Denominators of rational numbers in or close to Cantor sets

Igor Shparlinski

The University of New South Wales

Introduction

Let $\mathcal{D} \subset \{0, 1, \dots, g-1\}$ be a non-empty set of g-ary digits.

We define a generalised Cantor set $\mathcal{C}_g(\mathcal{D})$ as

$$\mathcal{C}_g(\mathcal{D}) = \Big\{ \alpha = \sum_{i=1}^{\infty} d_i g^{-i}, \quad d_i \in \mathcal{D} \Big\}.$$

In particular, we denote by $\mathcal{K} = \mathcal{C}_3(\{0,2\})$ the classical Cantor set.

We will discuss the *distribution* and *arithmetic structure* of integer denominators q for which for some integer r with gcd(r,q) = 1 and some $\alpha \in C_g(\mathcal{D})$ the difference $\alpha - r/q$ is very small (i.e., much smaller than 1/q), including the special case when it is zero, i.e. $r/q \in C_g(\mathcal{D})$.

Conventions: $1 \le \#\mathcal{D} < g$ and r/q is always with gcd(rg,q) = 1

- We start with a short survey of results ... by someone who had never heard about this less that 12 month ago before *'Dynamics and Number Theory'*, Univ. of Sydney, 12–14 June 2019.
- We discuss what bounds of short exponential sums with exponential functions due to *Korobov* (1972) can tell us about denominators of rationals close to Cantor sets $C_g(\mathcal{D})$.
- We present a new approach and results about the arithmetic structure of denominators of rationals in Cantor sets $C_g(\mathcal{D})$, improving those of *Schleischitz* (2019).

Rational numbers and Cantor sets - Survey

Counting rationals in Cantor sets

Define

$$N_g(\mathcal{D};Q) = \#\{r/q \in \mathcal{C}_g(\mathcal{D}): 1 \le q \le Q\}.$$

Important quantity:
$$\vartheta_g(\mathcal{D}) = rac{\log \#\mathcal{D}}{\log g}$$
, the Hausdorff dimension of $\mathcal{C}_g(\mathcal{D})$.

Conjecture: Broderick, Fishman and Reich (2011)

We have $N_g(\mathcal{D}; Q) \leq Q^{\vartheta_g(\mathcal{D}) + o(1)}$.

Schleischitz (2019)

We have $Q^{\vartheta_g(\mathcal{D})+o(1)} \leq N_g(\mathcal{D};Q) \leq Q^{2\vartheta_g(\mathcal{D})+o(1)}$.

Denominators of rationals in Cantor sets

Motivation:

Sets $C_g(D)$ are very **special** sets of *g*-ary numbers; can they contain rationals r/q with very **special** denominators q?

For an integer $q \geq 2$, let

$$P(q) = \max_{\substack{p \mid q, \\ p \text{ prime}}} p \quad \text{and} \quad \operatorname{rad}(q) = \prod_{\substack{p \mid q, \\ p \text{ prime}}} p.$$

Using some techniques from ergodic theory, as a result of a more general statement:

Schleischitz (2019)

If $r/q \in \mathcal{C}_g(\mathcal{D})$ then $P(q) \to \infty$ as $q \to \infty$.

Using results of Korobov (1970):

Shparlinski (2019)

There is a constant c > 0 depending only on g, such that if $r/q \in C_g(\mathcal{D})$ then

 $P(q) \ge c\sqrt{\log q \log \log q}$ and $\operatorname{rad}(q) \ge c \log q$.

Denominators of rationals close to Cantor sets

Let $\|\xi\|$ be the distance between a real ξ and the closest integer.

We have the following general result:

Schleischitz (2019)

There is a constant c > 0 depending only on g, such that for any $\xi \in C_g(\mathcal{D}) \setminus \mathbb{Q}$, for all but finitely many q: $\|q\xi\| \ge g^{-cq^{\vartheta g(\mathcal{D})}}.$

Question: What about small values of $||q\xi||$ for "special" q?

The above results show that for any $\xi \in \mathcal{C}_g(\mathcal{D})$ the equation

 $\|q\xi\|=0$

is possible only for finitely many "special" q (e.g. for g = 3 and $q = 2^n$).

Can we say more?

Perfect powers:

Bugeaud (2012)

There is an absolute constant c > 0 such that there are uncountably many real numbers $\xi \in \mathcal{K}$ which for all integers $m \ge 2$ and $k \ge 1$, satisfy

 $||m^k \xi|| > e^{-cm(\log m)^2}.$

Open Question: What about $||a^n\xi||$ for all or almost all $\xi \in \mathcal{K} \setminus \mathbb{Q}$?

