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Part	I:	Equations	in	free	groups

Let A = {a1, a−1
1 , . . . , ad, a

−1
d }.

Let RA ⊂ A∗ be	the	set	of	all	words	that	do	not	contain	any aia
−1
i or

a−1
i ai pair. We	call	such	words reduced.

The free	group on A, denoted FA, is	the	set	of	all	reduced	words	with	the
operation	of concatenate	then	reduce.

Let Ω = {X1, X−1
1 , . . . , Xs, X−1

s } be	another	set.

An equation	in FA is	an	expression U = V where U, V ∈ (A ∪ Ω)∗.

...Eg: a−1X = Yb aXXb = YYbX

A solution to	the	equation	is	a	map Xj 7→ uj, X
−1
j 7→ u−1

j with uj ∈ RA
which	makes U = V true	in FA.
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Equations	in	free	groups

...

Eg: aXXb = YYbX

Y→ aY aXXb = aYaYbX

XXb = YaYbX

X→ Xb−1 Xb−1Xb−1b = YaYbXb−1

Xb−1X = YaYbXb−1

...
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History

1982	Makanin: algorithm	to	decide	if	an	equation	in	a	free	group	has	a
solution

Algorithm	extremely	inefficient, time	complexity DTIME

(
22

22
2poly(n)

)
1987	Razborov: algorithmic	description	of	all	solutions	(using	Makanin)

1990	Koscielski	and	Pacholski: Makanin’s	scheme	not	primitive	recursive

1998	Plandowski: new	approach	to	solving	equations	over free	monoids
in	PSPACE using data	compression

2000	Gutierrez: solving	equations	over	free	groups	in	PSPACE

2013	Jez: new recompression technique	–	simplied	all	previous	proofs

2014	Diekert, Jez	and	Plandowski: NSPACE(n2) algorithm
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How	complicated	are	solution	sets?

We	were	interested	in	understanding	the	set	of	solutions	to	an	equation
as	a	formal	language

{u1# . . .#us | uj ∈ RA, Xj 7→ uj solves U = V}.

We	asked	how	complicated	solutions	sets	can	be, in	terms	of	formal
languages.

It	is	clear	that	the	set	of	solutions	to	any	equation	is	recognised	by	a
linear	bounded	automaton	so	solutions	are	context-sensitive.

But	they	are	even	simpler:

Theorem	(Ciobanu, Diekert, E 2015)

The	set	of	solutions	in	reduced	words	to	an	equation	in	a	free	group	is
EDT0L.
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How	complicated	are	solution	sets?

Theorem	(Ciobanu, Diekert, E 2015)

The	set	of	solutions	in	reduced	words	to	an	equation	in	a	free	group	is
EDT0L.

More	precisely, we	prove	that	the	set	of	solutions	is	equal	to

{h(#) | h ∈ R}
where R is	a	regular	language	of	endomorphisms	over C ⊇ A ∪ {#},

the	NFA accepting R can	be	constructed	in	NSPACE(n log n),

and	the	equation	has	zero/finitely	many	solutions	iff	the	NFA has	no
accept	state/no	cycle.
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How	complicated	are	solution	sets?

Theorem	(Ciobanu, Diekert, E 2015)

The	set	of	solutions	in	reduced	words	to	an	equation	in	a	free	group	is
EDT0L.

This	is	a	surprising	result	–	before	Makanin	it	was	thought	the	problem
could	be	undecidable,

and	trying	to	obtain	actual	solutions	by	following	Makanin-like	schemes
(eg. using Makanin-Razborov	diagrams)	seems	pretty	hopeless.

