Equivalences of Stability Properties for Discrete-Time Nonlinear Systems and extensions

Author: Duc Tran [†]

Supervisors: A/Prof. Christopher M. Kellett [†] Dr. Björn S. Rüffer [‡]

[†] School of Electrical Engineering and Computer Science [‡] School of Mathematical and Physical Sciences University of Newcastle

Overview

1 Comparison functions

2 Stability Analysis Approaches

3 Qualitative Equivalences

- Systems without input
- Systems with input

4 Future work

• Class- \mathcal{K} functions: $\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$:

continuous, zero at zero, and strictly increasing

• Class- \mathcal{K} functions: $\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$:

continuous, zero at zero, and strictly increasing

 \blacksquare unbounded, it is of class- \mathcal{K}_∞

• Class- \mathcal{K} functions: $\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$:

continuous, zero at zero, and strictly increasing

 \blacksquare unbounded, it is of class- \mathcal{K}_∞

continuous, strictly decreasing, and zero limit.

- Class-K functions: α : ℝ_{≥0} → ℝ_{≥0}:
 continuous, zero at zero, and strictly increasing
 - \blacksquare unbounded, it is of class- \mathcal{K}_∞

- Class- \mathcal{L} functions: $\sigma : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$
 - continuous, strictly decreasing, and zero limit.

Class-*KL* functions: β : ℝ_{≥0} × ℝ_{≥0} → ℝ_{≥0}
 class-*K* in first argument, class-*L* in second.

We consider discrete-time systems described by

$$x(k+1) = f(x(k), w(k))$$
 (1)

- System state $x(k) \in \mathbb{R}^n$, input $w(k) \in \mathbb{R}^m$.
- $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is continuous.
- equilibrium: f(0,0) = 0.

Stability Analysis

¹A. M. Lyapunov." The general problem of the stability of motion", *Math. Soc. of Kharkov*, 1892.

²G. Zames. "On the input-output stability of time-varying nonlinear feedback systems part I: Conditions derived using concepts of loop gain, conicity, and passivity", *IEEE Transactions on Automatic Control*, 1966.

Lyapunov stability: Systems without input

Stability in the sense of Lyapunov

Lyapunov stability: Systems without input

Stability in the sense of Lyapunov

Asymptotic Stability

Input-Output Stability and l2-gain

Lyapunov Stability and Extensions to Systems with Input

Definition System x(k+1) = f(x(k), w(k))

• has a **0-input globally asymptotically stable** equilibrium if for $w \equiv 0$ then there exists $\beta \in \mathcal{KL}$

 $\|\mathbf{x}(\mathbf{k})\| \leq \beta(\|\mathbf{x}_0\|, \mathbf{k})$

Lyapunov Stability and Extensions to Systems with Input

Definition System x(k+1) = f(x(k), w(k))

• has a **0-input globally asymptotically stable** equilibrium if for $w \equiv 0$ then there exists $\beta \in \mathcal{KL}$

 $\|\mathbf{x}(\mathbf{k})\| \leq \beta(\|\mathbf{x}_0\|, \mathbf{k})$

• is input-to-state stable (ISS) if, in addition, there exists $\sigma \in \mathcal{K}_{\infty}$

$$\|x(k)\| \le \beta(\|x_0\|, k) + \sigma(\|w\|_{\infty})$$

Lyapunov Stability and Extensions to Systems with Input

Definition System x(k+1) = f(x(k), w(k))

• has a **0-input globally asymptotically stable** equilibrium if for $w \equiv 0$ then there exists $\beta \in \mathcal{KL}$

 $\|\mathbf{x}(\mathbf{k})\| \leq \beta(\|\mathbf{x}_0\|, \mathbf{k})$

• is input-to-state stable (ISS) if, in addition, there exists $\sigma \in \mathcal{K}_{\infty}$

$$\|x(k)\| \le \beta(\|x_0\|, k) + \sigma(\|w\|_{\infty})$$

• is integral ISS if there exist $\alpha, \gamma, \sigma \in \mathcal{K}_{\infty}$, $\beta \in \mathcal{KL}$ such that $\alpha(\|x(k)\|) \leq \beta(\|x_0\|, k) + \sum_{k=0}^{k-1} \sigma(\|w(\kappa)\|)$ *Theorem*¹: The equilibrium of x(k + 1) = f(x(k)) is globally asymptotically stable if and only if there exists a smooth function function $V : \mathbb{R}^n \to \mathbb{R}_{>0}$ such that

$$\alpha_1(\|x\|) \le V(x) \le \alpha_2(\|x\|),$$
 (2)

$$V(f(x,w)) - V(x) \le -\alpha_3(||x||).$$
 (3)

¹ Jiang, Z. P., Wang, Y., "A converse Lyapunov theorem for discrete time systems with disturbances", *Syst. Cont. Lett.*, 2001.

