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Computer support for mathematics

Two variables:

• level of user interaction

• strength of correctness guarantees

Both are continua.



User interaction

In interactive theorem provers (Lean, Coq, Isabelle, HOL-light),
users construct proofs interactively.

Computer algebra systems allow interactive exploration.

Automated reasoning systems (resolution thoerem provers, SMT
solvers, . . . ) provide “push-button” service.

Numerical software packages (linear and nonlinear optimization
packages, statistical packages, scientific computing) compute
largely autonomously.

Some interactive theorem provers (Isabelle, ACL2) make strong use
of automation.



Correctness guarantees

Interactive theorem provers construct formal axiomatic proofs to
support their claims. This provides a high degree of certainty.

Other mathematical software relies on careful programming and
testing.

In some domains, users recognize and accept shortcomings:

• loose semantics of algebraic computation

• roundoff error in numeric computation

In other domains, we may be perfectly happy with experimental
results.
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Polya

Polya provides automated methods to establish real-valued
inequalities.

Desiderata:

• Automatically verify inequalities that come up in interactive
theorem proving.

• Construct formal axiomatic proofs backing them up.



Inequalities

Mathematics is largely about measurement, and comparing
quantities.

Show Γ ` s ≤ t.

• pure mathematics: analysis, number theory, combinatorics,
geometry, probability

• applied mathematics: engineering, statistics, data analysis,
modeling and prediction, . . .

One can use symbolic or numeric methods.



Linear inequalities

Consider entailments of the form

t1 ≥ 0, t2 ≥ 0, . . . , tn ≥ 0⇒ s > 0

The entailment is valid iff the constraints

t1 ≥ 0, t2 ≥ 0, . . . , tn ≥ 0,−s ≥ 0

are infeasible.

Linear programming methods can handle hundreds of thousands of
variables and constraints.

The methods are exact, and it is not hard to extract certificates /
proofs.



Nonlinear inequalities

In the 1930’s, Tarski proved the decidability of the first-order
theory of the reals as an ordered ring.

• symbolic method

• proof-producing (in principle)

George Collins gave a practical method in 1975, “cylindrical
algebraic decomposition.”

It is implemented in Mathematica, Maple, Qepcad (now in Sage),
Reduce (Redlog), RAHD.

The procedure has double-exponential complexity, and succeeds
only on small problems



Numerical methods

There are a variety of numerical methods, including:

• Interval methods, and interval constraint propagation.

• Convex programming techniques.

• Optimization, stochastic methods.



Combination methods

Paulson’s MetiTarski:

• uses a resolution theorem prover to guide search.

• replaces transcendental function by bounding rational
functions.

• uses RCF back ends (Qepcad, Z3, Mathematica)

SMT solvers combine linear integer / real arithmetic methods,
real-closed fields.

Parillo has used semidefinite programming methods to verify
positivity of RCF expressions.



Verified numerical methods

Thomas Hales’ proof of the Kepler conjecture required verifying
hundred of inequalities. Most were of the form:

∀~x , ~x ∈ D ⇒ f (~x) > 0 ∨ . . . ∨ f (~x) > 0

where D is a rectangular box.

Solovyev’s 2012 thesis (under Hales’ supervision) developed
methods for handling these.

• Use interval methods based on Taylor series approximations.

• Also use interval methods to detect monotonicity along
coordinates.



Polya

Polya is a heuristic theorem prover for real-valued inequalities.

• It is designed as automated support for interactive theorem
proving.

• It is (will be) proof producing.

• It uses heuristic, symbolic methods.



An example

Consider the following implication:

0 < x < y , u < v

=⇒
2u + exp(1 + x + x4) < 2v + exp(1 + y + y4)

• This inference is not contained in linear arithmetic or real
closed fields.

• This inference is tight: symbolic or numeric approximations
are not useful. (Also, the domain is unbounded.)

• But, the inference is completely straightforward.



Backchaining

One idea is a apply rules like u < v ,w ≤ x ⇒ u + w < v + x
backwards.

But we can prove a + b + c < d + e by proving

• a < d , c ≤ e

• a + c ≤ e, b < d

• a + c + 5 ≤ e, b − 5 < d ,

• . . .



Another example

Here’s an inequality that comes up in Shapiro’s presentation of the
Selberg proof of the prime number theorem.

Assuming

n ≤ (K/2)x

0 < C

0 < ε < 1

we have (
1 +

ε

3(C + 3)

)
· n < Kx

Decision procedures for real closed fields seem the wrong way to
go.



Our method

We have developed an approach, that:

• verifies inequalities that other procedures don’t

• extends beyond the language of RCF

• is amenable to producing proof terms

• captures natural patterns of inference

But:

• It is not complete.

• It not guaranteed to terminate.

It is designed to complement other procedures.



Overview

The main ideas:

• Use forward reasoning (guided by the structure of the
problem).

