EXTENDING THE COMPUTATIONAL HORIZON

Attila Egri-Nagy

Centre for Research and Mathematics School of Computing, Engineering and Mathematics University of Western Sydney, Australia

- **Bacterial Genomics** (with Andrew Francis and Volker Gebhardt)
 - How to reconstruct phylogeny trees?
- Foundations of Computing (with James East, James D. Mitchell, Chrystopher L. Nehaniv).
 - What is computable with *n* states?
 - · What is the structure of finite computations?

Precise answers can be obtained in *abstract algebra*, in computational group and semigroup theory.

• More examples, more raw data for the mathematical reasoning.

Single celled organisms with circular chromosome.

• Local changes such as single nucleotide polymorphisms (SNPs):

 $ACGGCCCTTAGG \longrightarrow ACGGCCATTAGG$

• *Regional* changes such as *inversion* that affect whole regions along the chromosome.

 $\xrightarrow{1} \xrightarrow{2} \xrightarrow{3} \xrightarrow{4} \xrightarrow{5} \xrightarrow{6} \xrightarrow{} \xrightarrow{1} \xrightarrow{2} \xrightarrow{5} \xrightarrow{4} \xrightarrow{3} \xrightarrow{6}$

(Regional changes include inversion, translocation, deletion and others.)

• *Topological* changes that produce knots and links in the DNA.

$Genome \rightarrow permutations$

Sequences of evolutionary \rightarrow Sequences of generators Genomic distance \rightarrow Length of geodesic words Genomic space \rightarrow Cayley-graph

Reference genome and the signed permutation [1, 2, 3, -7, -6, -5, -4, 8].

- $\cdot\,$ The groups are finite and well-studied (symmetric, hyperoctahedral), but big, e.g. $\mathcal{S}_{\rm 80}$
- $\cdot\,$ The generating sets are unusual, "biological".

For example,

- \cdot 2-inversions of the circular genome (vs. linear)
- · looking at the "width" as well

Strategy: Calculate and look at small, but non-trivial examples to get insights.

SYMMETRIES OF IRREDUCIBLE GENERATING SETS

	1	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$	\mathbb{Z}_3	D ₈	\mathcal{S}_3	\mathcal{S}_4	\mathcal{S}_5
S_2		1						
\mathcal{S}_3	1	1						
\mathcal{S}_4	8	5				1		
\mathcal{S}_5	150	25		1		1	1	
\mathcal{S}_6	7931	645	11	6	4	20	2	2

Definition

A semigroup is a set S with an associative binary operation $S \times S \rightarrow S$.

Example (Flip-flop monoid)

	1	а	b
1	1	а	b
а	а	а	b
b	b	а	b

Definition

A semigroup is a set S with an associative binary operation $S \times S \rightarrow S$.

Example (Flip-flop monoid)

	1	а	b	
1	1	а	b	
а	а	а	b	
b	b	а	b	

Definition

A transformation semigroup (X, S) is a set of states X and a set S of transformations $s : X \rightarrow X$ closed under function composition.

Example (Transformations)

FLIP-FLOP, THE 1-BIT MEMORY SEMIGROUP

So these are computational devices... \approx automata

With transformation semigroups, we get all semigroups. (Cayley's theorem)

DEGREE 2 TRANSFORMATION SEMIGROUPS

10

Number of subsemigroups of full transformation semigroups.

	#subsemigroups	#conjugacy classes	#isomorphism classes
\mathcal{T}_0	1	1	1
\mathcal{T}_1	2	2	2
\mathcal{T}_2	10	8	7
\mathcal{T}_3	1 299	283	267
\mathcal{T}_4	3 161 965 550	132 069 776	131 852 491

After discounting the state-relabelling symmetries the database of degree 4 transformation semigroups is still around 9GB.

SIZE DISTRIBUTION

SIZE DISTRIBUTION - LOGARITHMIC SCALE

DIAGRAM SEMIGROUPS - TYPICAL ELEMENTS

DIAGRAM SEMIGROUPS – TYPICAL ELEMENTS

DIAGRAM SEMIGROUPS

 $\mathcal{P}_1 \hookrightarrow \mathcal{T}_2$ $\mathcal{P}_2 \hookrightarrow \mathcal{T}_5$ $\mathfrak{B}_1 \cong \mathcal{T}_1$ $\mathfrak{B}_2 \hookrightarrow \mathcal{T}_3$ $TL_1 \cong \mathcal{T}_1$ $\mathsf{TL}_2 \hookrightarrow \mathcal{T}_2$ $\mathsf{TL}_3 \hookrightarrow \mathcal{T}_4$ $\mathcal{P}_1 \hookrightarrow \mathfrak{B}_2$

