
Dependent types and the algebraic hierarchy

Robert Y. Lewis

Carnegie Mellon University

June 19, 2015

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 1 / 30

Talk outline

Three goals for this talk:

Explain the background of interactive theorem proving and dependent
type theory

Sell the proof assistant we’ve been working on

Show off an interesting feature of this proof assistant and how we’ve
made use of it

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 2 / 30

Formal verification

Why formal verification?

There are plenty of examples in mathematics and engineering where
“human” certainty seems insufficient.

Four-color theorem, Kepler conjecture, etc.

Computer algebra systems (e.g. Mathematica)

Intel processor verification

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 3 / 30

Formal verification

Why formal verification?

People have begun to use formal tools to verify proofs, computations, and
software.

The high-level picture: users write “code” that approximates a proof.
Computers take this code and generate a full proof certificate.

This is sort of like an axiomatic/natural deduction proof from logic class,
but (hopefully!) less tedious, more comprehensive, less chance of human
error.

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 4 / 30

Formal verification

Proof assistant ideals

A proof assistant is ideally:

based on a familiar logic

expressive enough for standard mathematics

syntactically similar to informal math

as automated as possible

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 5 / 30

Formal verification

Example

theorem one_lt_div_iff_lt (Hb : b > 0) : 1 < a / b ↔ b < a

:=

have Hb’ : b 6= 0, from ne.symm (ne_of_lt Hb),

iff.intro

(assume H : 1 < a / b,

calc

b < b * (a / b) : lt_mul_of_gt_one_right Hb H

... = a : mul_div_cancel’ Hb’)

(assume H : b < a,

have Hbinv : 1 / b > 0, from div_pos_of_pos Hb,

calc

1 = b * (1 / b) : mul_one_div_cancel Hb’

... < a * (1 / b) : mul_lt_mul_of_pos_right H Hbinv

... = a / b : div_eq_mul_one_div)

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 6 / 30

Formal verification

Examples of proof assistants

Mizar (1973): Tarski-Grothendieck set theory

HOL family (1988): simple type theory

Isabelle (1989): simple type theory

Coq (1989): constructive dependent type theory

PVS (1992): classical dependent type theory

ACL2 (1996): primitive recursive arithmetic

Agda (2007): constructive dependent type theory
· · ·
Lean (2013): constructive dependent type theory

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 7 / 30

Formal verification

Talk outline

A rough plan for the rest of this talk:

A (quick!) overview of dependent type theory

An introduction to Lean and its syntax

Type class inference in Lean

The Lean library and the algebraic hierarchy

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 8 / 30

Dependent type theory

Intro to DTT

Dependent type theory extends “simple” type theory (which extends the
untyped λ calculus). As in the simple case:

Every term has a type. a : A

Given two types A, B, can construct product types A × B and
function types A → B

Lambda expressions create terms of function types.
(λ a : A, a) : A → A

This simple type theory corresponds roughly to the ∧ → fragment of
propositional logic.

Type constructors depend on other types, but not on terms.

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 9 / 30

Dependent type theory

Intro to DTT

In dependent type theory, this restriction is relaxed: types can take terms
of other types as parameters.

vector : (Π A : Type, Π n : N, Type)

The type of the output of a function can depend on the input:

(λ A : Type, λ a : A, [a, a, a]) : vector A 3

We can also create dependent pairs, where the type of the second term
depends on the first term:

(n : N, [0, 1, . . ., n]) : Σ n : N, vector N n

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 10 / 30

Dependent type theory

Inductive types

Many concrete types we’ll use are instances of inductive types:

inductive foo : Type :=

| constructor_1 : ... → foo

| constructor_2 : ... → foo

...

| constructor_n : ... → foo

Each constructor specifies a way of building a term of type foo (possibly
recursively). Every term of type foo has been constructed in one of these
ways.

Functions can be defined on an inductive type using its recursor.

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 11 / 30

Dependent type theory

Curry-Howard Isomorphism

We can build a substantial amount of mathematics using nothing other
than type universes, Π types, and inductive types.

In this framework, reasoning about propositions is basically the same as
reasoning about data.

