On Pisot's *d*-th root conjecture for function fields and related GCD estimates

Julie Tzu-Yueh Wang

Academia Sinica, Taiwan

Number Theory Online Conference 2020

Julie Tzu-Yueh Wang (Academia Sinica, TaivOn Pisot's d-th root conjecture for function f

Introduction

- Pisot's *d*-th root conjecture
- Pisot's *d*-th root conjecture for function fields

Büchi's *d*-th power problem

- Büchi's problem over number fields
- Büchi's n-th power problem for function fields of zero characteristic

3 Asymptotic solutions of Diophatine Equations

4 GCD Problems

This is a joint work with Ji Guo and Chia-Liang Sun.

Conjecture (Pisot)

Let $R(X) = \sum_{n=0}^{\infty} b(n)X^n$ represent a rational function in $\mathbb{Q}(X)$. If b(n) is a perfect d-th power for all large $n \in \mathbb{N}$, then one can choose a d-th root a(n) of b(n) such that $A(X) := \sum a(n)X^n$ is again a rational function.

The sequence $\{b(n)\}$ coming from the rational function R(X) is a linear recurrence sequence and it can be written as an *exponential polynomial*: An *exponential polynomial over a field k* is a sequence $b : \mathbb{N} \to k$ of the form

$$b(n) = \sum_{i=1}^r B_i(n)\beta_i^n,$$

where $r \in \mathbb{N}$, $\beta_i \in k^*$ and $B_i \in k[T]$.

Theorem (Zannier 2000)

Let b be an exponential polynomial over a number field k, and $d \ge 2$ be an integer. Suppose that b(n) is the d-th power of some element in k for all but finitely many n. Then there exists an exponential polynomial a over \overline{k} such that $a(n)^d = b(n)$ for all n.

- ${\sf k}$: an algebraically closed field of characteristic 0
- $C\colon$ an irreducible nonsingular projective curve of genus ${\mathfrak g}$ over k
- K := k(C): the function field of C (K is a finite extension of k(t))

Let a(n) and c(n) be exponential polynomials, and $c(n) \in k$ for all $n \in \mathbb{N}$. Then $c(n)a(n)^d$, $n \in \mathbb{N}$, is still an exponential polynomial whose *n*-th term is the *d*-th power of some element in *K* for all $n \in \mathbb{N}$.

Conjecture

Let $b(n) = \sum_{i=1}^{\ell} B_i(n)\beta_i^n$ be an exponential polynomial over K. If b(n) is a d-th power in K for infinitely many $n \in \mathbb{N}$, then there exists an exponential polynomial $a(n) = \sum_{i=1}^{r} A_i(n)\alpha_i^n$, $A_i \in \overline{K}[T]$ and an exponential polynomial c(n) with $c(n) \in k$ for all $n \in \mathbb{N}$ such that

$$b(n) = c(n)a(n)^d$$

for all $n \in \mathbb{N}$.

Theorem (Guo-Sun-W.)

Let $b(n) = \sum_{i=1}^{\ell} B_i(n)\beta_i^n$ be an exponential polynomial over K. Let Γ be the multiplicative subgroup of K^* generated by $\beta_1, \ldots, \beta_{\ell}$. Assume that $\Gamma \cap k = \{1\}$. If b(n) is a d-th power in K for infinitely many $n \in \mathbb{N}$, then there exists an exponential polynomial $a(m) = \sum_{i=1}^{r} A_i(m)\alpha_i^m$, $A_i \in \overline{K}[T]$ and a polynomial $Q \in k[T]$ such that

$$b(m) = Q(m)a(m)^d$$

for all $m \in \mathbb{N}$.

Description of the Proof

Let u_1, \ldots, u_n be a (multiplicative) basis of $\Gamma = <\beta_1, \ldots, \beta_\ell >$. Then there exists a Laurent polynomial $f \in K[x_0, x_1, x_1^{-1}, \ldots, x_n, x_n^{-1}]$ such that

$$b(m) = f(m, u_1^m, \ldots, u_n^m).$$

Let's assume f is a polynomial with no monomial factors. Express

$$f = QG^d \prod_{i=1}^r P_i^{e_i} \in K[x_0, x_1, \ldots, x_n],$$

where $Q \in k[x_0]$, $G \in K[x_0, x_1, ..., x_n]$, and $P_1, ..., P_r$ are distinct irreducible non-monomial polynomials in $K[x_0, x_1, ..., x_n]$ but not in $k[x_0]$, and $1 \le e_i \le d - 1$. Let $P := \prod_{i=1}^{r} P_i^{e_i}$. Then $P(m, u_1^m, \dots, u_n^m)$ is a *d*-th power in *K* as long as b(m) is a *d*-th power in *K*.