Powers of 2:

Let as before $\vartheta = \log 2 / \log 3$ be the Hausdorff dimension of \mathcal{C} .

Allen, Chow, Yu (2020)

For almost all $\xi \in C$, w.r.t. a natural measure on \mathcal{K} , for $q = 2^n$ we have

$$||q\xi|| > (\log q)^{-1/\vartheta + o(1)}$$

Remark: Both works are based on Diophantine approximation theory.

 $1 \leq \#\mathcal{D} < g$

Using results of *Korobov* (1972), we have a result for arbitrary sets $C_g(D)$ and products of arbitrary finite sets of primes.

Shparlinski (2019)

Let S be a finite set of primes such that gcd(g,p) = 1 for any $p \in S$. For any $\varepsilon > 0$, for all but finitely many q with all prime factors in S, for any $\xi \in C_g(\mathcal{D})$ we have

 $||q\xi|| > g^{-\exp((\log q)^{2/3+\varepsilon})}.$

Idea of the proof: By Korobov (1972), rational fractions r/q with q as above, have uniformly distributed g-ary digits starting with segments of length $N \ge \exp\left((\log q)^{2/3+\varepsilon}\right)$ and hence disagree with $\xi \in C_g(\mathcal{D})$.

Remark: The method of *Korobov* (1972), uses bounds on *exponential* sums (Weyl sums) and in particular the Vinogradov Mean Value Theorem. Unfortunately, it is not affected by the spectacular progress due to *Bourgain, Demeter and Guth* (2016) and *Wooley* (2016–2019).

Recall:

Using results of Korobov (1970):

Shparlinski (2019)

There is a constant c > 0 depending only on g, such that if $r/q \in C_g(\mathcal{D})$ then

 $P(q) \ge c\sqrt{\log q \log \log q}$ and $\operatorname{rad}(q) \ge c \log q$.

This improves $P(q) \rightarrow \infty$ as $q \rightarrow \infty$ due to *Schleischitz* (2019).

Preparations

Let $\tau(q)$ be the multiplicative order of g modulo q, that is, the smallest integer $t \ge 1$ with $g^t \equiv 1 \pmod{q}$.

We also define

 $\tau_0(q) = \tau \left(\operatorname{rad}(q) \right).$

For any integer $r \ge 1$ with gcd(gr,q) = 1, the g-ary expansion of r/q is purely periodic with period $\tau(q)$.

For a g-ary digit $d \in \{0, 1, ..., g-1\}$ we denote by $N_{r,q}(d)$ the number of occurrences of d in the full period of the g-ary expansion of r/q.

Korobov (1970)

For any positive integers r and q with $\gcd(gr,q)=1$ we have

$$\left|N_{r,q}(d) - \frac{1}{g}\tau(q)\right| < 2\tau_0(q).$$

Upper bound

To simplify the notation we denote

$$t = \tau(q)$$
 and $t_0 = \tau_0(q)$.

We fix some $d \in \{0, 1, \dots, g-1\} \setminus \mathcal{D}$ and $r/q \in \mathcal{C}_g(\mathcal{D})$.

Clearly $N_{r,q}(d) = 0$. Hence, by *Korobov* (1970)

$$t/g = |0 - t/g| = |N_{r,q}(d) - t/g| \le 2t_0$$

Hence

$$t \leq 2gt_0$$

Lower bound

Let

$$q = p_1^{\alpha_1} \dots p_s^{\alpha_s}$$
 and $\operatorname{rad}(q) = p_1 \dots p_s$

for some distinct primes p_1, \ldots, p_s and integers $\alpha_1, \ldots, \alpha_s \geq 1$.

To show the ideas we ignore p = 2 as if it never existed.

We write

$$g^{t_0} = 1 + u_0 p_1^{\beta_1} \dots, p_s^{\beta_s}, \qquad (q \text{ is odd}).$$

The following is very elementary and can also be found in Korobov (1970):

$$t = t_0 p_1^{\gamma_1} \dots p_s^{\gamma_s}$$

where

$$\gamma_{\nu} = \max\{0, \alpha_{\nu} - \beta_{\nu}\}, \qquad \nu = 1, \dots, s.$$

Hence

$$t \ge t_0 p_1^{\alpha_1 - \beta_1} \dots p_s^{\alpha_s - \beta_s} = t_0 q p_1^{-\beta_1} \dots p_s^{-\beta_s}.$$

