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Random walks on groups

A random walk is a l.c. group G with a probability measure µ on G .
Start at the identity and randomly multiply on the right by group
elements distributed by µ.
If a group is finitely generated and we choose uniformly over a
symmetric generating set, then the walk is called simple.
Example: Simple random walk on the (Z,+).

Start a counter at 0
Repeatedly increment or decrement the counter by 1 with equal
probability.
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Random walks on groups

A group with measure can be identified with a discrete time
homogeneous Markov chain with state space G and transition
probabilities given by

P(g ,A) = µ(g−1A).

and initial distribution δe .
The transition probabilities are left invariant

p(hg , hA) = p(g ,A) ∀g , h ∈ G ,A ∈ B(G).
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The path space

Let G∞ =
∏

i∈N G with the product sigma algebra.
An element y = (y0, y1, y2 . . .) ∈ G∞ is called a path.
G has a measurable action on G∞.

g · y := (gy0, gy1, gy2 . . .)
Let Pµ be the product measure δe × µ× µ2 × µ3 × · · · on G∞ where
µn is the nth convolution power of µ.
The pair (G∞,Pµ) is called the path space.

Figure: Eight paths in the simple random walk on Z
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The Poisson boundary

Let ∼ be the equivalence relation on G∞ where x ∼ y if ∃N ∈ N and
k ∈ Z such that:

xi = yi+k ∀i > N.

Let Γ = X/ ∼ and let p : G∞ → Γ be the projection map.
Let ΣΓ be the largest sigma algebra so that p is measurable.
Let ν = µ ◦ p−1 be the push-forward measure with respect to p. Call
ν the hitting measure.
G has a measurable action on Γ using the G∞ action on the elements
of each coset.
The pair (Γ, ν) is called the Poisson boundary of (G , µ)
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The Poisson boundary

G can also act measurably on G t Γ with the appropriate action.
A measure topology on G t Γ may be defined so that for Pµ-almost
every path y the sequence {yn} converges to a point in Γ, and if yn
converges to y∞ ∈ Γ, then gyn converges to gy∞.
If G is embedded in a topological space B so that Pµ-a.e path
converges in B, and G acts on B measurably in this way, then it is
possible that B with the resulting hitting measure could be identified
with the Poisson boundary.
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Group properties and the Poisson boundary

The Poisson boundary is always trivial for nilpotent groups. (Chu and
Hilberdink 1996)
It can be non-trivial for solvable groups.
Every countable amenable group has a non-degenerate symmetric
probability measure such that the boundary is trivial (Rosenblatt
1981, Kaimanovich and Vershik 1983).
If suppµ generates a non-amenable group, then the Poisson boundary
is non-trivial (Rosenblatt 1981, and later Kaimanovich and Vershik
1983).
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Some applications in group theory

If G is a finitely generated solvable group then it admits a symmetric
measure with non-trivial Poisson boundary if and only if the group is
not virtually nilpotent (Erschler 2004).
With respect to the word length metric, the growth of a
finitely-generated group is a measure of how quickly the balls of
radius r grow.
Gromov’s theorem states that G has polynomial growth if and only if
G is virtually nilpotent.
These facts can be combined to give a lower bound on the growth of
finitely generated solvable groups.
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A family of matrix groups

Let G ′n be the group of the upper triangular matrices with integer
powers of two on the diagonal, and dyadic rationals in entries above
the diagonal. For example

G ′3 =


2x f h

0 2y g
0 0 2z

 : x , y , z ∈ Z, f , g , h ∈ Z[1/2]


Kaimanovich suggested that it would be interesting to describe the
Poisson boundary of G ′n for certain measures. I’m currently trying to
do this.
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As a semi-direct product

G ′n is isomorphic to a semi-direct product Gn = Hn n Nn.
Hn is the group of n × n diagonal matrices whose non-zero entries are
integer powers of 2. e.g.

H3 =


2x 0 0

0 2y 0
0 0 2z

 : x , y , z ∈ Z


Nn is the group of n × n upper unitriangular matrices whose entries are
dyadic rationals. e.g.

N3 =


1 f h
0 1 g
0 0 1

 : f , g , h ∈ Z[1/2]


Gn is just the set Hn × Nn with multiplication
(h1, n1)(h2, n2) = (h1h2, n1h1n2h−1

1 ) for h1, h2 ∈ Hn and n1, n2 ∈ Nn.
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A random walk in Gn includes a random walk in Zn

If ((y (1), ϕ(1)), (y (2), ϕ(2)), · · · ) is a path in Gn then (y (1), y (2), · · · ) is
a path in Zn. So a walk in Gn contains n random walks on (Z,+)
with measures µxp given by the push-forward of µ under the maps

(x , f ) 7→ log2[x ]pp, p ∈ {1, · · · , n}

for each p ∈ {1, · · · , n}.
For each p, let µ̄xp =

∑
z∈Z zµxp (z) be the mean of each measure µxp .
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The drift matrix

Let Dij be the drift matrix given by

Dij =
{
µ̄xi − µ̄xj : i ≤ j
0 : i ≥ j .

