On Pisot's d-th root conjecture for function fields and related GCD estimates

Julie Tzu-Yueh Wang

Academia Sinica, Taiwan

Number Theory Online Conference 2020

Julie Tzu-Yueh Wang (Academia Sinica, TaivOn Pisot's d-th root conjecture for function fields and relation 3-5, 2020 1/31

[Introduction](#page-3-0)

- \bullet Pisot's d[-th root conjecture](#page-3-0)
- Pisot's d[-th root conjecture for function fields](#page-6-0)

Büchi's d [-th power problem](#page-13-0)

- Büchi's problem over number fields
- \bullet Büchi's *n*[-th power problem for function fields of zero characteristic](#page-19-0)

[Asymptotic solutions of Diophatine Equations](#page-21-0)

[GCD Problems](#page-24-0)

This is a joint work with Ji Guo and Chia-Liang Sun.

Conjecture (Pisot)

Let $R(X) = \sum_{n=0}^{\infty} b(n)X^n$ represent a rational function in $\mathbb{Q}(X)$. If $b(n)$ is a perfect d-th power for all large $n \in \mathbb{N}$, then one can choose a d-th root $a(n)$ of $b(n)$ such that $A(X) := \sum a(n)X^n$ is again a rational function.

The sequence $\{b(n)\}$ coming from the rational function $R(X)$ is a linear recurrence sequence and it can be written as an exponential polynomial: An exponential polynomial over a field k is a sequence $b : \mathbb{N} \to k$ of the form

$$
b(n)=\sum_{i=1}^r B_i(n)\beta_i^n,
$$

where $r \in \mathbb{N}$, $\beta_i \in k^*$ and $B_i \in k[T]$.

Theorem (Zannier 2000)

Let b be an exponential polynomial over a number field k, and $d > 2$ be an integer. Suppose that $b(n)$ is the d-th power of some element in k for all but finitely many n. Then there exists an exponential polynomial a over \overline{k} such that a $(n)^d = b(n)$ for all n.

- k : an algebraically closed field of characteristic 0
- C: an irreducible nonsingular projective curve of genus g over k
- $K := k(C)$: the function field of C (K is a finite extension of $k(t)$)

Let $a(n)$ and $c(n)$ be exponential polynomials, and $c(n) \in k$ for all $n \in \mathbb{N}$. Then $c(n)a(n)^d$, $n\in\mathbb{N}$, is still an exponential polynomial whose *n*-th term is the d-th power of some element in K for all $n \in \mathbb{N}$.

Conjecture

Let $b(n) = \sum_{i=1}^{\ell} B_i(n) \beta_i^n$ be an exponential polynomial over K. If $b(n)$ is a d-th power in K for infinitely many $n \in \mathbb{N}$, then there exists an exponential polynomial a $(n)=\sum_{i=1}^rA_i(n)\alpha_i^n$, $A_i\in \overline{K}[\, \mathcal{T}]$ and an exponential polynomial c(n) with c(n) \in k for all $n \in \mathbb{N}$ such that

$$
b(n) = c(n)a(n)^d
$$

for all $n \in \mathbb{N}$.

Theorem (Guo-Sun-W.)

Let b $(n) = \sum_{i=1}^{\ell} B_i(n) \beta_i^n$ be an exponential polynomial over K. Let Γ be the multiplicative subgroup of K^* generated by $\beta_1,\ldots,\beta_\ell.$ Assume that $\Gamma \cap k = \{1\}$. If $b(n)$ is a d-th power in K for infinitely many $n \in \mathbb{N}$, then there exists an exponential polynomial a $(m)=\sum_{i=1}^rA_i(m)\alpha_i^m,$ $A_i\in \overline{\mathcal{K}}[T]$ and a polynomial $Q \in k[T]$ such that

$$
b(m) = Q(m)a(m)^d
$$

for all $m \in \mathbb{N}$.