We will deduce from a Diophatine theorem that

$$P(m, x_1, \ldots, x_n) = Q_m(x_1, \ldots, x_n)^d, \qquad (1)$$

with $Q_m \in K[x_1, ..., x_n]$ for *m* sufficiently large and such that b(m) is a *d*-th power.

 $P \in K[x_0, x_1, ..., x_n] \in L[x_0]$, where $L = K(x_1, ..., x_n)$. As $P(m, x_1, ..., x_n) = Q_m(x_1, ..., x_n)^d$ for infinitely many m, P(m) is a d-th power in L for infinitely many m. Question: Is P a d-th power polynomial in $L[x_0]$? We will use a generalized Büchi's d-th power theorem for function fields (of dimension one) repeatedly to show that P is a d-th power in $K[x_1, ..., x_n]$ contradicting to the assumption. Is there a general algorithm to determine, given any polynomial in several variables, whether there exists a zero with all coordinates in \mathbb{Z} ?

Ans. No, by Yu. Matiyasevich(1970)

Question (Büchi). Does there exist an algorithm to determine, given $m, n \in \mathbb{N}$, $a_{ij} \in \mathbb{Z}$ $(1 \le i \le m, 1 \le j \le n)$, $b_i \in \mathbb{Z}$ $(1 \le i \le m)$, whether there exist $x_1, ..., x_n \in \mathbb{Z}$ satisfying the equations

$$\sum_{j=1}^{n} a_{ij} x_j^2 = b_i, \qquad i = 1, ..., m.$$

A negative answer to this question implies Matiyasevich's result because one could take

$$P = \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{ij} x_j^2 - b_i)^2.$$

Conjecture(Büchi's square problem). There exists an integer M > 0 such that all $x_1, ..., x_M \in \mathbb{Z}$ satisfying the equations

$$x_1^2 - 2x_2^2 + x_3^2 = x_2^2 - 2x_3^2 + x_4^2 = \dots = x_{M-2}^2 - 2x_{M-1}^2 + x_M^2 = 2$$

must also satisfy

$$\pm x_1 = \pm x_2 - 1 = \cdots = \pm x_M - (M - 1).$$

Negative answer to Hilbert's Tenth Problem+ truth of Büchi's square problem implies negative answer to Question (Büchi).

The conjecture for $\ensuremath{\mathbb{Z}}$ is still open.

Vojta (2000) showed that Büchi's square problem for M sufficiently large would follow from a special case of Bombieri-Lang's conjecture on rational points on surfaces of general type.

He also proved the function field case of characteristic zero $(M \ge \max\{8, 4g + 4\})$ and the case of holomorphic curves $(M \ge 8)$. Büchi's square problem can be reformulated as follows.

(Büchi's square problem II). Does there exist an integer M such that the only monic polynomials of degree two $F \in \mathbb{Z}[X]$ satisfying that F(1), ..., F(M) are integer squares, are precisely of the form $F(X) = (X + c)^2$ for some $c \in \mathbb{Z}$?

More generally, let k be a field.

Does there exist integer M such that the *only* monic polynomials $F \in k[X]$ of degree n satisfying that $F(1), \ldots, F(M)$ are n-th power rational numbers, are precisely of the form $F(X) = (X + c)^n$ for some $c \in k$.

- Pheidas and Vidaux(2006): n = 2, rational functions
- Pheidas and Vidaux(2008): n = 3, polynomials,
- An, Huang and W. (2012): general *n*, function fields and meromorphic functions
- Hector Pasten (2012): number fields by assuming abc conjecture, function fields(zero characteristic)

Theorem (Pasten-W. 2015)

Let $n \ge 2$ and $M > 4n \max\{g - 1, 0\} + 11n - 3$.

Let $F \in K[x] \setminus k[x]$ be a monic polynomial of degree n. Write F = PHwhere $P \in k[x]$ is monic, $H \in K[x]$ is monic and H is not divisible by any non-constant polynomial in k[x]. Let $G_1, \ldots, G_\ell \in K[x]$ be the distinct monic irreducible factors of H and let $e_1, \ldots, e_\ell \ge 1$ be integers such that $H = \prod_{j=1}^{\ell} G_j^{e_j}$. Let $\mu \ge \max_j e_j$ be an integer and let a_1, \ldots, a_M be distinct elements of k.

If for each $1 \le i \le M$, the zero multiplicity of $F(a_i) \in K$ at every point $\mathfrak{p} \in C$ is divisible by μ , then $\mu = e_1 = \cdots = e_\ell$ and $H = (\prod_{i=1}^{\ell} G_i)^{\mu}$.

Theorem (Guo-Sun-W.)

