Equivalences of Stability Properties for Discrete-Time Nonlinear Systems and extensions

Author: Duc Tran †

Supervisors: A/Prof. Christopher M. Kellett † Dr. Björn S. Rüffer [‡]

† School of Electrical Engineering and Computer Science ‡ School of Mathematical and Physical Sciences University of Newcastle

Overview

[Comparison functions](#page-2-0)

[Stability Analysis Approaches](#page-6-0)

[Qualitative Equivalences](#page-19-0)

- [Systems without input](#page-19-0)
- [Systems with input](#page-23-0)

[Future work](#page-29-0)

■ Class-K functions: α : $\mathbb{R}_{>0}$ → $\mathbb{R}_{>0}$:

continuous, zero at zero, and strictly increasing

■ Class-K functions: α : $\mathbb{R}_{>0}$ → $\mathbb{R}_{>0}$:

continuous, zero at zero, and strictly increasing

unbounded, it is of class- \mathcal{K}_{∞}

■ Class-K functions: $\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$: continuous, zero at zero, and strictly increasing

unbounded, it is of class- \mathcal{K}_{∞}

■ Class-*L* functions: σ : $\mathbb{R}_{>0}$ \rightarrow $\mathbb{R}_{>0}$

continuous, strictly decreasing, and zero limit.

■ Class-K functions: $\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$: continuous, zero at zero, and strictly increasing ■ unbounded, it is of class- \mathcal{K}_{∞}

- Class-*L* functions: σ : $\mathbb{R}_{>0}$ \rightarrow $\mathbb{R}_{>0}$
	- continuous, strictly decreasing, and zero limit.
- **■** Class-KL functions: β : $\mathbb{R}_{>0} \times \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ \blacksquare class-K in first argument, class-L in second. $\beta(s,t) = se^{-t}$

 $\beta(s,t) = \tanh(s)e^{-t}$

We consider discrete-time systems described by

$$
x(k+1) = f(x(k), w(k))
$$
\n⁽¹⁾

- System state $x(k) \in \mathbb{R}^n$, input $w(k) \in \mathbb{R}^m$.
- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is continuous.
- equilibrium: $f(0, 0) = 0$.

Stability Analysis

 $¹$ A. M. Lyapunov. " The general problem of the stability of motion", Math. Soc. of Kharkov,</sup> 1892.

 2 G. Zames. "On the input-output stability of time-varying nonlinear feedback systems part I: Conditions derived using concepts of loop gain, conicity, and passivity", IEEE Transactions on Automatic Control, 1966.

Lyapunov stability: Systems without input

Stability in the sense of Lyapunov

Lyapunov stability: Systems without input

Stability in the sense of Lyapunov

Asymptotic Stability

Input-Output Stability and l_2 -gain

Lyapunov Stability and Extensions to Systems with Input

Definition System
$$
x(k + 1) = f(x(k), w(k))
$$

 \blacksquare has a 0-input globally asymptotically stable equilibrium if for $w \equiv 0$ then there exists $\beta \in \mathcal{KL}$

 $||x(k)|| \leq \beta(||x_0||, k)$

Lyapunov Stability and Extensions to Systems with Input

Definition System
$$
x(k + 1) = f(x(k), w(k))
$$

 \blacksquare has a 0-input globally asymptotically stable equilibrium if for $w \equiv 0$ then there exists $\beta \in \mathcal{KL}$

 $||x(k)|| \leq \beta(||x_0||, k)$

 \blacksquare is input-to-state stable (ISS) if, in addition, there exists $\sigma \in \mathcal{K}_{\infty}$

$$
||x(k)|| \le \beta(||x_0||, k) + \sigma(||w||_{\infty})
$$

Lyapunov Stability and Extensions to Systems with Input

Definition System
$$
x(k + 1) = f(x(k), w(k))
$$

 \blacksquare has a 0-input globally asymptotically stable equilibrium if for $w \equiv 0$ then there exists $\beta \in \mathcal{KL}$

 $||x(k)|| < \beta(||x_0||, k)$

 \blacksquare is input-to-state stable (ISS) if, in addition, there exists $\sigma \in \mathcal{K}_{\infty}$

$$
||x(k)|| \le \beta(||x_0||, k) + \sigma(||w||_{\infty})
$$

is integral ISS if there exist $\alpha, \gamma, \sigma \in \mathcal{K}_{\infty}$, $\beta \in \mathcal{KL}$ such that $\alpha(\|x(k)\|)\leq \beta(\|x_0\|,k)+\sum_{}^{k-1}$ $\kappa = 0$ $\sigma(\|w(\kappa)\|)$

Theorem¹: The equilibrium of $x(k + 1) = f(x(k))$ is globally asymptotically stable if and only if there exists a smooth function function $\mathsf{V}:\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ such that

$$
\alpha_1(||x||) \le V(x) \le \alpha_2(||x||),\tag{2}
$$

$$
V(f(x, w)) - V(x) \leq -\alpha_3(||x||). \tag{3}
$$

 1 Jiang, Z. P., Wang, Y., "A converse Lyapunov theorem for discrete time systems with disturbances", Syst. Cont. Lett., 2001.

