
On the use of GPUs in Mathematical Computation

Matt Skerritt

School of Mathematical and Physical Sciences
University of Newcastle, Australia

Workshop on Mathematics and Computation
University of Newcastle, Australia

19–21 June 2015

1 Introduction

2 Theory

3 Practice

4 Further Work

Introduction Theory Practice Further Work

Section 1

Introduction

Introduction Theory Practice Further Work

The GPU is a “Graphics Processing Unit” sometimes referred to as a video card.

Originally responsible for putting images on the screen.
Later gained image processing ability (e.g., vertex and pixel shading).
More recently have become fully programable.
Competition in Video Game industry has driven consistent increases in power.

These days every desktop computer has some sort of GPU in it. Sometimes this will be
part of the CPU, but often will be an entirely separate add-on card.

Introduction Theory Practice Further Work

Introduction Theory Practice Further Work

GPUs use a SIMD1 architecture for highly (massively?) parallel operations. This
architecture works best with data parallel problems.

The same code is run many times simultaneously on different data.
Requires a different mode of thought to single-threaded programming.
Want to avoid differences in execution paths such as decision branches or loops.

Example (squaring a list of numbers)

Input : list I
Output: list O
begin

i ← process number
n← i th element of I
i th element of O ← n2

end

1Single Instruction, Multiple Data

Introduction Theory Practice Further Work

GPUs use a SIMD1 architecture for highly (massively?) parallel operations. This
architecture works best with data parallel problems.

The same code is run many times simultaneously on different data.
Requires a different mode of thought to single-threaded programming.
Want to avoid differences in execution paths such as decision branches or loops.

Example (squaring a list of numbers)

Input : list I
Output: list O
begin

i ← process number
n← i th element of I
i th element of O ← n2

end

1Single Instruction, Multiple Data

Introduction Theory Practice Further Work

Section 2

Theory

Introduction Theory Practice Further Work

Definition (Parallel Random Access Machine (PRAM))
The PRAM model consists of an unbounded collection of numbered processors

P0,P1, . . .

and an unbounded collection of shared memory cells

C1,C2, . . .

Each processor Pi has its own local memory, knows its index i , and can read from and
write to the shared memory.
Processors may be activated by some mechanism. Instructions are executed in unit
time, synchronised over all active processors.

Some technical issues arise whose solution leads to variants of the model.

Introduction Theory Practice Further Work

Definition
Let M be a PRAM. We say that M computes in parallel time t(n) with p(n) processors
if for every input x (encoded with n bits), the machine halts with at most t(n) time
steps and activates at most p(n) processors, producing some output.

Definition
Let M be a PRAM. We say that M computes in sequential time t(n) if it computes in
parallel time t(n) using only a single processor.

Note that each PRAM is assumed to be specific to a problem.

Introduction Theory Practice Further Work

If we encode problems as languages (i.e., as a subset of {0, 1}∗) then we may define
the following:

Definition
Let L be a language over {0, 1}∗. The characteristic function of L is the function

fL : {0, 1}∗ → {0, 1}

where fL(x) = 1 if x ∈ L, and fL(x) = 0 if x 6∈ L

Definition
Let L be a language over {0, 1}∗. We say L is decidable in parallel time t(n) with p(n)
processors if and only if fL is computable in parallel time t(n) with p(n) processors.

Sequential time decidability is defined similarly.

Introduction Theory Practice Further Work

We have the following classes of problems:

Definition (Class P)
The class P is the set of all languages L that are decidable in sequential time nO(1)

Definition (Class NC)
The class NC is the set of all languages L that are decidable in parallel time (log n)O(1)

with nO(1) processors.

Note that NC ⊆ P. It is unknown if NC = P.

Introduction Theory Practice Further Work

If we are interested in computing functions directly, instead of language decision
problems we have the following analogous classes.

Definition (Class FP)
The class FP is the set of all functions f : {0, 1}∗ → {0, 1}∗ that are computable in
sequential time nO(1)

Definition (Class FNC)
The class FNC is the set of all functions f : {0, 1}∗ → {0, 1}∗ that are computable in
parallel time (log n)O(1) with nO(1) processors.

Introduction Theory Practice Further Work

Definition (NC Turing reducibility)
Let B and B′ be problems in Class P. We say that B is NC Turing reducible to B′ if
and only if there is a PRAM which solves B with the aid of a unit-cost oracle for
problem B′, and this PRAM computes B using parallel time (log n)O(1) with nO(1)

processors.

Definition (P-hardness)
A language, L, is P-hard under NC reducibility if every L′ ∈ P is NC Turing reducible
to L.

Definition (P-completeness)
A language, L, is P-complete under NC reducibility if L ∈ P and it is P-hard.

P-completeness is to Class NC as NP-completeness is to Class P.

Introduction Theory Practice Further Work

Section 3

Practice

Introduction Theory Practice Further Work

There are two competing API’s for general purpose GPU (GPGPU) programming:
CUDA, which is Nvidia specific.
OpenCL which is platform agnostic, and can also be used with CPU’s and other
compute devices.

Both seem otherwise quite similar.

I use OpenCL, and the remainder of this talk will assume OpenCL (inasmuch as it is
platform specific at all.)

Introduction Theory Practice Further Work

In practice, a GPU will have an architecture very similar to the following:
A M D A C C E L E R A T E D P A R A L L E L P R O C E S S I N G

1-6 Chapter 1: OpenCL Architecture and AMD Accelerated Parallel Processing
Copyright © 2013 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.2 Interrelationship of Memory Domains for Southern Islands
Devices

Figure 1.3 illustrates the standard dataflow between host (CPU) and GPU.