Let $d \ge 2$ be an integer and F be polynomial in $K[x_1, \ldots, x_n]$ which is not a d-th power free in $K[x_1, \ldots, x_n]$ and has no monomial factors. Let $u_1, \ldots, u_n \in \mathcal{O}_S^*$. Then there exist positive integer m and constants c_1, c_2 all depending only on d, deg F and $h(u_i)$, $1 \le i \le n$, such that if

$$F(u_1^\ell,\ldots,u_n^\ell)=y_\ell^d$$
 for some $y_\ell\in K^*$

with $\ell \ge c_1 \tilde{h}(F) + c_2 \max\{1, 2\mathfrak{g} - 2 + |S|\}$, then $u_1^{m_1} \cdots u_n^{m_n} \in k$ for some $(m_1, \dots, m_n) \in \mathbb{Z}^n \setminus \{(0, \dots, 0)\}$ with $\sum |m_i| \le 2m$.

Here $\tilde{h}(F)$ is the relevant height of F.

Let's take the example $F = x_1^2 + \cdots + x_n^2$ with $y^d = F(u_1, \ldots, u_n)$. Take $G = 2\frac{u'_1}{u_1}x_1^2 + \ldots + 2\frac{u'_n}{u_n}x_n^2$. Then $(y^d)' = G(u_1, \ldots, u_n)$. When $d \ge 2$, the number of common zeros of y^d and $(y^d)'$ is usually large as y^{d-1} is a common factor.

On the other hand, we expect the number of common zeros of $F(u_1, \ldots, u_n)$ and $G(u_1, \ldots, u_n)$ to be small unless something special happens.

For this example $F = x_1^2 + \dots + x_n^2$ with $y^d = F(u_1, \dots, u_n)$, we take $G = 2\frac{u'_1}{u_1}x_1^2 + \dots + 2\frac{u'_n}{u_n}x_n^2$. Notice that $\frac{u'_i}{u_i} \notin k$ if $u_i \notin k$, and the number of poles (counting multiplicity) of $\frac{u'_i}{u_i}$ is bounded by the number of zeros and poles (without counting multiplicity) of u_i plus a constant related to g. We need to consider GCD of two polynomials F and G in $K[x_1, \dots, x_n]$, i.e. a moving target case.

We will take $F = P(m, x_1, ..., x_n)$ for infinitely m. Therefore, it is important to be able to trace the height of the coefficients.

Notation

 $\mathfrak{p}\in \mathcal{C}$

- $v_{\mathfrak{p}}$: normalized valuation at \mathfrak{p}
- S: a finite set of points in C
- $\mathcal{O}_S = \{ f \in K \mid v_\mathfrak{p}(f) \ge 0 \text{ for all } \mathfrak{p} \notin S \}, \text{ the ring of } S \text{-integers}$
- $\mathcal{O}_{S}^{*} = \{ f \in K \mid v_{\mathfrak{p}}(f) = 0 \text{ for all } \mathfrak{p} \notin S \}, \text{ the set of } S \text{-units}$

For $f \in K^*$, we let

 $\begin{aligned} v_{\mathfrak{p}}^{0}(f) &:= \max\{0, v_{\mathfrak{p}}(f)\}, & \text{and} & v_{\mathfrak{p}}^{\infty}(f) &:= -\min\{0, v_{\mathfrak{p}}(f)\}, \\ h(f) &:= \sum_{\mathfrak{p} \notin S} v_{\mathfrak{p}}^{\infty}(f), \\ N_{S}(f) &:= \sum_{\mathfrak{p} \notin S} v_{\mathfrak{p}}^{0}(f). \end{aligned}$

Notation

Let $f_0, ..., f_m \in K$ not all zeros.

$$h(f) := h(f_0, ..., f_m) := \sum_{\mathfrak{p} \in C} -\min\{v_{\mathfrak{p}}(f_0), ..., v_{\mathfrak{p}}(f_m)\}.$$

For $g_1, \ldots, g_n \in K$, we let

$$N_{S,\text{gcd}}(F(g_1,\ldots,g_n),G(g_1,\ldots,g_n))$$

:= $\sum_{\mathfrak{p}\notin S} \min\{v_\mathfrak{p}^0(F(g_1,\ldots,g_n)),v_\mathfrak{p}^0(G(g_1,\ldots,g_n))\},$

$$h_{\text{gcd}}(F(g_1,\ldots,g_n),G(g_1,\ldots,g_n))$$

:= $\sum_{\mathfrak{p}\in C} \min\{v_{\mathfrak{p}}^0(F(g_1,\ldots,g_n)),v_{\mathfrak{p}}^0(G(g_1,\ldots,g_n))\}.$

Theorem (Guo-Sun-W.)