²Jiang, Z. P., Wang, Y., "Input-to-state stability for discrete-time nonlinear systems", *Automatica*, 2000.

*Theorem*¹: The equilibrium of x(k + 1) = f(x(k)) is globally asymptotically stable if and only if there exists a smooth function function $V : \mathbb{R}^n \to \mathbb{R}_{>0}$ such that

$$\alpha_1(\|x\|) \le V(x) \le \alpha_2(\|x\|),$$
 (2)

$$V(f(x,w)) - V(x) \le -\alpha_3(||x||).$$
 (3)

*Theorem*²: System x(k + 1) = f(x(k), w(k)) is Input-to-State stable if and only if there exists a smooth function function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ such that

$$\alpha_1(\|x\|) \le V(x) \le \alpha_2(\|x\|), \tag{4}$$

$$V(f(x,w)) - V(x) \le -\alpha_3(\|x\|) + \sigma(\|w\|).$$
(5)

¹ Jiang, Z. P., Wang, Y., "A converse Lyapunov theorem for discrete time systems with disturbances", *Syst. Cont. Lett.*, 2001.

²Jiang, Z. P., Wang, Y., "Input-to-state stability for discrete-time nonlinear systems", *Automatica*, 2000.

l₂ Stability

Definition: System x(k+1) = f(x(k), w(k))

• is **0-input** l_2 -stable if for $w \equiv 0$ then

$$\|x\|_{l_2[0,k]}^2 \leq \gamma(\|x_0\|).$$

¹
$$l_2$$
 norm: $||z||^2_{l_2[0,k]} := \sum_{\kappa=0}^k ||z(\kappa)||^2$

l₂ Stability

Definition: System x(k+1) = f(x(k), w(k))

• is **0-input** l_2 -stable if for $w \equiv 0$ then

$$\|x\|_{l_2[0,k]}^2 \leq \gamma(\|x_0\|).$$

• has **linear** l_2 -gain if, in addition, there exists $\lambda \in \mathbb{R}_{\geq 0}$

$$\|x\|_{l_2[0,k]}^2 \leq \gamma(\|x_0\|) + \lambda \|w\|_{l_2[0,k-1]}^2.$$

¹
$$l_2$$
 norm: $||z||^2_{l_2[0,k]} := \sum_{\kappa=0}^k ||z(\kappa)||^2$

l₂ Stability

Definition: System x(k + 1) = f(x(k), w(k))

• is **0-input** l_2 -stable if for $w \equiv 0$ then

$$\|x\|_{l_2[0,k]}^2 \leq \gamma(\|x_0\|).$$

• has linear l_2 -gain if, in addition, there exists $\lambda \in \mathbb{R}_{\geq 0}$

$$\|x\|_{l_2[0,k]}^2 \leq \gamma(\|x_0\|) + \lambda \|w\|_{l_2[0,k-1]}^2.$$

 \blacksquare has nonlinear $l_2\text{-}\mathbf{gain}$ with transient and gain bound $\gamma,\sigma\in\mathcal{K}_\infty$ if

$$\|x\|_{l_2[0,k]}^2 \leq \gamma(\|x_0\|) + \sigma\left(\|w\|_{l_2[0,k-1]}^2\right).$$

¹ l_2 norm: $||z||_{l_2[0,k]}^2 := \sum_{\kappa=0}^k ||z(\kappa)||^2$

0-input Systems: GAS and l_2 -Stability Equivalence

Theorem

If system x(k + 1) = f(x(k)) is l_2 -stable then it is globally asymptotically stable (GAS). Conversely, if system x(k + 1) = f(x(k)) is globally asymptotically stable then it is l_2 -stable via a change of coordinates.