Description of the Proof

Let u_1, \ldots, u_n be a (multiplicative) basis of $\Gamma = \langle \beta_1, \ldots, \beta_\ell \rangle$. Then there exists a Laurent polynomial $f \in K[x_0, x_1, x_1^{-1}, \ldots, x_n, x_n^{-1}]$ such that

$$
b(m) = f(m, u_1^m, \ldots, u_n^m).
$$

Let's assume f is a polynomial with no monomial factors. Express

$$
f=QG^d\prod_{i=1}^r P_i^{e_i}\in K[x_0,x_1,\ldots,x_n],
$$

where $Q \in k[x_0]$, $G \in K[x_0, x_1, \ldots, x_n]$, and P_1, \ldots, P_r are distinct irreducible non-monomial polynomials in $K[x_0, x_1, \ldots, x_n]$ but not in $k[x_0]$, and $1 \le e_i \le d-1$.

Let $P:=\prod_{i=1}^r P_i^{e_i}$. Then $P(m,u_1^m,\ldots,u_n^m)$ is a d-th power in K as long as $b(m)$ is a d-th power in K.

We will deduce from a Diophatine theorem that

$$
P(m, x_1, \ldots, x_n) = Q_m(x_1, \ldots, x_n)^d, \qquad (1)
$$

with $Q_m \in K[x_1, \ldots, x_n]$ for m sufficiently large and such that $b(m)$ is a d-th power.

 $P \in K[x_0, x_1, \ldots, x_n] \in L[x_0]$, where $L = K(x_1, \ldots, x_n)$. As $P(m, x_1, \ldots, x_n) = Q_m(x_1, \ldots, x_n)^d$ for infinitely many m , $P(m)$ is a d-th power in L for infinitely many m. Question: Is P a d-th power polynomial in $L[x_0]$? We will use a generalized Büchi's d -th power theorem for function fields (of dimension one) repeatedly to show that P is a d-th power in $K[x_1, \ldots, x_n]$ contradicting to the assumption.

Is there a general algorithm to determine, given any polynomial in several variables, whether there exists a zero with all coordinates in \mathbb{Z} ?

Ans. No, by Yu. Matiyasevich(1970)

Question (Büchi). Does there exist an algorithm to determine, given $m, n \in \mathbb{N}$, $a_{ii} \in \mathbb{Z}$ $(1 \le i \le m, 1 \le j \le n)$, $b_i \in \mathbb{Z}$ $(1 \le i \le m)$, whether there exist $x_1, ..., x_n \in \mathbb{Z}$ satisfying the equations

$$
\sum_{j=1}^n a_{ij}x_j^2 = b_i, \qquad i = 1, ..., m.
$$

A negative answer to this question implies Matiyasevich's result because one could take

$$
P = \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{ij}x_j^2 - b_i)^2.
$$

Conjecture(Büchi's square problem). There exists an integer $M > 0$ such that all $x_1, ..., x_M \in \mathbb{Z}$ satisfying the equations

$$
x_1^2 - 2x_2^2 + x_3^2 = x_2^2 - 2x_3^2 + x_4^2 = \dots = x_{M-2}^2 - 2x_{M-1}^2 + x_M^2 = 2
$$

must also satisfy

$$
\pm x_1 = \pm x_2 - 1 = \cdots = \pm x_M - (M - 1).
$$

Negative answer to Hilbert's Tenth Problem $+$ truth of Büchi's square problem implies negative answer to Question (Büchi).

The conjecture for $\mathbb Z$ is still open.

Vojta (2000) showed that Büchi's square problem for M sufficiently large would follow from a special case of Bombieri-Lang's conjecture on rational points on surfaces of general type.

He also proved the function field case of characteristic zero $(M \geq \max\{8, 4g + 4\})$ and the case of holomorphic curves $(M \geq 8)$. Büchi's square problem can be reformulated as follows.