Our	result	says	you	can	describe	the	set	of	all	solutions	in	a	particularly
easy	way.
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Outline	of	the	proof

1. Reduce	to	the	problem	of	finding	all	solutions	to	an	equation	over	a
free	monoid	with	involution over A = {ai, ai}.

2. Construct	a	finite	graph	with	vertices	labeled	by extended
equations, and	edges	which	enable	the	following	moves	between
them:

– pop	variables X→ aX, X→ Xa or X, X→ 1 (equation	length	grows)

– compress	pairs	of	constants ab→ c (equation	length	shrinks,

– compress	blocks	of	constants aa . . . a→ aℓ alphabet	of	constants	grows)

We	fix	an	enlarged	set	of	constants	with	involution C ⊃ A of	size
O(|UV|+ |A|) and	restrict	to	extended	equations	over C ∪ Ω of
length	at	most	a	fixed	bound	in O(|UV|+ |A|).

This	guarantees	the	graph	is	finite. We	must	prove	that	the	graph
encodes	all	solutions	with	these	restrictions.
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Proving	the	graph	contains	solutions

We	define	an initial	vertex to	be	labeled	by	an	extended	equation	with
U = V, and	a final	vertex to	be	labeled	by	an	extended	equation	with
P = P where P ∈ C∗ (ie. no	variables).

Edges	are	defined	so	that	a	solution	to	the	target	extended	equation
implies	a	solution	to	the	source	extended	equation.

It	follows	that	a	path	from	initial	to	final	vertices	encodes	a	sequence	of
moves	on	the	equation U = V converting	it	to	an	equation P = P with	no
variables. Since P = P has	a	solution, it	can	be	carried	back	to	a	solution
for U = V.
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Proving	the	graph	contains all solutions

Suppose	we know a	solution Xj → ui for U = V.

Since	we	know	what	the	solution	is, we	could	simply	follow X→ aX,
X→ 1 edges	until	all	variables	disappear, and	arrive	at	a	final	vertex.

But	this	would	take	us	out	of	the	graph.

Note	that	as	we	pop, the	number	of	variables	in	the	equation	never
increases, and	the	substrings	of	constants	in	between	them	grow	in
length.

Applying	the	compression	moves	shrinks	the	equation	back	down, so	we
can	continue	popping	to	find	a	solution.
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Proving	the	graph	contains all solutions

Here	is	the	procedure. Put n = |UV|+ |A|.

– Assume	equation	length	is	at	most	29n (true	for	an	initial	vertex).

– Pop	the	first	and	last	letter	from	each	variable. Now	the	equation
length	is	at	most	31n.

– Run	a	subroutine	(block	compression)	to	replace	maximal	blocks
aa . . . a by a. Now	the	equation	has	no aa factors, and	length	at
most	31n.

– Run	a	subroutine	(pair	compression)	which	applies	the	moves
ab→ c in	a	careful	way	to	ensure	that	the	equation	length	reduces
to	at	most	29n. Repeat.

Each	round	reduces	the weight of	the	solution	(defined	as	the	sum	of	the
length	of	words	substituted	for	each	variable)	so	the	procedure	terminates
at	a	final	vertex.
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– Run	a	subroutine	(block	compression)	to	replace	maximal	blocks
aa . . . a by a. Now	the	equation	has	no aa factors, and	length	at
most	31n.

– Run	a	subroutine	(pair	compression)	which	applies	the	moves
ab→ c in	a	careful	way	to	ensure	that	the	equation	length	reduces
to	at	most	29n. Repeat.

Each	round	reduces	the weight of	the	solution	(defined	as	the	sum	of	the
length	of	words	substituted	for	each	variable)	so	the	procedure	terminates
at	a	final	vertex.
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More	details	in	our	paper	to	appear	in	ICALP2015	proceedings, longer
version	to	appear	IJAC.
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Part	II:	Cogrowth

Let G be	a	group	with	presentation ⟨S | R⟩, so G ∼= FS/⟨⟨R⟩⟩.

...Eg: Z2 = ⟨a, b | aba−1b−1⟩ F{a,b,a−1,b−1} = ⟨a, b | −⟩

Define cn = # words	in ⟨⟨R⟩⟩ of	length n. The	function n 7→ cn is	called
the cogrowth	function for (G, S).

cn ≤ (2|S|)(2|S| − 1)n−1 so lim sup c
1/n
n ≤ 2|S| − 1

Theorem	(Grigorchuk/Cohen)

Let	G be	a	non-free	group. G is amenable iff lim sup c
1/n
n = 2|S| − 1.