Combining lower and upper bounds on t

So we have

$$2gt_0 \ge t \ge t_0 p_1^{\alpha_1 - \beta_1} \dots p_s^{\alpha_s - \beta_s} = t_0 q p_1^{-\beta_1} \dots p_s^{-\beta_s}.$$

Hence

$$p_1^{\beta_1} \dots p_s^{\beta_s} \ge \frac{1}{2g}q.$$

We are now **done** since the LHS can be upper bounded in terms of p_1, \ldots, p_s rather than q leading to a statement of the form $F(p_1, \ldots, p_s) \ge q$ for some explicit function F. From here we estimate $P(q) = \max_{i=1,\ldots,s} p_i \quad \text{and} \quad \operatorname{rad}(q) = p_1 \ldots p_s$

Gory details

So we now examine this more carefully:

$$\bigstar \qquad \qquad p_1^{\beta_1} \dots p_s^{\beta_s} \gg q$$

Let $\nu_p(a)$ be the *p*-adic order of $a \in \mathbb{Z}$: the largest integer α with $p^{\alpha} \mid a$.

By Korobov (1970) we have the following elementary relation

$$\beta_i = \nu_{p_i} \left(g^{\tau(p_i)} - 1 \right) + \nu_{p_i} t_0, \qquad (p_i \ge 3).$$

Using the trivial bounds

$$p^{
u_p(g^{ au(p)}-1)} < g^{ au(p)} < g^p$$
 and $t_0 \le p_1 \dots p_s,$

we derive

•
$$p_1^{\beta_1} \dots p_s^{\beta_s} = \prod_{i=1}^s p_i^{\nu_{p_i}(g^{\tau(p_i)}-1)+\nu_{p_i}t_0} = t_0 g^{p_1} \dots g^{p_s} \le g^{2(p_1+\dots+p_s)}.$$

Putting together \bigstar and \bullet :

$$p_1 + \ldots + p_s \gg \log \left(g^{p_1 + \ldots + p_s} \right) \gg \log \left(p_1^{\beta_1} \ldots p_s^{\beta_s} \right) \gg \log q.$$

So arrive to our main inequality

$$p_1 + \ldots + p_s \gg \log q.$$

Using the trivial inequality

$$\operatorname{rad}(q) = p_1 \dots p_s \ge p_1 + \dots + p_s,$$

we derive the desired lower bound on rad(q).

Remark

This looks very crude, but what if s = 1? Or s = 5, $p_1 = 3$, $p_2 = 5$, $p_3 = 7$, $p_4 = 11$, $p_5 = P(q)$? We only lose a constant.

Furthermore, we have

$$sP(q) \ge p_1 + \ldots + p_s.$$

By the PNT, $P(q) \gg s \log(s+1)$ or $s \ll P(q)/\log P(q).$ Hence

$$P(q)^2 / \log P(q) \gg \log q$$

and we derive the desired lower bound on P(q).

 $1 \le \# \mathcal{D} < g$

Question

How tight are the bounds

$$P(q) \geq c \sqrt{\log q \log \log q} \qquad \textit{and} \qquad \operatorname{rad}(q) \geq c \log q?$$

... perhaps not so much. However Cantor sets do contain infinitely many rational numbers with denominators free of large prime divisors.

Construction

For $m \to \infty$ we define

$$t_m = \prod_{\substack{p \le m \\ p \text{ prime}}} p = \exp(m + o(m)),$$

and

$$r_m/q_m = \frac{1}{g^{t_m} - 1} = \sum_{i=1}^{\infty} \frac{1}{g^{t_m i}} \in \mathcal{C}_g(\{0, 1\}).$$

Using factorisation of $X^t - 1$ into cyclotomic polynomials $\Phi_u(X)$,

$$q_m = g^{t_m} - 1 = \prod_{u|t_m} \Phi_u(g).$$

Since the $\Phi_u(g)$ are positive integers of size at most

$$\Phi_u(g) = \prod_{\substack{k=1 \\ \gcd(k,u)=1}}^u (g - \exp(2\pi i k/u)) \le (g+1)^{\varphi(u)},$$

where φ is the Euler function, we see that

$$P(q_m) = P\left(g^{t_m} - 1\right) \le (g+1)^{\varphi(t_m)}.$$

By the Mertens formula,

$$\varphi(t_m) = t_m \prod_{\substack{p \le m \\ p \text{ prime}}} (1 - 1/p) \ll t_m / \log m \ll t_m / \log \log t_m.$$

Therefore there are infinitely many rational fractions $r/q \in C_g(\{0,1\})$ with $P(q) \leq q^{O(1/\log \log q)}.$