I will refer to the entries of Dij as drifts.
The boundary behaviour depends on the entries of the drift matrix.
We restrict ourselves to considering measures on Gn which have finite
first moment. That is, ∫

G
|x |Kdµ(x) < +∞

for any generating set K . This forces the drift matrix to have finite,
real-valued entries.
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The Poisson boundary of Gn

G1 is isomorphic to the abelian group Z - the boundary is trivial.
For G2, it is possible to show that

[ϕ(m)]1,2 =
m−1∑
l=0

(
[f (l+1)]1,22y (l)

1 −y (l)
2

)

so, if D12 < 0 (D12 > 0), then [ϕ(m)]1,2 is a.s. convergent R (Q2).
Furthermore, the boundary is non-trivial, and isomorphic to R (Q2)
with the hitting measure. The boundary is trivial if D12 = 0.
In general, the entries of ϕ(m) are given by a recurrence relation.
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Searching for a candidate boundary space

Computer simulations are helpful in searching for a candidate
boundary space.
The process is simple: perform random walks and look for interesting
asymptotic behaviour, e.g. convergence in some space.
Assuming that the drifts are all non-zero, there are at least as many
drift cases to consider as there are orderings of the set
{µ̄xp : p ∈ {1, · · · , n}}.
I have been able to spot entry-wise convergence in R or Q2 in many
drift cases.
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The Poisson boundary of Gn

Currently, I can show the following for any n:
If the drifts are all negative (positive), then ϕ(m) will Pµ-a.s. converge
to a unitriangular real (2-adic) matrix, and the boundary is isomorphic
to this space with the action of left multiplication and the hitting
measure.
If the drifts are all zero then the boundary is trivial.
If the drifts on the first super diagonal are non-zero, then the first
super diagonal entries of ϕ(m) will Pµ-a.s. converge in either R or Q2.
There are conditions on the drifts which can Pµ-a.s. make any
particular entry ϕ(m)ij converge in Q2 or R.

I suspect that there mixed drift cases which have more complicated
behaviour, but I’m not sure yet.
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Is the candidate space possibly the Poisson boundary?

After a candidate boundary is found, perhaps with the aid of
computation, the next step is proving that it is indeed the Poisson
boundary. The following result given by Kaimanovich is very helpful:
If G is a finitely generated group, µ is a probability measure on G
with finite first moment and there is a sequence of measurable maps
πn from a candidate boundary B to the group so that

1
n d(πn(y∞), yn)→ 0

where d is the word length metric then (B, λ) is the Poisson boundary
of the pair (G , µ) where λ is the hitting measure.
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Is the candidate space possibly the Poisson boundary?

The word length in Gn is not easy to calculate efficiently but it has
the following bound

|(x , f )|K ≤ C
n∑

i=1
|xi |+

n−1∑
i=1

n∑
j=i+1

‖fij‖

for some real constant C where |z | is the ordinary absolute value, K is
a particular generating set and

‖f ‖ =
{
1 + max{|d−(f )|, |d+(f )|} : f 6= 0
0 : f = 0

where d−(f ) (d+(f )) is the place value of the smallest (largest)
non-zero digit in the unique binary decimal expansion of f 6= 0.
A candidate boundary B and a sequence of approximations πn for Gn
can be easily tested on a computer using this bound.
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Is the candidate space possibly the Poisson boundary?

Figure: A ’bad’ guess for πn and all negative drifts in G3.
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Is the candidate space possibly the Poisson boundary?

Figure: A ’good’ guess for πn and all negative drifts in G3 (note that the y axis is
now logarithmic).
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Hitting distributions

It is also interesting to describe the hitting measure ν.
At least for negative drifts on Gn, the hitting measure on the
boundary can be visualised by performing many walks and plotting a
histogram of the final values [ϕ∞]ij .
Unsurprisingly, the resulting distribution depends on the measure.
The next slide has an example for G2.
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Example hitting distribution for G2

Figure: Histogram of real hitting points for a random walk on G2. Negative drift.
Equal weight on all off-diagonal generators and their inverses.
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Boundary triviality from entropy

Let G be a countable discrete group. The (Shannon) entropy of a
probability µ on G will be denoted by H(µ)

H(µ) = −
∑

g∈suppµ
µ(g) logµ(g)

0 0.5 1
0

0.5

1

μ(1)

H
(μ
)

Figure: Entropy vs p for the measure µ(x) = pδ1(x) + (1− p)δ−1(x) on Z.
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Boundary triviality from entropy

Suppose that H(µ) is finite. Then the limit

h(G , µ) = lim
n

H(µn)
n ,

where µn is the nth convolution power of µ, is called the entropy of
the pair (G , µ).
This may be thought of as the mean specific entropy contained in one
factor of the product yn = x1 · . . . · xn in the random walk.
Suppose that H(µ) is finite. Then the equality

lim
n

(1/n) logµn(yn) = −h(G , µ)

holds for almost all paths y ∈ G∞ (Kaimanovich and Vershik 1983).
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Boundary triviality from entropy

Let G be a discrete countable group, µ be a probability measure on G
with finite entropy. Then the Poisson boundary of the pair (G , µ) is
trivial if and only if h(G , µ) = 0. (Kaimanovich and Vershik 1983)
If µn(yn) can be computed efficiently then we can test for boundary
triviality by performing long walks calculating µn(yn)
Rounding error can be a problem if µn(yn) gets too small.
Depending on the group and the measure, computing µn(yn) can be
difficult. The support of µn can grow exponentially, and the word
problem can be an issue.
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Figure: Output of a sample program for the simple random walk on F2. µn(yn)
can be computed quickly as it can be given in terms of word length. As expected,
the output suggests the boundary is non-trivial.
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Summary

Experimental computations can aid in describing the Poisson
boundary of a group with measure in the following ways:

1 Finding candidate boundary spaces.
2 Testing if the candidate space is likely to be the boundary (using e.g.

Kaimanovich’s ray criterion).
3 Visualising the hitting measure.
4 Testing for boundary triviality.

Rounding error can be an issue for walks in matrix groups.
Can work in multiple ways. E.g. matrices or words in a generating set.
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Thank you.
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