(Büchi's square problem II). Does there exist an integer M such that the only monic polynomials of degree two $F \in \mathbb{Z}[X]$ satisfying that $F(1),..., F(M)$ are integer squares, are precisely of the form $F(X) = (X + c)^2$ for some $c \in \mathbb{Z}$?

More generally, let k be a field.

Does there exist integer M such that the only monic polynomials $F \in k[X]$ of degree *n* satisfying that $F(1), \ldots, F(M)$ are *n*-th power rational numbers, are precisely of the form $F(X) = (X + c)^n$ for some $c \in k$.

- • Pheidas and Vidaux(2006): $n = 2$, rational functions
- Pheidas and Vidaux(2008): $n = 3$, polynomials,
- An, Huang and W. (2012): general *n*, function fields and meromorphic functions
- Hector Pasten (2012): number fields by assuming abc conjecture, function fields(zero characteristic)

Theorem (Pasten-W. 2015)

Let $n > 2$ and $M > 4n \max\{a - 1, 0\} + 11n - 3$.

Let $F \in K[x] \setminus k[x]$ be a monic polynomial of degree n. Write $F = PH$ where $P \in k[x]$ is monic, $H \in K[x]$ is monic and H is not divisible by any non-constant polynomial in k[x]. Let $G_1, \ldots, G_\ell \in K[x]$ be the distinct monic irreducible factors of H and let $e_1, \ldots, e_\ell \geq 1$ be integers such that $H=\prod_{j=1}^{\ell} \mathsf{G}_j^{\mathsf{e}_j}$ j^{ϵ_j} . Let $\mu\geq \max_j e_j$ be an integer and let a_1,\ldots,a_M be distinct elements of k.

If for each $1 \le i \le M$, the zero multiplicity of $F(a_i) \in K$ at every point $\mathfrak{p}\in\mathcal{C}$ is divisible by μ , then $\mu=e_1=\cdots=e_\ell$ and $H=(\prod_{j=1}^\ell G_j)^\mu.$

Theorem (Guo-Sun-W.)

Let $d \geq 2$ be an integer and F be polynomial in $K[x_1, \ldots, x_n]$ which is not a d-th power free in $K[x_1, \ldots, x_n]$ and has no monomial factors. Let $u_1, \ldots, u_n \in \mathcal{O}_\mathcal{S}^*$. Then there exist positive integer m and constants c_1, c_2 all depending only on d, deg F and $h(u_i)$, $1 \le i \le n$, such that if

$$
F(u_1^{\ell},\ldots,u_n^{\ell})=y_{\ell}^d \quad \text{ for some } y_{\ell}\in K^*
$$

with $\ell \geq c_1 h(F) + c_2 \max\{1, 2g - 2 + |S|\},$ then $u_1^{m_1}\cdots u_n^{m_n}\in$ k for some $(m_1,\ldots m_n)\in \mathbb{Z}^n\setminus\{(0,\ldots,0)\}$ with $\sum |m_i| \leq 2m$.

Here $\tilde{h}(F)$ is the relevant height of F.

Let's take the example $F = x_1^2 + \cdots + x_n^2$ with $y^d = F(u_1, \ldots, u_n)$. Take $G = 2\frac{u'_1}{u_1}x_1^2 + \ldots + 2\frac{u'_n}{u_n}x_n^2$. Then $(y^d)' = G(u_1, \ldots, u_n)$. When $d\geq 2$, the number of common zeros of y^d and $(y^d)'$ is *usually* large as y^{d-1} is a common factor.

On the other hand, we expect the number of common zeros of $F(u_1, \ldots, u_n)$ and $G(u_1, \ldots, u_n)$ to be small unless something special happens.