 2 Jiang, Z. P., Wang, Y., "Input-to-state stability for discrete-time nonlinear systems", Automatica, 2000.

Theorem¹: The equilibrium of $x(k + 1) = f(x(k))$ is globally asymptotically stable if and only if there exists a smooth function function $\mathsf{V}:\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ such that

$$
\alpha_1(||x||) \le V(x) \le \alpha_2(||x||),\tag{2}
$$

$$
V(f(x, w)) - V(x) \leq -\alpha_3(||x||). \tag{3}
$$

Theorem²: System $x(k + 1) = f(x(k), w(k))$ is Input-to-State stable if and only if there exists a smooth function function $V:\mathbb{R}^n\rightarrow\mathbb{R}_{\geq 0}$ such that

$$
\alpha_1(||x||) \le V(x) \le \alpha_2(||x||),\tag{4}
$$

$$
V(f(x, w)) - V(x) \leq -\alpha_3(||x||) + \sigma(||w||). \tag{5}
$$

 1 Jiang, Z. P., Wang, Y., "A converse Lyapunov theorem for discrete time systems with disturbances", Syst. Cont. Lett., 2001.

 2 Jiang, Z. P., Wang, Y., "Input-to-state stability for discrete-time nonlinear systems", Automatica, 2000.

$\overline{l_2}$ Stability

Definition: System $x(k + 1) = f(x(k), w(k))$

■ is 0-input l_2 -stable if for $w \equiv 0$ then

$$
||x||_{l_2[0,k]}^2 \leq \gamma(||x_0||).
$$

$$
{}^{1}l_{2} \text{ norm: } \|z\|_{l_{2}[0,k]}^{2} := \sum_{\kappa=0}^{k} \|z(\kappa)\|^{2}
$$

l_2 Stability

Definition: System $x(k + 1) = f(x(k), w(k))$

■ is 0-input l_2 -stable if for $w \equiv 0$ then

$$
||x||_{l_2[0,k]}^2 \leq \gamma(||x_0||).
$$

has linear l_2 -gain if, in addition, there exists $\lambda \in \mathbb{R}_{\geq 0}$

$$
||x||_{l_2[0,k]}^2 \leq \gamma(||x_0||) + \lambda ||w||_{l_2[0,k-1]}^2.
$$

$$
^{1}l_{2} \text{ norm: } \|z\|_{l_{2}[0,k]}^{2} := \sum_{\kappa=0}^{k} \|z(\kappa)\|^{2}
$$

l_2 Stability

Definition: System $x(k + 1) = f(x(k), w(k))$

■ is 0-input l_2 -stable if for $w \equiv 0$ then

$$
||x||_{l_2[0,k]}^2 \leq \gamma(||x_0||).
$$

has linear l_2 -**gain** if, in addition, there exists $\lambda \in \mathbb{R}_{\geq 0}$

$$
||x||_{l_2[0,k]}^2 \leq \gamma(||x_0||) + |\lambda||w||_{l_2[0,k-1]}^2.
$$

has nonlinear l_2 -gain with transient and gain bound $\gamma, \sigma \in \mathcal{K}_{\infty}$ if

$$
||x||_{l_2[0,k]}^2 \leq \gamma(||x_0||) + \sigma \left(||w||_{l_2[0,k-1]}^2\right).
$$

 $^{1}l_{2}$ norm: $\|z\|^{2}_{l_{2}[0,k]}:=\sum_{\kappa=0}^{k}\|z(\kappa)\|^{2}$

0-input Systems: GAS and l_2 -Stability Equivalence

Theorem

If system $x(k + 1) = f(x(k))$ is l₂-stable then it is globally asymptotically stable (GAS). Conversely, if system $x(k + 1) = f(x(k))$ is globally asymptotically stable then it is l_2 -stable via a change of coordinates.

GAS $\stackrel{coc}{\implies}$ *l*₂-stable

GAS and l_2 -Stability Equivalence: an Example

Consider the scalar system: $\frac{x}{x}$

$$
x^+ = \frac{x}{\sqrt{x^2 + 1}}
$$

Equilibrium 0 is GAS validated by Lyapunov function: $V(x) = x^2$:

$$
V(x^+) - V(x) \leq -\frac{x^4}{x^2 + 1} =: -\alpha(||x||)
$$

GAS and l_2 -Stability Equivalence: an Example

Consider the scalar system: $\frac{1}{x}$

$$
x^+ = \frac{x}{\sqrt{x^2 + 1}}
$$

Equilibrium 0 is GAS validated by Lyapunov function: $V(x) = x^2$:

$$
V(x^+) - V(x) \leq -\frac{x^4}{x^2 + 1} =: -\alpha(||x||)
$$

 κ =0

is not l_2 -stable. Solution given by: $x_0 = \frac{x_0}{\sqrt{kx_0^2+1}}$, for $x_0 = 1$ $||x||_{l_2[0,k]}^2 = \sum^k$ 1 $\kappa+1$ \nleq $\beta(1)$!!!