Π ∼ ∀
Σ ∼ ∃

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 12 / 30

Lean

The Lean theorem prover

Lean is a new theorem prover developed by Leonardo de Moura at
Microsoft Research. It is based on dependent type theory.

We think of Lean as:

An interactive theorem prover with powerful automation.

An automated reasoning tool that produces proofs, has a rich
language, can be used interactively, and is built on a verified
mathematical library.

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 13 / 30

Lean

Lean’s default logical framework is a version of the Calculus of
Constructions with:

an impredicative, proof-irrelevant type Prop of propositions

a non-cumulative hierarchy of universes, Type 1, Type 2, . . . above
Prop

universe polymorphism

inductively defined types

Features:

The core is constructive.

Can comfortably import classical logic.

Can work in homotopy type theory.

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 14 / 30

The algebraic hierarchy

Structures in Lean

In mathematics we prove theorems about general structures, and
instantiate these structures. (Groups, rings, fields, . . .)

A proof assistant must support this paradigm. If I prove that in an ordered
field, a > 0→ 1/a > 0, and show that R is an ordered field, I should be
able to apply this theorem to R.

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 15 / 30

The algebraic hierarchy

The need for type inference

Consider the following mathematical statements:

“For every x ∈ R, ex =
∑∞

i=0
x i

i! .”

“If G and H are groups and f is a homomorphism from G to H, then for
every a, b ∈ G , f (a · b) = f (a) · f (b).”

“If F is a field of characteristic p and a, b ∈ F , then
(a + b)p =

∑p
i=0

(p
i

)
aibp−i = ap + bp.”

How do we parse these?

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 16 / 30

The algebraic hierarchy

Structures in Lean

A structure is a non recursive inductive type with only one constructor.

The product and dependent product types are both examples of this.

Algebraic structures are examples of this: if A : Type, then group A is an
inductive type whose sole constructor takes as arguments

a function mul : A→ A→ A

a function inv : A→ A

an object one : A

proofs that mul is associative, one is the multiplicative identity, and
inv is a left inverse

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 17 / 30

The algebraic hierarchy

Structures in Lean

A theorem about ordered fields in general:

structure ordered_field (A : Type) := ...

theorem div_pos_of_pos (A : Type) (s : ordered_field A)

(a : A) (H : 0 < a) : 0 < 1 / a :=

lt_of_mul_lt_mul_left

(mul_zero_lt_mul_inv_of_pos H)

(le_of_lt H)

Specialized to R:

definition reals_ordered_field : ordered_field R := ...

(div_pos_of_pos R reals_ordered_field) :

∀ a : R, 0 < a → 0 < 1 / a

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 18 / 30

The algebraic hierarchy

Two problems

(div_pos_of_pos R reals_ordered_field) :

∀ a : R, 0 < a → 0 < 1 / a

Problem 1: this description isn’t complete. What are 0, 1, and / ?

They are ordered field.zero reals ordered field,

ordered field.one reals ordered field, ordered field.div

reals ordered field

Problem 2: it’s annoying to reference the proof reals ordered field

every time we use div pos of pos.

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 19 / 30

Type class inference

The solution

Lean’s solution to these problems is to use type class inference.

Declare a (family of) inductive type(s) to be a type class.

Declare instances of the type class.

Mark some arguments with [] to denote that these arguments should
be inferred.

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 20 / 30

Type class inference

Type class inference

An example of type class inference:

inductive inhabited [class] (A : Type) : Type :=

mk : A → inhabited A

definition bool.is_inhabited [instance] : inhabited bool :=

inhabited.mk bool.true

definition real.is_inhabited [instance] : inhabited real :=

inhabited.mk real.one

definition default (A : Type) [H : inhabited A] : A :=

inhabited.rec (λ a : A, a) H

check default bool -- bool

eval default real -- real.one

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 21 / 30

Type class inference

Chaining instances

definition prod.is_inhabited [instance] {A B : Type}

[H1 : inhabited A] [H2 : inhabited B] :

inhabited (A × B) :=

inhabited.mk ((default A, default B))

eval default (real × real) -- (real.one, real.one)

eval default (real × bool × real) -- (real.one, bool.true,

real.one)

This is accomplished by a recursive, backtracking search through declared
instances.