For this example $F = x_1^2 + \cdots + x_n^2$ with $y^d = F(u_1, \ldots, u_n)$, we take $G = 2\frac{u'_1}{u_1}x_1^2 + \ldots + 2\frac{u'_n}{u_n}x_n^2$. Notice that $\frac{u'_i}{u_i}\notin \mathsf{k}$ if $u_i\notin \mathsf{k}$, and the number of poles (counting multiplicity) of $\frac{u_i'}{u_i}$ is bounded by the number of zeros and poles (without counting multiplicity) of u_i plus a constant related to g. We need to consider GCD of two polynomials F and G in $K[x_1, \ldots, x_n]$, i.e. a moving target case.

We will take $F = P(m, x_1, \ldots, x_n)$ for infinitely m. Therefore, it is important to be able to trace the height of the coefficients.

 $\mathfrak{p} \in \mathcal{C}$

 v_p : normalized valuation at p

S: a finite set of points in C

 $\mathcal{O}_S = \{f \in K \mid v_p(f) \geq 0 \text{ for all } p \notin S\}$, the ring of S-integers

 $\mathcal{O}^{*}_{\mathcal{S}} = \{f \in \mathcal{K} \, | \, \mathsf{v}_{\mathfrak{p}}(f) = 0 \text{ for all } \mathfrak{p} \notin \mathcal{S} \},$ the set of $\mathcal{S}\text{-units}$

For $f \in K^*$, we let

 $v_{\mathfrak{p}}^0(f):=\max\{0,\nu_{\mathfrak{p}}(f)\},\qquad \text{and}\qquad v_{\mathfrak{p}}^\infty$ $p^{\infty}_{\mathfrak{p}}(f) := -\min\{0, v_{\mathfrak{p}}(f)\}.$ $h(f) := \sum \mathsf{v}_{\mathfrak{p}}^{\infty}(f),$ p∈C $N_S(f) := \sum v_{\mathfrak{p}}^0(f).$ $n \notin S$

Notation

Let $f_0, ..., f_m \in K$ not all zeros.

$$
h(f) := h(f_0, ..., f_m) := \sum_{\mathfrak{p} \in C} -\min \{v_{\mathfrak{p}}(f_0), ..., v_{\mathfrak{p}}(f_m)\}.
$$

For $g_1, \ldots, g_n \in K$, we let

$$
N_{S, \gcd}(F(g_1, \ldots, g_n), G(g_1, \ldots, g_n))
$$

$$
:= \sum_{\mathfrak{p} \notin S} \min \{v_{\mathfrak{p}}^0(F(g_1, \ldots, g_n)), v_{\mathfrak{p}}^0(G(g_1, \ldots, g_n))\},\
$$

$$
h_{gcd}(F(g_1,\ldots,g_n),G(g_1,\ldots,g_n))
$$

$$
:=\sum_{\mathfrak{p}\in C} min\{v_{\mathfrak{p}}^0(F(g_1,\ldots,g_n)),v_{\mathfrak{p}}^0(G(g_1,\ldots,g_n))\}.
$$

Theorem (Guo-Sun-W.)

Let F, $G \in K[x_1, \ldots, x_n]$ be nonconstant coprime polynomials. For any $\epsilon>0$, there exist an integer m, positive constants c_i , $0\leq i\leq$ 4, all depending only on ϵ , such that for all n-tuple $(g_1, \ldots, g_n) \in (\mathcal{O}_{\mathsf{S}}^*)^n$ either

$$
h(g_1^{m_1}\cdots g_n^{m_n})\leq c_1(\tilde{h}(F)+\tilde{h}(G))+c_2\max\{0,2\mathfrak{g}-2+|S|\}
$$

for some integers m_1,\ldots,m_n , not all zeros with $\sum |m_i| \leq 2m$, or the following two statements holds

(i)
$$
N_{S, \text{gcd}}(F(g_1, \ldots, g_n), G(g_1, \ldots, g_n)) \le \epsilon \max_{1 \le i \le n} h(g_i);
$$

(ii) $h_{\text{gcd}}(F(g_1,\ldots,g_n),G(g_1,\ldots,g_n)) \leq \epsilon \max_{1 \leq i \leq n} h(g_i)$, if we further assume that not both of F and G vanish at $(0, \ldots, 0)$,

if

$$
\max_{1\leq i\leq n} h(g_i) \geq c_3(\tilde{h}(F)+\tilde{h}(G))+c_4\max\{1,2\mathfrak{g}-2+|S|\}.
$$

- The methods in Levin's 2019 GCD theorem for number fields and the complex case of Levin-W. in 2020.
- An effective second main theorem with moving targets for function fields.