• Show “hypotheses⇒ conclusion” by negating the conclusion
and deriving a contradiction.

• As much as possible, put terms in canonical “normal forms,”
e.g. to recognize that 3(x + y) is a multiple of 2y + 2x .

• Derive relationships between “terms of interest,” including
subterms of the original problem.

• Different modules contribute bits of information, based on
their expertise.



Language

Our system verifies inequalities between real variables using:

• Operations + and ·
• Multiplication and exponentiation by rational constants

• Arbitrary function symbols (described by axioms)

• Relations < and =

All functions are assumed to be total. 1/0,
√
−1, etc. exist, but no

assumptions are made about their values.



Terms and normal forms

The inequality

15 < 3(3y + 5x + 4xy)2f (u + v)−1

is expressed canonically as
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Modules and the “blackboard”

Any comparison between canonical terms can be expressed as
ti ./ 0 or ti ./ c · tj , where ./ ∈ {=, 6=, <,≤, >,≥}.

All modules are assumed to “understand” these relationships.

A central database, the blackboard, stores term definitions and
comparisons of this form.

Modules use this information to learn and assert new comparisons.

The procedure has succeeded in verifying an implication when
modules assert contradictory information.



Computational structure

Blackboard
Stores definitions and

comparisons

Additive Module
Derives comparisons using

additive definitions

Multiplicative Module
Derives comparisons using

multiplicative definitions

Axiom Instantiation Module
Derives comparisons using universal

axioms

Exp/Log Module
Derives comparisons and

axioms involving exp and log

Min/Max
Module

Derives comparisons

involving min and

max

Congruence
Closure Module

Enforces proper

interpretation of

functions

Absolute Value
Module

Derives comparisons and

axioms involving abs

nth Root Module
Derives comparisons and axioms

about fractional exponents



Arithmetical modules

Modules for additive and multiplicative arithmetic work together to
solve arithmetical problems.

They “saturate” the blackboard with the strongest derivable
atomic comparisons.

We use two techniques for this:

• Fourier-Motzkin variable elimination

• a geometric projection method



The Fourier-Motzkin additive module

The Fourier-Motzkin algorithm is a quantifier elimination
procedure for 〈R, 0,+, <〉.

Given additive equations {ti =
∑

j cj · tkj} and atomic comparisons
{ti ./ c · tj} and {ti ./ 0}:

• For each pair i , j , eliminate all variables except ti and tj .

• Add the strictest remaining comparisons to the blackboard.



The Fourier-Motzkin additive module

To find comparisons between t1 and t2, eliminate t3:

3t1 + 2t2 − t3 > 0

4t1 + t2 + t3 ≥ 0

2t1 − t2 − 2t3 ≥ 0

− 2t2 − t3 > 0

=⇒
7t1 + 3t2 > 0

10t1 + t2 ≥ 0

4t1 − t2 > 0
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7
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t1 >
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4
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The Fourier-Motzkin multiplicative module

By the map x 7→ ex , we see that 〈R, 0,+, <〉 ∼= 〈R+, 1, ·, <〉.

We can therefore use the same elimination procedure on
multiplicative terms, with some caveats:

• Sign information is needed for all variables.

• Constants become irrational under the transformation.

• Deduced comparisons can have the form t3i < 2t2j .

Preprocessing techniques to infer sign information can help with
the first point.



The Fourier-Motzkin arithmetical modules

The FM algorithm can require doubly-exponential time in the
number of variables.

In a problem with n subterms, one pass of the additive module
requires O(n2) instances of FM with up to n variables in each.

In practice, this approach works surprisingly well. But one can
construct examples where the complexity leads to significant
slowdown.



The Geometric additive module

An alternative approach uses geometric insights.

A homogeneous linear equality in n variables defines an
(n − 1)-dimensional hyperplane through the origin in Rn. An
inequality defines a half-space. A conjunction of inequalities
defines a polyhedron.

By projecting this polyhedron to the ti tj plane, one can find the
strongest implied comparisons between ti and tj .

x

z

y

x

y



Geometric arithmetical modules

We use the computational geometry packages cdd and lrs for the
conversion from half-plane representation to vertex representation.

This approach scales better than the Fourier-Motzkin procedure.



Geometric multiplicative module

Translating this procedure to the multiplicative setting introduces
a new problem:

5t22 t
4
1 7→ log(5)︸ ︷︷ ︸

/∈Q

+2 log(t2) + 4 log(t1)

To avoid this, we introduce new variables

p2 = log(2), p3 = log(3), p5 = log(5), . . .

as necessary.



Axiom instantiation module

A highlight of our approach is its ability to prove theorems outside
the theory of real closed fields.

An axiom instantiation module takes universally quantified axioms
about function symbols and selectively instantiates them with
subterms from the problem.

Example:

Using axiom: (∀x)(0 < f (x) < 1)

Prove: f (a)3 + f (b)3 > f (a)3 · f (b)3



Axiom instantiation module

Unification must happen modulo equalities.