13



Part	II:	Cogrowth

Let G be	a	group	with	presentation ⟨S | R⟩, so G ∼= FS/⟨⟨R⟩⟩.

...Eg: Z2 = ⟨a, b | aba−1b−1⟩ F{a,b,a−1,b−1} = ⟨a, b | −⟩

Define cn = # words	in ⟨⟨R⟩⟩ of	length n. The	function n 7→ cn is	called
the cogrowth	function for (G, S).

cn ≤ (2|S|)(2|S| − 1)n−1 so lim sup c
1/n
n ≤ 2|S| − 1

Theorem	(Grigorchuk/Cohen)

Let	G be	a	non-free	group. G is amenable iff lim sup c
1/n
n = 2|S| − 1.

13



Part	II:	Cogrowth

Let G be	a	group	with	presentation ⟨S | R⟩, so G ∼= FS/⟨⟨R⟩⟩.

...Eg: Z2 = ⟨a, b | aba−1b−1⟩ F{a,b,a−1,b−1} = ⟨a, b | −⟩

Define cn = # words	in ⟨⟨R⟩⟩ of	length n. The	function n 7→ cn is	called
the cogrowth	function for (G, S).

cn ≤ (2|S|)(2|S| − 1)n−1 so lim sup c
1/n
n ≤ 2|S| − 1

Theorem	(Grigorchuk/Cohen)

Let	G be	a	non-free	group. G is amenable iff lim sup c
1/n
n = 2|S| − 1.

13



Cogrowth

The	formal	power	series f(z) =
∑

cnzn is	the cogrowth	series.

lim sup c
1/n
n is	the	reciprocal	of	the	radius	of	convergence	of f(z). We	call

this	number	the cogrowth.
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Example

G = ⟨a | a2⟩. We	consider a, a−1 as	distinct	formal	symbols, so:

c2n+1 = 0 since	the	relator	has	even	length

c0 = 1 ϵ
c2 = 2 aa, a−1a−1

c4 = 2 aaaa, a−1a−1a−1a−1

...

f(z) = 1+
∞∑
n=1

2z2n = 1+ 2

(
1

1− z2
− 1

)
=

1+ z2

1− z2

(radius	of	convergence	is	1)

Theorem	(Kouksov)

Let	G be	a	non-free	group. The	cogrowth	series	is	rational	iff	G is	finite.
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Alternative
dn = # all words	in (S ∪ S−1)∗ equal	to	id

There	are	formulas	to	switch	between dn and cn at	the	level	of	generating
functions

Theorem	(Grigorchuk/Cohen)

G is	amenable	iff lim sup d
1/n
n = 2|S|.
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Z2 = ⟨a, b | aba−1b−1⟩

..

id

.
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Z2 = ⟨a, b | aba−1b−1⟩

..

id

.

18



Z2 = ⟨a, b | aba−1b−1⟩

..

id

.
a a b−1 b a b a−1 a b a−1 b a−1 a−1 b−1 a−1 b−1 b−1 a
+ + − + + + − + + − + − − − − − − +
+ + + − + − − + − − − − − + − + + +

d2n =
(2n
n

)(2n
n

)
d2n+1 = 0
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Z2 = ⟨a, b | aba−1b−1⟩

..

id

.
a a b−1 b a b a−1 a b a−1 b a−1 a−1 b−1 a−1 b−1 b−1 a
+ + − + + + − + + − + − − − − − − +
+ + + − + − − + − − − − − + − + + +

d2n =
(2n
n

)(2n
n

)
d2n+1 = 0

19



Open	problem	for	amenability

A famous	open	problem	is	whether	one	particular	(infamous)	example	is
amenable:

Richard	Thompson’s	group F = ⟨a, b | [ab−1, a−1ba], [ab−1, a−2ba2]⟩

Several	authors	have	tried	computational	approaches	to	the	problem:

– Burillo, Cleary, Weist	2007

– Arzhantseva, Guba, Lustig, Préaux	2008

– E,	Rechnitzer, Wong	2012

– Haagarup, Haagarup, Ramirez-Solano	2015
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New	method: “Random	walk	on	the	set	of	trivial	words”

G = ⟨S | R⟩

X = ⟨⟨R⟩⟩

R = {all	freely	reduced	cyclic	permutations	of	words	in R ∪ R−1}

P : R → [0, 1] a	prob	dist	st P(r) > 0 and P(r) = P(r−1) for	all r ∈ R

We	define	a Markov	chain with	states X and	transitions	between	states
(trivial	words)	with	prescribed	probabilities

so	that	moves	are	“uniquely	reversible”	and	there	is	a	positive	probability
of	reaching	every	state	from	any	given	state.
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Moves	on w ∈ X
1. Conjugation by x ∈ S ∪ S−1:

– write xwx−1 and	freely	reduce	to	obtain w′.

2. Left-insertion by r ∈ R at	position m ∈ [0, |w|]:
– write w = uv with |v| = m
– freely	reduce ur to	obtain u′

– freely	reduce u′v to	obtain w′

– if	any	part	of v is	cancelled, set w′ = w (reject	the	move)

Lemma

Each	move	is uniquely	reversible in	the	following	sense:
conjugation	by x←→ conjugation	by x−1

left-insertion	of r at m←→ left-insertion	of r−1 at m

22



Metropolis	MCMC algorithm

Next, we	define	the	transition	probabilities	for	our	Markov	chain. Let
pc, β ∈ (0, 1) and α ∈ R be	parameters.

Let wn be	the	current	word. Construct	the	next	word wn+1 as	follows:

1. With	probability pc, choose	to	do	a	conjugation, else	(1− pc)
choose	an	insertion.

2. If	conjugation, choose s ∈ S ∪ S−1 with	probability 1
2|S| , and

conjugate	to	obtain w′.

With	probability min

{
1,

(|w′|+ 1)1+α

(|w|+ 1)1+α
· β

|w′|

β|w|

}
put wn+1 = w′.

Else	put wn+1 = wn (reject	the	move)

23



Metropolis	MCMC algorithm

3. If	left-insertion, choose r ∈ R with	probability P(r) and
m ∈ [0, |w|] with	uniform	probability. Left-insert	to	obtain w′.

With	probability min

{
1,

(|w′|+ 1)α

(|w|+ 1)α
· β

|w′|

β|w|

}
put wn+1 = w′.

Else	put wn+1 = wn (reject	the	move)

Eg: G = ⟨a | a2⟩. The	state	space X is

:::: a−4 :::: a−2 :::: ϵ :::: a2 :::: a4 ::::
Starting	at w0 = a2k

S conjugation: no	change

S left-insert a±2: move	left/right	(or	no	change	if	rejected)
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Metropolis	MCMC algorithm

The	probabilities	are	chosen	specifically	so	that	we	can	prove	that:

there	is	a	probability	distribution π on X such	that	the	probability
that	the	algorithm	reaches	state w after	N steps	converges	to π(w).

If Pr(u→ v) is	the	probability	of	moving	from u to v in	one	step, a
distribution	is stationary for	the	MC if π(u) =

∑
v Pr(v→ u)π(v).

Theorem	(E,	Rechnitzer, van	Rensburg)

π(w) =
(|w|+ 1)1+αβ|w|

Z

where Z is	a	normalising	constant	is	the	unique	stationary	distribution	for
the	algorithm.

i.e. the	probability	that	the	algorithm	reaches	state w after N steps
converges	to π(w).
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Relation	to	cogrowth

Since π is	a	probability	distribution	we	have
∑
w∈X

π(w) = 1

so	since π(w) =
(|w|+ 1)1+αβ|w|

Z
we	get

Z =
∑
w∈X

(|w|+ 1)1+αβ|w| =
∑
n

cn(n+ 1)1+αβn

which	converges	when β is	less	than	the	radius	of	convergence	of	the
cogrowth	series (= recip	of	cogrowth	rate)
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Relation	to	cogrowth

