ f ∗(y∗)− f ∗(x∗) + ε.

Therefore, x̂ ∈ ∂εf ∗(x∗).
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(v) Let (xn : n ∈ N) be a sequence in X such that

lim
n→∞

(x∗0 − f )(xn) = sup
x ′∈X

(x∗0 − f )(x ′) = f ∗(x∗0 ).

We will show that (xn : n ∈ N) converges to x . Let ε > 0.
By (iii) and the assumption that ∂f ∗(x∗0 ) is a singleton we
have that ∂f ∗(x∗0 ) = {x̂}. Since, x∗ 7→ ∂f ∗(x∗), is norm
upper semicontinuous at x∗0 there exists a 0 < δ < ε such
that if ‖x∗ − x∗0‖ ≤ δ then ‖F − x̂‖ < ε for all F ∈ ∂f ∗(x∗).
Choose N ∈ N such that (x∗0 − f )(xn) > f ∗(x0)− δ2 for all
n > N. Then, by (iv), x̂n ∈ ∂δ2 f ∗(x∗0 ) for all n > N. Let
n > N. Then, by the Brøndsted-Rockafellar Theorem, there
exist x∗n ∈ Dom(f ∗) and Fn ∈ X ∗∗ such that Fn ∈ ∂f ∗(x∗n ),
‖x∗n − x∗0‖ ≤ δ and ‖Fn − x̂n‖ ≤ δ < ε. Therefore,

‖xn − x‖ = ‖x̂n − x̂‖ ≤ ‖x̂n − Fn‖+ ‖Fn − x̂‖ ≤ ε+ ε = 2ε.
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Theorem (Abstract Variational Theorem)

Let f : X → (−∞,∞] be a proper function on a Banach space
(X , ‖ · ‖). If there exists a nonempty open subset A of Dom(f ∗)
such that argmax(x∗ − f ) 6= ∅ for each x∗ ∈ A, then there exists
a dense and Gδ subset R′ of A such that

(x∗ − f ) : X → [−∞,∞)

has a strong maximum for each x∗ ∈ R′. In addition, if 0 ∈ A
and ε > 0 then there exists an x∗0 ∈ X ∗ with ‖x∗0‖ < ε such that
(x∗0 − f ) : X → R ∪ {−∞} has a strong maximum.
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Proof.

Consider ∂f ∗ : A→ 2X∗∗ . Then, by the Proposition part (iii),
∂f ∗(x∗)∩ X̂ 6= ∅ for all x∗ ∈ A. Thus, by GJT, ∂f ∗(x∗) ⊆ X̂ for all
x∗ ∈ A. Therefore, by CT, there exists a dense and Gδ subset
R′ of A such that ∂f ∗ is single-valued and norm upper
semicontinuous at each point of R′. So, by the Proposition part
(v), (x∗ − f ) has a strong maximum for each x∗ ∈ R′.

The paper

“A Gentle Introduction to James’ Weak Compactness Theorem
and Beyond”

contains all the results presented in this talk.
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Definition
Let C be a nonempty closed and bounded convex subset of a
normed linear space (X , ‖ · ‖). We shall say that a point x0 ∈ C
is a strongly exposed point of C if there exists an x∗ ∈ X ∗ such
that x∗|C has a strong maximum at x0.

Note that if f : X → (−∞,∞] is defined by, f (x) := 0 if x ∈ C
and f (x) :=∞ otherwise, then we have the following:
If x∗ ∈ X ∗ and x∗ − f has a strong maximum at x0 ∈ X then
x0 ∈ C and, x0 is in fact a strongly exposed point of C.

Definition
Let C be a nonempty closed and bounded convex subset of a
normed linear space (X , ‖ · ‖). We shall denote by Exp(C) the
set of all strongly exposed points of C.
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Theorem
If C is a weakly compact convex subset of a Banach space
(X , ‖ · ‖) then C = co(Exp(C)).

Proof: Let f : X → (−∞,∞] be defined by, f (x) := 0 if x ∈ C
and by f (x) :=∞ otherwise. Then, since C is weakly compact,
argmax(x∗ − f ) = argmax(x∗|C) 6= ∅. Therefore, by the
Abstract Variational Theorem, there exists a dense and Gδ

subset R of X ∗ such that (x∗ − f ) has a strong maximum for
each x∗ ∈ R. Now suppose, in order to obtain a contradiction,
that C 6= co(Exp(C)). Then there exists an x0 ∈ C \ co(Exp(C))
and an x∗ ∈ X ∗ such that

sup{x∗(c) : c ∈ co(Exp(C))} < x∗(x0).

Since C is bounded and R is dense in X ∗ we can assume,
without loss of generality, that x∗ ∈ R.
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But then argmax(x∗) = argmax(x∗ − f ) =: {x} is a strong
maximum of (x∗ − f ), and hence a strongly exposed point of C.

On the other hand,

sup{x∗(c) : c ∈ co(Exp(C))} < x∗(x0) ≤ x∗(x);

which implies that x 6∈ Exp(C). Thus, it must be the case that
C = co(Exp(C)).

Thank you for your attention and for the opportunity to present
my work.
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maximum of (x∗ − f ), and hence a strongly exposed point of C.
On the other hand,

sup{x∗(c) : c ∈ co(Exp(C))} < x∗(x0) ≤ x∗(x);

which implies that x 6∈ Exp(C). Thus, it must be the case that
C = co(Exp(C)).

Thank you for your attention and for the opportunity to present
my work.
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