	Order	<i>n</i> = 1	n = 2	n = 3	n = 4	n = 5	<i>n</i> = 6
$\mathcal{P}B_n$	2 ^{(2n)²}	16	65536	2 ³⁶	264	2 ¹⁰⁰	2 ¹⁴⁴
Bn	2 ^{n²}	2	16	512	65536	2 ²⁵	2 ³⁶
\mathcal{P}_n	$B_{2n} = \sum_{1}^{2n} S(2n, k)$	2	15	203	4140	115975	4213597
$P\mathcal{T}_n$	$(n + 1)^n$	2	9	64	625	7776	117649
\mathcal{I}_n^*	$\sum_{1}^{n} k! (S(n,k))^2$	1	3	25	339	6721	179643
\mathcal{T}_n	n ⁿ	1	4	27	256	3125	46656
\mathcal{I}_n	$\sum_{0}^{n} k! \binom{n}{k}^{2}$	2	7	34	209	1546	13327
\mathfrak{B}_n	(2n — 1)!!	1	3	15	105	945	10395
\mathcal{S}_n	n!	1	2	6	24	120	720
TL_n, J_n	$C_n = \frac{1}{n+1} \binom{2n}{n}$	1	2	5	14	42	132

	n = 1	n = 2	n = 3	<i>n</i> = 4	n = 5	<i>n</i> = 6
$\mathcal{P}B_n$	1262					
Bn	4	385				
\mathcal{P}_n	4	272				
$P\mathcal{T}_n$	4	50	94232			
\mathcal{I}_n	4	23	2963			
\mathcal{I}_n^*	2	6	795			
\mathcal{T}_n	2	8	283	132069776		
\mathfrak{B}_n	2	6	42	10411		
TLn	2	4	12	232	12592	324835618
\mathcal{S}_n	1	2	4	11	19	56

Given a semigroup S, the equivalence relation $\boldsymbol{\mathcal{J}}$ is defined by

$$t \mathcal{J} s \iff S^1 t S^1 = S^1 s S^1,$$

where S¹ is S with an identity adjoined in case S is not a monoid.

In other words,

 $t \mathcal{J} s \iff \exists p, q, u, v \in S^1$ such that t = psq and s = utv

The equivalence classes of \mathcal{J} are "local pools of reversibility".

 $a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 1 & 2 & 4 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 3 & 2 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 5 & 4 \end{pmatrix}$ and $M = \langle a, b, c \rangle. |M| = 31$

x axis : size of the semigroups

x axis : size of the semigroups

INVERSE SEMIGROUPS (OF PARTIAL PERMUTATIONS)

x axis : size of the semigroups

x axis : size of the semigroups

x axis : size of the semigroups

 \mathcal{L}, \mathcal{R} equivalence relations

$$t \mathcal{R} s \iff tS^{1} = sS^{1},$$

$$t \mathcal{L} s \iff S^{1}t = S^{1}s,$$

$$t \mathcal{J} s \iff S^{1}tS^{1} = S^{1}sS^{1},$$

$$\mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L} = \mathcal{D}$$

 $\mathcal{J}=\mathcal{D}$ in the finite case

$$t \mathcal{R} s \iff \exists p, q \in S^1 \text{ such that } t = sp \text{ and } s = tq$$

 $t \mathcal{L} s \iff \exists p, q \in S^1 \text{ such that } t = ps \text{ and } s = qt$

26

Tables are \mathcal{D} -classes. Columns are \mathcal{L} -classes, rows are \mathcal{R} -classes. Shaded cells are \mathcal{H} -classes that contain idempotents – used for locating subgroups of the semigroup. \mathcal{T}_3 :

Catalan numbers, sequences of well-formed parentheses.

corresponds to (()(()))()

Applications in Physics: statistical mechanics, percolation problem.

FIRST GLIMPSE THROUGH THE USUAL EGGBOX DIAGRAMS

J9

TOP LEVEL

 J_{16}

level 2

level 3

36

The Good We can discover/construct more and more new, interesting and useful mathematics by using computers.

- The Bad There is a gap between mathematical rigour and the correctness of software implementations and the physicality of computation.
- and The Ugly Developing software is still detrimental to academic career.

Blog on computational semigroup theory:

compsemi.wordpress.com

Blog on computational semigroup theory:

compsemi.wordpress.com

Thank You!