The	mean	length	of	a	word	sampled	by	running	the	algorithm	is

E(|w|) =
∑
u∈X
|u|π(u) =

∑
u∈X
|u|(|u|+ 1)1+αβ|u|

Z

=
∑
n

n(n+ 1)1+αβncn
Z

=

∑
n n(n+ 1)1+αβncn∑
n (n+ 1)1+αβncn

As β → recip	of	cogrowth	rate	(from	below), the	mean	length→ +∞
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Z2 = ⟨a, b | aba−1b−1⟩

0.25 0.275 0.3 0.325

β

0

50

100

〈n
〉

The	mean	length	of	sampled	words	plotted	against β for ⟨a, b | aba−1b−1⟩ with
α = 1. The	crosses	indicate	data	obtained	from	an	implementation	of	the
algorithm	while	the	curve	indicates	the	expectation	derived	from	the	exact
cogrowth	series	for	the	group. The	vertical	line	indicates βc = 1/3.
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Free	product ⟨a, b, c|a2, b2, c2⟩

0.15 0.2

β

0

50

100

〈n
〉

Mean	length	of	sampled	words	vs. β for ⟨a, b, c|a2, b2, c2⟩ sampled	with α = 1.
The	crosses	indicate	data	obtained	from	the	algorithm, while	the	curves	indicates
the	expectation	derived	from	the	exact	cogrowth	series	(found	by	Kouksov).
Vertical	lines	at 1/5 and	0.2192752634	(the	reciprocal	of	the	cogrowth).
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Baumslag-Solitar(3,3)

0.2 0.3 0.4

β

0

50

100

150

〈n
〉

Mean	length	of	sampled	words	vs. β for BS(3, 3) = ⟨a, b | ba3b−1a−3⟩ with
α = 1. The	crosses	indicate	data	obtained	from	the	algorithm, while	the	curves
indicates	the	expectation	derived	from	the	(known)	cogrowth	series	for	the
group	(found	by	E,	Rechnitzer, van	Rensburg	and	Wong). Vertical	lines	at 1/3 and
0.417525628	(the	reciprocal	of	the	cogrowth).
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Surface	group ⟨a, b, c, d | [a, b][c, d]⟩

0.1 0.2 0.3 0.4

β

0

20

40

60

〈n
〉

Mean	length	sampled	words	vs. β for	the	presentation ⟨a, b, c, d | [a, b][c, d]⟩
for α = 1. Blue	lines	indicate	bounds	upper	and	lower	bounds	0.35473, 0.3547
proven	by	Nagnibeda	and	Gouëzel.
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Thompson’s	group F

Let F = ⟨a, b | [ab−1, a−1ba], [ab−1, a−2ba2]⟩

|S| = 2 so	if F is	amenable, lim sup c1/nn = 3

and	we	would	expect	the	mean	length	of	words	sampled	by	the	MC
algorithm	to	blow	up	at 1/3.

Let’s	run	the	algorithm . . .

0.25 0.3 0.35 0.4

β

0

20

40

60

〈n
〉
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Thompson’s	group F

Another	presentation
⟨a, b, c, d | c = a−1ba, d = a−1ca, [ab−1, c], [ab−1, d]⟩ for	F

0.1 0.15

β

0

20

40

60

〈n
〉
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Will	this	method	ever	give	a	proof?

There	are	very	few	examples	of	Markov	chain	algorithms	for	which	one
can prove rate	of	convergence	to	the	stationary	distribution.

Eg: shuffle	a	deck	of	cards	by	selecting	a	card	at	random	and	placing	it	at
the	bottom	of	the	deck

Start	with on	the	bottom	of	the	deck, when is	on	top, stop	–
uniform	distribution.

Cameron	Rogers	is	exploring	pathalogical	cases	that	break	the	algorithm

Eg: ⟨a, b | abab−1a−1b−1, anb⟩

as	well	as	connections	between	convergence	of	the	walk	and	complexity
of	the	Følner	function.
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More	details	in	our	paper	to	appear	in	Experimental	Mathematics.
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