The theorem implies the following.

Theorem (Corvaja-Zannier 2005)

Let F, $G \in k[x_1, x_2]$ be nonconstant coprime polynomials. For any $\epsilon > 0$, there exist an integer m, constant c, both depending only on ϵ , such that for all pairs $(g_1, g_2) \in (\mathcal{O}_{\mathcal{S}}^*)^2$ with $\max\{h(g_1),h(g_2)\} \geq c \, \max\{1,2\mathfrak{g}-2+|S|\}$, either $g_1^{m_1}g_2^{m_2} \in$ k for some integers m_1, m_2 , not all zeros with $|m_1| + |m_2| \le 2m$, or the following two statements holds

- (i) $N_{S,\text{gcd}}(F(g_1,g_2), G(g_1,g_2)) \leq \epsilon \max\{h(g_1), h(g_2)\};$
- (ii) $h_{\text{gcd}}(F(g_1, g_2), G(g_1, g_2)) \leq \epsilon \max\{h(g_1), h(g_2)\}\$, if we further assume that not both of F and G vanish at $(0, 0)$.

Theorem (Guo-Sun-W.)

Let F, $G \in K[x_1, \ldots, x_n]$ be nonconstant coprime polynomials. Let $g_1,\ldots,g_n\in K^*$, not all constant. Then for any $\epsilon>0$, there exist an integer m and constant c_1 and c_2 depending only on ϵ , such that for

$$
\ell > c_1(\tilde{h}(F) + \tilde{h}(G)) + c_2(g+n\max_{1\leq i\leq n}\{h(g_i)\}),
$$

either $g_1^{m_1}\cdots g_n^{m_n}\in$ k for some integers m_1,\ldots,m_n , not all zeros with $\sum |m_i|\leq 2m$, or the following two statements holds. $|m_i| \leq 2m$, or the following two statements holds.

- (i) $N_{S,\text{gcd}}(F(g_1^{\ell}, \ldots, g_n^{\ell}), G(g_1^{\ell}, \ldots, g_n^{\ell})) \leq \epsilon \max_{1 \leq i \leq n} h(g_i^{\ell});$
- (ii) $h_{gcd}(F(g_1^{\ell}, \ldots, g_n^{\ell}), G(g_1^{\ell}, \ldots, g_n^{\ell})) \leq \epsilon \max_{1 \leq i \leq n} h(g_i^{\ell}),$ if we further assume that not both of F and G vanish at $(0, \ldots, 0)$.

Remarks

When $F, G \in \mathbb{C}[x_1, \ldots, x_n]$ be coprime polynomials and $g_1, \ldots, g_n \in \mathbb{C}[z]$ are multiplicatively independent modulo C, then the results in [Levin-W.] also imply the gcd inequalities (i) and (ii). Our statement here is stronger since we have formulated effective bounds on ℓ and the m_i such that $g_1^{m_1}\cdots g_n^{m_n}\in\mathbb{C}.$

When $n > 2$, the only other previous result in this direction appears to be a result of Ostafe in 2016, which considers special polynomials such as $F = x_1 \cdots x_r - 1$, $G = x_{r+1} \cdots x_n - 1$, but proves a stronger uniform bound independent of ℓ . In the $n = 2$ case, previous results include the original theorem of Ailon-Rudnick (2004) in this setting, i.e. $F = x_1 - 1$,

 $G = x_2 - 1$, and extensions of Ostafe (both with uniform bounds).