GAS and l_2 -Stability Equivalence: an Example

Consider the scalar system: $\frac{1}{2}$

$$
x^+ = \frac{x}{\sqrt{x^2 + 1}}
$$

Equilibrium 0 is GAS validated by Lyapunov function: $V(x) = x^2$:

$$
V(x^+) - V(x) \leq -\frac{x^4}{x^2 + 1} =: -\alpha(||x||)
$$

is not l_2 -stable. Solution given by: $x_0 = \frac{x_0}{\sqrt{kx_0^2+1}}$, for $x_0 = 1$ $||x||_{l_2[0,k]}^2 = \sum^k$ κ =0 1 $\kappa+1$ \nleq $\beta(1)$!!!

change of coordinates $z := x^3$ leads to $||z(k)||^2 \leq \frac{1}{3k^2} ||z_0||^{2/3}$, hence

$$
||z||_{l_2[0,k]}^2 \leq ||z_0||^2 + \frac{\pi^2}{18} ||z_0||^{2/3} =: \beta(||z_0||)
$$
 (6)

Systems with Input: ISS and Linear l_2 -gain Equivalence

Theorem

If system $x(k + 1) = f(x(k), w(k))$ has linear l_2 -gain then it is ISS. Conversely, if system $x(k + 1) = f(x(k), w(k))$ is ISS then it has linear l_2 -gain via a change of coordinates.

ISS $\stackrel{\text{coc}}{\Longrightarrow}$ Linear *l*₂-gain

ISS and Linear l_2 -gain Equivalence: an Example

Consider the scalar system:
$$
x^+ = \frac{x}{\sqrt{x^2 + 1}} + w
$$

is ISS validated by ISS-Lyapunov function: $V(x) = x^2$:

$$
V(x^+) - V(x) \leq -\frac{x^4}{x^2+1} + (2\|w\| + w^2)
$$

ISS and Linear l_2 -gain Equivalence: an Example

Consider the scalar system:
$$
x^+ = \frac{x}{\sqrt{x^2 + 1}} + w
$$

is ISS validated by ISS-Lyapunov function: $V(x) = x^2$:

$$
V(x^+) - V(x) \leq -\frac{x^4}{x^2+1} + (2\|w\| + w^2)
$$

has no linear l_2 -gain by letting $w \equiv 0$ and $x_0 = 1$.

$$
||x||_{l_2[0,k]}^2 = \sum_{\kappa=0}^k \frac{1}{\kappa+1} \not\leq \beta(1) + \gamma(0) \quad \text{iii}
$$

ISS and Linear l_2 **-gain Equivalence: an Example**

Consider the scalar system:
$$
x^+ = \frac{x}{\sqrt{x^2 + 1}} + w
$$

is ISS validated by ISS-Lyapunov function: $V(x) = x^2$:

$$
V(x^+) - V(x) \leq -\frac{x^4}{x^2+1} + (2\|w\| + w^2)
$$

has no linear l_2 -gain by letting $w \equiv 0$ and $x_0 = 1$.

$$
||x||_{l_2[0,k]}^2 = \sum_{\kappa=0}^k \frac{1}{\kappa+1} \not\leq \beta(1) + \gamma(0) \quad \text{iii}
$$

changes of coordinates $z:=\frac{\|x\|}{\sqrt{x^2+1}}$, and $v:=\mathsf{sign}(w)\sqrt{2\|w\|+w^2}$ do the job!

Qualitative Equivalences³

³D.N Tran, C.M Kellett, P.M Dower, "Equivalences of Stability Properties for Discrete-Time Nonlinear Systems", IFAC MICNON Conf., Saint Petersburg, Russia, June 2015

Stability Relationships

 $1D$. Angeli, "Intrinsic robustness of global asymptotic stability", Syst. Cont. Lett., 1999 $2K$. Gao and Y. Lin, "On equivalent notions of input-to-state stability for nonlinear discrete time systems", Proc. IASTED Intl. Conf. Cont. App., 2000.

Future Work

- **Stability analysis approaches**
	- **Lyapunov approach**
	- **Operator approach**
- Qualitative equivalences
- **Future work: extensions to systems with general output**

$$
y(t) = h(x(t))
$$

The End