Let F, $G \in K[x_1, ..., x_n]$ be nonconstant coprime polynomials. For any $\epsilon > 0$, there exist an integer m, positive constants c_i , $0 \le i \le 4$, all depending only on ϵ , such that for all n-tuple $(g_1, ..., g_n) \in (\mathcal{O}_S^*)^n$ either

$$h(g_1^{m_1}\cdots g_n^{m_n})\leq c_1(\widetilde{h}(F)+\widetilde{h}(G))+c_2\max\{0,2\mathfrak{g}-2+|S|\}$$

for some integers m_1, \ldots, m_n , not all zeros with $\sum |m_i| \le 2m$, or the following two statements holds

- (i) $N_{S,\operatorname{gcd}}(F(g_1,\ldots,g_n),G(g_1,\ldots,g_n)) \leq \epsilon \max_{1\leq i\leq n} h(g_i);$
- (ii) $h_{\text{gcd}}(F(g_1, \ldots, g_n), G(g_1, \ldots, g_n)) \le \epsilon \max_{1 \le i \le n} h(g_i)$, if we further assume that not both of F and G vanish at $(0, \ldots, 0)$,

if

$$\max_{1\leq i\leq n}h(g_i)\geq c_3(\tilde{h}(F)+\tilde{h}(G))+c_4\max\{1,2\mathfrak{g}-2+|S|\}$$

- The methods in Levin's 2019 GCD theorem for number fields and the complex case of Levin-W. in 2020.
- An effective second main theorem with moving targets for function fields.

The theorem implies the following.

Theorem (Corvaja-Zannier 2005)

Let F, $G \in k[x_1, x_2]$ be nonconstant coprime polynomials. For any $\epsilon > 0$, there exist an integer m, constant c, both depending only on ϵ , such that for all pairs $(g_1, g_2) \in (\mathcal{O}_S^*)^2$ with $\max\{h(g_1), h(g_2)\} \ge c \max\{1, 2\mathfrak{g} - 2 + |S|\}$, either $g_1^{m_1}g_2^{m_2} \in k$ for some integers m_1, m_2 , not all zeros with $|m_1| + |m_2| \le 2m$, or the following two statements holds

- (i) $N_{S,gcd}(F(g_1,g_2),G(g_1,g_2)) \le \epsilon \max\{h(g_1),h(g_2)\};$
- (ii) $h_{\text{gcd}}(F(g_1, g_2), G(g_1, g_2)) \le \epsilon \max\{h(g_1), h(g_2)\}$, if we further assume that not both of F and G vanish at (0, 0).

Theorem (Guo-Sun-W.)

Let F, $G \in K[x_1, ..., x_n]$ be nonconstant coprime polynomials. Let $g_1, ..., g_n \in K^*$, not all constant. Then for any $\epsilon > 0$, there exist an integer m and constant c_1 and c_2 depending only on ϵ , such that for

$$\ell > c_1(\tilde{h}(F) + \tilde{h}(G)) + c_2(\mathfrak{g} + n \max_{1 \leq i \leq n} \{h(g_i)\}),$$

either $g_1^{m_1} \cdots g_n^{m_n} \in k$ for some integers m_1, \ldots, m_n , not all zeros with $\sum |m_i| \leq 2m$, or the following two statements holds.

- (i) $N_{\mathcal{S},\mathrm{gcd}}(F(g_1^\ell,\ldots,g_n^\ell),G(g_1^\ell,\ldots,g_n^\ell)) \leq \epsilon \max_{1\leq i\leq n} h(g_i^\ell);$
- (ii) $h_{\text{gcd}}(F(g_1^{\ell},\ldots,g_n^{\ell}), G(g_1^{\ell},\ldots,g_n^{\ell})) \leq \epsilon \max_{1 \leq i \leq n} h(g_i^{\ell})$, if we further assume that not both of F and G vanish at $(0,\ldots,0)$.

Remarks

When $F, G \in \mathbb{C}[x_1, \ldots, x_n]$ be coprime polynomials and $g_1, \ldots, g_n \in \mathbb{C}[z]$ are multiplicatively independent modulo \mathbb{C} , then the results in [Levin-W.] also imply the gcd inequalities (i) and (ii). Our statement here is stronger since we have formulated effective bounds on ℓ and the m_i such that $g_1^{m_1} \cdots g_n^{m_n} \in \mathbb{C}$.

When n > 2, the only other previous result in this direction appears to be a result of Ostafe in 2016, which considers special polynomials such as $F = x_1 \cdots x_r - 1$, $G = x_{r+1} \cdots x_n - 1$, but proves a stronger uniform bound independent of ℓ . In the n = 2 case, previous results include the original theorem of Ailon-Rudnick (2004) in this setting, i.e. $F = x_1 - 1$,

 $G = x_2 - 1$, and extensions of Ostafe (both with uniform bounds).