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Comparison Functions

Class-K functions: α : R≥0 → R≥0:

continuous, zero at zero, and strictly increasing

unbounded, it is of class-K∞

Class-L functions: σ : R≥0 → R≥0
continuous, strictly decreasing, and zero limit.

Class-KL functions: β : R≥0 × R≥0 → R≥0 β(s, t) = tanh(s)e−t

class-K in first argument, class-L in second. β(s, t) = se−t
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Dynamical systems

We consider discrete-time systems described by

x(k + 1) = f (x(k),w(k)) (1)

System state x(k) ∈ Rn, input w(k) ∈ Rm.

f : Rn × Rm → Rn is continuous.

equilibrium: f (0, 0) = 0.
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Stability Analysis

Stability analysis 

w(k) y(k) 
x(k+1)=f(x(k),0) 

Input-output stability Lyapunov Stability 

1A. M. Lyapunov.“ The general problem of the stability of motion”, Math. Soc. of Kharkov,
1892.

2G. Zames. “On the input-output stability of time-varying nonlinear feedback systems part I:
Conditions derived using concepts of loop gain, conicity, and passivity”, IEEE Transactions on
Automatic Control, 1966.
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Lyapunov stability: Systems without input

Stability in the sense of Lyapunov

Asymptotic Stability
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Input-Output Stability and l2-gain

w(k) y(k) Type equation here. 

Bounded 
Eventually Small 
Integral Small 
Asymptotic Zero 

Bounded 
Eventually Small 
Integral Small 
Asymptotic Zero 

7



Lyapunov Stability and Extensions to Systems with Input

Definition System x(k + 1) = f (x(k),w(k))

has a 0-input globally asymptotically stable
equilibrium if for w ≡ 0 then there exists β ∈ KL

‖x(k)‖ ≤ β(‖x0‖, k)
k 

x 

is input-to-state stable (ISS) if, in addition,
there exists σ ∈ K∞

‖x(k)‖ ≤ β(‖x0‖, k) + σ(‖w‖∞)

x 

k 

is integral ISS if there exist α, γ, σ ∈ K∞, β ∈ KL such that

α(‖x(k)‖) ≤ β(‖x0‖, k) +
k−1∑
κ=0

σ(‖w(κ)‖)
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Lyapunov Theorem and Extensions

Theorem1: The equilibrium of x(k + 1) = f (x(k)) is globally asymptotically stable
if and only if there exists a smooth function function V : Rn → R≥0 such that

α1(‖x‖) ≤V (x) ≤ α2(‖x‖), (2)

V (f (x ,w))−V (x) ≤ −α3(‖x‖). (3)

Theorem2: System x(k + 1) = f (x(k),w(k)) is Input-to-State stable if and only if
there exists a smooth function function V : Rn → R≥0 such that

α1(‖x‖) ≤V (x) ≤ α2(‖x‖), (4)

V (f (x ,w))−V (x) ≤ −α3(‖x‖) + σ(‖w‖). (5)

1Jiang, Z. P., Wang, Y.,“A converse Lyapunov theorem for discrete time systems with
disturbances”, Syst. Cont. Lett., 2001.

2Jiang, Z. P., Wang, Y.,“Input-to-state stability for discrete-time nonlinear systems”,
Automatica, 2000.
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l2 Stability

Definition: System x(k + 1) = f (x(k),w(k))

is 0-input l2-stable if for w ≡ 0 then

‖x‖2l2[0,k] ≤ γ(‖x0‖).

has linear l2-gain if, in addition, there exists λ ∈ R≥0

‖x‖2l2[0,k] ≤ γ(‖x0‖) + λ‖w‖2l2[0,k−1].

has nonlinear l2-gain with transient and gain bound γ, σ ∈ K∞ if

‖x‖2l2[0,k] ≤ γ(‖x0‖) + σ
(
‖w‖2l2[0,k−1]

)
.

1l2 norm: ‖z‖2
l2[0,k]

:=
∑k
κ=0 ‖z(κ)‖2
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0-input Systems: GAS and l2-Stability Equivalence

Theorem

If system x(k + 1) = f (x(k)) is l2-stable then it is globally asymptotically

stable (GAS). Conversely, if system x(k + 1) = f (x(k)) is globally

asymptotically stable then it is l2-stable via a change of coordinates.

CoC 

GAS l2-stable 
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GAS and l2-Stability Equivalence: an Example

Consider the scalar system: x+ =
x√

x2 + 1

Equilibrium 0 is GAS validated by Lyapunov function: V (x) = x2:

V (x+)− V (x) ≤ − x4

x2 + 1
=: −α(‖x‖)

is not l2-stable. Solution given by: x0 = x0√
kx2

0+1
, for x0 = 1

‖x‖2l2[0,k] =
k∑
κ=0

1

κ+ 1
� β(1) !!!

change of coordinates z := x3 leads to ‖z(k)‖2 ≤ 1
3k2 ‖z0‖2/3, hence

‖z‖2l2[0,k] ≤ ‖z0‖
2 +

π2

18
‖z0‖2/3 =: β(‖z0‖) (6)
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Systems with Input: ISS and Linear l2-gain Equivalence

Theorem

If system x(k + 1) = f (x(k),w(k)) has linear l2-gain then it is ISS.

Conversely, if system x(k + 1) = f (x(k),w(k)) is ISS then it has linear

l2-gain via a change of coordinates.

ISS Linear l2-gain
CoC 
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ISS and Linear l2-gain Equivalence: an Example

Consider the scalar system: x+ =
x√

x2 + 1
+ w

is ISS validated by ISS-Lyapunov function: V (x) = x2:

V (x+)− V (x) ≤ − x4

x2 + 1
+
(
2‖w‖+ w2

)

has no linear l2-gain by letting w ≡ 0 and x0 = 1.

‖x‖2l2[0,k] =
k∑
κ=0

1

κ+ 1
� β(1) + γ(0) !!!

changes of coordinates z := x‖x‖√
x2+1

, and v := sign(w)
√

2‖w‖+ w2 do

the job!
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Qualitative Equivalences 3

CoC

0-GAS 

CoC CoC

Nonlinear   
l2-gain 

Linear      
l2-gain 

Integral  
ISS 

ISS 
0-input    
l2-stable 

3D.N Tran, C.M Kellett, P.M Dower, “Equivalences of Stability Properties for Discrete-Time
Nonlinear Systems”, IFAC MICNON Conf., Saint Petersburg, Russia, June 2015
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Stability Relationships

0-input 
l2 -stable

0-input 
l2 -stable

0-input    
α-

summable

0-input    
α-

summable
0-GAS0-GAS

Integral 
ISS

Integral 
ISS

ISSISS

Linear        
l2-gain

Linear        
l2-gain

Nonlinear  
l2 -gain

Nonlinear  
l2 -gain

CoC

CoC

CoC

AG
(or LIM)

1D.Angeli, “Intrinsic robustness of global asymptotic stability”,Syst. Cont. Lett., 1999
2K. Gao and Y. Lin, “On equivalent notions of input-to-state stability for nonlinear discrete

time systems”, Proc. IASTED Intl. Conf. Cont. App., 2000.
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Future Work

Stability analysis approaches

Lyapunov approach
Operator approach

Qualitative equivalences

Future work: extensions to systems with general output

y(t) = h(x(t))
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The End
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