GAS $\stackrel{coc}{\Longrightarrow}$ *l*₂-stable

GAS and *l*₂-Stability Equivalence: an Example

Consider the scalar system:

$$x^+ = \frac{x}{\sqrt{x^2 + 1}}$$

• Equilibrium **0** is GAS validated by Lyapunov function: $V(x) = x^2$:

$$V(x^+) - V(x) \le -\frac{x^4}{x^2+1} =: -\alpha(||x||)$$

GAS and *l*₂-Stability Equivalence: an Example

Consider the scalar system:

$$x^+ = \frac{x}{\sqrt{x^2 + 1}}$$

Equilibrium **0** is GAS validated by Lyapunov function: $V(x) = x^2$:

$$V(x^+) - V(x) \le -\frac{x^4}{x^2 + 1} =: -\alpha(||x||)$$

• is not l_2 -stable. Solution given by: $x_0 = \frac{x_0}{\sqrt{kx_0^2+1}}$, for $x_0 = 1$ $\|x\|_{l_2[0,k]}^2 = \sum_{k=1}^{k} \frac{1}{\kappa+1} \nleq \beta(1) \quad !!!$

GAS and *l*₂-Stability Equivalence: an Example

Consider the scalar system:

$$x^+ = \frac{x}{\sqrt{x^2 + 1}}$$

Equilibrium **0** is GAS validated by Lyapunov function: $V(x) = x^2$:

$$V(x^+) - V(x) \le -\frac{x^4}{x^2 + 1} =: -\alpha(||x||)$$

• is not l_2 -stable. Solution given by: $x_0 = \frac{x_0}{\sqrt{kx_0^2 + 1}}$, for $x_0 = 1$ $\|x\|_{l_2[0,k]}^2 = \sum_{\kappa=0}^k \frac{1}{\kappa+1} \nleq \beta(1) \quad !!!$

• change of coordinates $z := x^3$ leads to $||z(k)||^2 \le \frac{1}{3k^2} ||z_0||^{2/3}$, hence

$$\|z\|_{l_2[0,k]}^2 \le \|z_0\|^2 + \frac{\pi^2}{18} \|z_0\|^{2/3} =: \beta(\|z_0\|)$$
(6)

Systems with Input: ISS and Linear l2-gain Equivalence

Theorem

If system x(k + 1) = f(x(k), w(k)) has linear l_2 -gain then it is ISS. Conversely, if system x(k + 1) = f(x(k), w(k)) is ISS then it has linear l_2 -gain via a change of coordinates.

ISS $\stackrel{coc}{\Longrightarrow}$ Linear l_2 -gain

ISS and Linear *l*₂-gain Equivalence: an Example

Consider the scalar system:
$$x^+ = \frac{x}{\sqrt{x^2 + 1}} + w$$

• is ISS validated by ISS-Lyapunov function: $V(x) = x^2$:

$$V(x^+) - V(x) \le -\frac{x^4}{x^2+1} + (2||w|| + w^2)$$

ISS and Linear l_2 -gain Equivalence: an Example

Consider the scalar system:
$$x^+ = \frac{x}{\sqrt{x^2 + 1}} + w$$

• is ISS validated by ISS-Lyapunov function: $V(x) = x^2$:

$$V(x^+) - V(x) \le -\frac{x^4}{x^2+1} + (2||w|| + w^2)$$

• has no linear l_2 -gain by letting $w \equiv 0$ and $x_0 = 1$.

$$\|x\|_{l_2[0,k]}^2 = \sum_{\kappa=0}^k \frac{1}{\kappa+1} \nleq \beta(1) + \gamma(0)$$

ISS and Linear l_2 -gain Equivalence: an Example

Consider the scalar system:
$$x^+ = \frac{x}{\sqrt{x^2 + 1}} + w$$

• is ISS validated by ISS-Lyapunov function: $V(x) = x^2$:

$$V(x^+) - V(x) \le -\frac{x^4}{x^2+1} + (2||w|| + w^2)$$

• has no linear l_2 -gain by letting $w \equiv 0$ and $x_0 = 1$.

$$\|x\|_{l_2[0,k]}^2 = \sum_{\kappa=0}^k \frac{1}{\kappa+1} \nleq \beta(1) + \gamma(0)$$
 !!!

• changes of coordinates $z := \frac{x ||x||}{\sqrt{x^2+1}}$, and $v := \operatorname{sign}(w) \sqrt{2 ||w|| + w^2}$ do the job!

Qualitative Equivalences ³

³D.N Tran, C.M Kellett, P.M Dower, "Equivalences of Stability Properties for Discrete-Time Nonlinear Systems", *IFAC MICNON Conf.*, Saint Petersburg, Russia, June 2015

Stability Relationships

¹D.Angeli, "Intrinsic robustness of global asymptotic stability", *Syst. Cont. Lett.*, 1999 ²K. Gao and Y. Lin, "On equivalent notions of input-to-state stability for nonlinear discrete time systems", *Proc. IASTED Intl. Conf. Cont. App.*, 2000.

Future Work

- Stability analysis approaches
 - Lyapunov approach
 - Operator approach
- Qualitative equivalences
- Future work: extensions to systems with general output

$$y(t) = h(x(t))$$

The End