Figure 1.3 Dataflow between Host and GPU

There are two ways to copy data from the host to the GPU compute device
memory:

• Implicitly by using clEnqueueMapBuffer and clEnqueueUnMapMemObject.

• Explicitly through clEnqueueReadBuffer and clEnqueueWriteBuffer
(clEnqueueReadImage, clEnqueueWriteImage.).

IMAGE / CONSTANT / BUFFER DATA
CACHE (L2)

1

nLocal Mem.
(LDS) L1

Local Mem.
(LDS) L1

GLOBAL MEMORY CONSTANT MEMORYCompute Device
Memory (VRAM) PCIe

Host
DMA

Compute Device

Private Memory
(Reg Files) m

Proc. Elem.
(ALU)

Proc. Elem.
(ALU)

2

Compute Unit 1

Private Memory
(Reg Files) 1

Private Memory
(Reg Files) m

Proc. Elem.
(ALU)

Proc. Elem.
(ALU)

2

Compute Unit n

Private Memory
(Reg Files) 1

n

1

n

nGlobal Share
Mem. (GDS)

S
T

I
e A

L
A
T
E

B
A
L

H
O
S
T

P
C
I
e

L
O
C
A
L

P
R
I
V
A
T
E

G
L
O
B
A
L

Source: AMD Accelerated Parallel Processing OpenCL Programming Guide

Introduction Theory Practice Further Work

A program executing on a GPU is called a kernel. It runs as follows:

Many work items will be assigned, each running the kernel in parallel.
The work items are sub-divided into work groups, each of which may end up
assigned to different compute units.
Typically a work group will have many more work items than the compute unit
has individual processing capacity.
Work groups will be further sub-divided into fixed sized blocks (probably 4, 8, 16,
or 32). These blocks run in lock step as a unit on the processors in a schedule
handled by the hardware.
The hardware scheduler can hide memory access latency by scheduling other
blocks to execute. This is easier with larger work groups.

Introduction Theory Practice Further Work

Example
An ATI Radeon HD 6770M reports 512Mb global memory, 6 compute units, a
maximum workgroup size of 256, and a local memory size of 32kb.

Example
A Nvidia GeForce GTX 680MX reports 2048Mb global memory, 8 compute units, a
maximum workgroup size of 1024, and a local memory size of 48kb.

Note that each compute unit likely has something in the vicinity of 8 actual processors
on it. The precise details are model specific, and a little hard to verify.

Introduction Theory Practice Further Work

Example
An Intel HD Graphics 5000 reports 1536Mb global memory, 40 compute units, a
maximum workgroup size of 512, and a local memory size of 64kb.

Example
An Intel(R) Many Integrated Core Acceleration Card (actually a Xeon Phi) reports
11634Mb global memory, 240 compute units, a maximum workgroup size of 8192, and
a local memory size of 32kb.

Introduction Theory Practice Further Work

Some considerations for writing in practice:

Data must be coped between the computer’s memory and the GPUs memory.
Maximum memory allocatable to a single buffer is less than the global memory
(usually a quarter, have seen a third).
Local memory is much faster than global memory.
Local memory is shared only between the work items in the same work group.
Local memory is divided into banks. Simultaneous accesses to the same memory
bank by different work items need to be serialised, and cause slowdowns. (This is
called a bank conflict).
Synchronisation of work items during execution is only possible within work group.
Synchronisation of work items outside of work groups requires multiple kernel
executions. (Kernel termination is the synchronisation point).

Algorithms based on NC problems will need to be adapted to cope with these (and
other) considerations.

Introduction Theory Practice Further Work

A single work group functions the closest to a PRAM, although (as we have seen) the
processors are not, strictly speaking, running in parallel. The following lemma is
applicable.

Lemma (Brent, 1974)
Suppose that a computation can be performed on a PRAM with t time steps using q
operations. Then the same computation can be performed with p processors (where p
is less than the number of processors needed for maximum concurrency) in

tp ≤ t + q − t
p

time steps.

A parallel program which needs more work items that can be scheduled in a single
work group needs to find a way to break the computation into work group sized
chunks, and to combine the chunks in a separate kernel execution.

Introduction Theory Practice Further Work

Example (Prefix Sum)
Note: this is often referred to as a scan in the GPU programming literature.
Let a1, . . . , an be a finite sequence of numbers. We want to compute a new sequence
of p1, . . . , pn where

pi =
{
0 for i = 1∑i−1

k=1 ak for 2 ≤ i ≤ n

This has an easy sequential algorithm.

Introduction Theory Practice Further Work

A naïve parallel implementaion of prefix sum might look like:

Image from https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

This has good theoreatical parallel time, but in practice performs more total
instructions than a sequential scan.

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

Introduction Theory Practice Further Work

A better implementation uses two phases: an up-sweep (or reduce), and down-sweep:

Images from https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

Note that this algorithm only works for sequences of size 2k for somme k, and only on
a single work-group. It can be extended to longer sequences at the expense of
computing nested prefix sums.2

2see https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

Introduction Theory Practice Further Work

Further Work:
Implement large integer arithmetic, and high precision
floating point operations on a GPU

In the case where precision is small enough to fit in a single
work group (this could be several tens of thousands of
decimal digits worth).
In the case where precision is too large to fit the numbers in
a single workgroup.

Numerical integration on GPUs.
Anything else I can get my hands on that looks like it might
be implementable on a GPU.

Thankyou

	Introduction
	Theory
	Practice
	Further Work