For example: we can unify f (v1 + v2):

Definitions Assignments Result
t1 = t2 + t3

t4 = 2t3 − t5

t6 = f (t1 + t4)

v1 7→ t2 − t5

v2 7→ 3t3
f (v1 + v2) ≡ t6

We combine a standard unification algorithm with a Gaussian
elimination procedure to find relevant substitutions.

Trigger terms can be specified by the user or picked by default.



Built-in functions

In addition to the arithmetic and axiom modules, Polya has
modules that interpret specific functions.

• Exponentials and logarithms

• Minima and maxima

• Absolute values

• Various others



Exponential and logarithm module

The exponential module asserts axioms that say exp(x) is positive
and increasing.

It also adds identities of the forms

exp(c · t) = exp(t)c

exp
(∑

ci ti

)
=
∏

exp (ci ti ) .

It adds similar axioms and identities for log(x), conditional on
x > 0.



Minimum module

For any term t := min(c1t1, . . . , cntn), the minimum module
asserts

t ≤ ci ti

(∀z)

(∧
i

(z ≤ ci ti )→ z ≤ t

)
.

Since max(c1t1, . . . , cntn) = −min(−c1t1, . . . ,−cntn), it does not
need to be handled separately.



Absolute value module

The absolute value module asserts axioms

(∀x) (|x | ≥ 0 ∧ |x | ≥ x ∧ |x | ≥ −x)

(∀x) (x ≥ 0→ |x | = x)

(∀x) (x ≤ 0→ |x | = −x)

and looks for appropriate instantiations of the triangle inequality∣∣∣∑ ci ti

∣∣∣ ≤∑ |ci ti | .



Builtins module

The builtin functions module asserts miscellaneous axioms about
various functions:

(∀x)(−1 ≤ sin(x) ≤ 1)

(∀x)(−1 ≤ cos(x) ≤ 1)

(∀x)(x − 1 < bxc ≤ x)

...



Successes

Our implementation in Python successfully proves many theorems,
some of which are not proved by other systems.

0 < x < 1 =⇒ 1/(1− x) > 1/(1− x2) (1)

0 < u, u < v , 0 < z , z + 1 < w =⇒ (u + v + z)3 < (u + v +w)5

(2)

(∀x , y . x ≤ y → f (x) ≤ f (y)) , u < v , 1 < v , x ≤ y =⇒
u + f (x) ≤ v2 + f (y)

(3)



Successes

(∀x , y . f (x + y) = f (x)f (y)), f (a + b) > 2, f (c + d) > 2 =⇒
f (a + b + c + d) > 4

(4)

u > 0, v > 1 =⇒ 3
√
u9v4 > u3v (5)

x < y , u ≤ v =⇒ u + min(x + 2u, y + 2v) ≤ x + 3v (6)

y > max(2, 3x), x > 0 =⇒ exp(4y − 3x) > exp(6) (7)



KeYmaera

André Platzer, at Carnegie Mellon, is developing a tool,
KeYmaera, for verifying hybrid system.

The system generates problems like this one:

Hypothesis: ru10**2 == (1/3)*x1u0**2

Hypothesis: x1u0 <= 0

Hypothesis: ru10 > 0

Hypothesis: d1 == -1 * om * (h2 + -1*x2)

Hypothesis: d2 == om * (h1 + -1*x1)

Hypothesis: (h1 + -1*x1)**2 + (h2 + -1*x2)**2 ==

r**2

Hypothesis: 1 != ru10**-1 * ru10

Conclusion: False



KeYmaera

On a collection of 4442 problems generated automatically by
KeYmaera, we solve 4130 (93%) with a 10-second timeout.

• 10 minutes using geometric packages

• 18 using Fourier-Motzkin



Limitations

Since our method is incomplete, it fails on a wide class of problems
where other methods succeed.

x > 0, xyz < 0, xw > 0 =⇒ w > yz (8)

x2 + 2x + 1 ≥ 0 (9)

4 ≤ xi ≤ 6.3504 =⇒
x1x4(−x1 + x2 + x3 − x4 + x5 + x6)

+ x2x5(x1 − x2 + x3 + x4 − x5 + x6)

+ x3x6(x1 + x2 − x3 + x4 + x5 +−x6)

− x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6 > 0

(10)



Plans

Increase scope:

• Handle trigonometric functions, etc.

• Handle integer constraints.

• Handle second-order constructions: sums, products, integrals.

Draw on other methods:

• Make use of numerical information.

• Interact with numerical procedures (dReal, interval constraint
propagation).

• Make use of additional symbolic information (derivatives,
gradients, convexity).

• Make use of algebraic procedures for real-closed fields.

• Make use of methods and systems for convex analysis.



Plans

Improve performance and search:

• Handle case splits and bactracking.

• Make the procedures incremental.

Make it proof-producing:

• Implement it in Lean.
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