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 22 / 30

Type class inference

Type classes in algebra

The algebraic example becomes:

structure ordered_field [class] (A : Type) := ...

theorem div_pos_of_pos {A : Type} [s : ordered_field A]

(a : A) (H : 0 < a) : 0 < 1 / a :=

lt_of_mul_lt_mul_left

(mul_zero_lt_mul_inv_of_pos H)

(le_of_lt H)

definition reals_ordered_field [instance] : ordered_field R
:= ...

div_pos_of_pos :

∀ a : R, 0 < a → 0 < 1 / a

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 23 / 30

Type class inference

Type classes in algebra

theorem div_pos_of_pos {A : Type} [s : ordered_field A]

(a : A) (H : 0 < a) : 0 < 1 / a := ...

The < here is notation for has lt.lt {A : Type} [s : has lt A].

Lean infers has lt R from the chain

definition ordered_field.to_linear_order_pair [instance]

{A : Type} [s : ordered_field A] : linear_order_pair A :=

...

definition linear_order_pair.to_order_pair [instance]

{A : Type} [s : linear_order_pair A] : order_pair A :=

...

definition order_pair.to_has_lt [instance] {A : Type}

[s : order_pair A] : has_lt A := ...

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 24 / 30

Type class inference

Notation overloading

This mechanism also lets us overload notation like <.

definition real.has_lt [instance] : has_lt real :=

has_lt.mk real.lt

definition nat.has_lt [instance] : has_lt nat :=

has_lt.mk nat.lt

check (λ a b : real, a < b) -- real → real → Prop

check (λ a b : nat, a < b) -- nat → nat → Prop

All of this applies to other operations: +, ∗,≤, etc.

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 25 / 30

Type class inference

Type classes in algebra

The moral: because of the way algebraic structures extend and project
down to each other, it’s easy for type class inference to find the
appropriate level to instantiate a particular theorem.

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 26 / 30

Type class inference

R forms an ordered ring

theorem s_le.refl {s : reg_seq} : s_le s s :=

begin

let Hs := reg_seq.is_reg s,

apply nonneg_of_nonneg_equiv,

rotate 2,

apply equiv.symm,

apply neg_s_cancel s Hs,

apply zero_nonneg,

apply zero_is_reg,

apply reg_add_reg Hs (reg_neg_reg Hs)

end

theorem le.refl (x : R) : x ≤ x :=

quot.induction_on x (λ t, s.r_le.refl t)

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 27 / 30

Type class inference

R forms an ordered ring

definition ordered_ring [instance] : algebra.ordered_ring R
:=

{{algebra.ordered_ring, comm_ring,

le_refl := le.refl,

le_trans := le.trans,

mul_pos := mul_gt_zero_of_gt_zero,

mul_nonneg := mul_ge_zero_of_ge_zero,

zero_ne_one := zero_ne_one,

add_le_add_left := add_le_add_of_le_right,

le_antisymm := eq_of_le_of_ge,

lt_irrefl := not_lt_self,

lt_of_le_of_lt := lt_of_le_of_lt,

lt_of_lt_of_le := lt_of_lt_of_le,

le_of_lt := le_of_lt,

add_lt_add_left := add_lt_add_left}}

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 28 / 30

Type class inference

Decidable propositions

One more example of type class inference:

inductive decidable [class] (p : Prop) : Type :=

| inl : p → decidable p

| inr : ¬p → decidable p

definition decidable_and [instance] (p q : Prop)

[Hp : decidable p] [Hq : decidable q] :

decidable (p ∧ q) := ...

definition decidable_or [instance] ...

definition decidable_implies [instance] ...

definition nat.lt.decidable [instance] (a b : nat) :

decidable (a < b) := ...

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 29 / 30

Type class inference

Decidable propositions

eval (if (0 < 2 ∧ 2 < 5) ∨ (1 < 2 → 9 < 3) then 0 else 1)

-- 0

theorem lt_next : 0 < 1 ∧ 1 < 2 ∧ 2 < 3 := dec_trivial

R. Y. Lewis (Carnegie Mellon University) Dependent types and the algebraic hierarchy June 19, 2015 30 / 30

	Formal verification
	Dependent type theory
	Lean
	The algebraic hierarchy
	Type class inference

