Clifford Fourier Transforms in Colour Image Analysis Hardy Spaces and Paley-Wiener Spaces

David Franklin

University of Newcastle

September 5, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction to Image Analysis

<□ > < @ > < E > < E > E のQ @

Introduction to Image Analysis

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction to Image Analysis

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Colour images $f : \mathbb{R}^2 \to \mathbb{R}^3$.

The Classical Fourier Transform

The Fourier Transform acts on $f : \mathbb{R} \to \mathbb{C}$ by

$$F\{f(x)\}(y)=\int e^{-ixy}f(x)dx.$$

The Classical Fourier Transform

The Fourier Transform acts on $f : \mathbb{R} \to \mathbb{C}$ by

$$F\{f(x)\}(y)=\int e^{-ixy}f(x)dx.$$

On $f : \mathbb{R}^n \to \mathbb{C}$ by

$$F\{f(x)\}(y) = \int e^{-i \langle x, y \rangle} f(x) dx.$$

Properties of the Classical FT

For any
$$f, g: \mathbb{R}^n \to \mathbb{C}$$
, $\lambda, \mu \in \mathbb{R}$ and $x_0 \in \mathbb{R}^n$ Linearity $F\{\lambda f + \mu g\} = \lambda F\{f\} + \mu F\{g\}$ Translation $F\{f(x - x_0)\} = e^{-ix_0y}F\{f\}$ Differentiation $F\{f(x - x_0)\} = iy_jF\{f\}$ Scaling $F\{f(\lambda x)\} = \frac{1}{|\lambda|^n}F\{f\}(\frac{y}{\lambda})$ Plancherel $\|F\{f\}\|^2 = \|f\|^2$ Convolution $F\{f\}F\{g\} = F\{\int f(x - y)g(y)dy\} = F\{f * g\}$

Problems

Problems

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Problems

Intro to Clifford Algebras

Create new units $e_1, ..., e_n$ such that $e_j^2 = -1$ and $e_j e_k = -e_k e_j$. A number is

$$a = a_0 + \sum_{j=1}^n a_j e_j + \sum_{j < k} a_{jk} e_j e_k + \dots + a_{1\dots n} e_1 e_2 \dots e_n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Intro to Clifford Algebras

Create new units $e_1, ..., e_n$ such that $e_j^2 = -1$ and $e_j e_k = -e_k e_j$. A number is

$$a = a_0 + \sum_{j=1}^n a_j e_j + \sum_{j < k} a_{jk} e_j e_k + ... + a_{1...n} e_1 e_2 ... e_n$$

This 2^n dimensional space is denoted $\mathbb{R}_{(n)}$. Note $\mathbb{R}_{(0)} = \mathbb{R}$, $\mathbb{R}_{(1)} = \mathbb{C}$, $\mathbb{R}_{(2)} = \mathbb{H}$.

Intro to Clifford Algebras

Create new units $e_1, ..., e_n$ such that $e_j^2 = -1$ and $e_j e_k = -e_k e_j$. A number is

$$a = a_0 + \sum_{j=1}^n a_j e_j + \sum_{j < k} a_{jk} e_j e_k + ... + a_{1...n} e_1 e_2 ... e_n$$

This 2^{*n*} dimensional space is denoted $\mathbb{R}_{(n)}$. Note $\mathbb{R}_{(0)} = \mathbb{R}$, $\mathbb{R}_{(1)} = \mathbb{C}$, $\mathbb{R}_{(2)} = \mathbb{H}$. Consider a function $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$ by $a_\beta : \mathbb{R}^n \to \mathbb{R}$.

Some Clifford Operators

For functions $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$, we have

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Position
$$x = \sum_i e_i x_i$$

• Dirac
$$D = \sum_i e_i \frac{\partial}{\partial x_i}$$

Some Clifford Operators

For functions $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$, we have

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Position
$$x = \sum_i e_i x_i$$

• Dirac
$$D = \sum_{i} e_{i} \frac{\partial}{\partial x_{i}}$$

If Df = 0 then f is monogenic.

Some Clifford Operators

For functions $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$, we have

• Position
$$x = \sum_i e_i x_i$$

• Dirac
$$D = \sum_i e_i \frac{\partial}{\partial x_i}$$

• Gamma
$$\Gamma = -\sum_{i < j} e_i e_j (x_i \frac{\partial}{\partial x_j} - x_j \frac{\partial}{\partial x_i})$$

Parity Matrices

Split $\mathbb{R}_{(n)} = \Lambda_e \oplus \Lambda_o$, the odd and even parts of the algebra. Hence the parity matrix of $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$ is

$$[f] = \begin{bmatrix} f_e(x) & f_o(x) \\ f_o(-x) & f_e(-x) \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Clifford Fourier Transform

The Classical Fourier Transform can be written

$$F\{f\} = \exp(-i\frac{\pi}{2}H)\{f\}$$

where the Hermite operator is $H = \frac{1}{2}(-\Delta_n + ||x||^2 - n)$ and Δ_n is the Laplacian on \mathbb{R}^n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Clifford Fourier Transform

The Classical Fourier Transform can be written

$$F\{f\} = \exp(-i\frac{\pi}{2}H)\{f\}$$

So we define for $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$,

$$\mathcal{F}{f} = \exp(-i\frac{\pi}{2}H){f}$$

where the Hermite operator is $H = \frac{1}{2}(-\Delta_n + ||x||^2 - n)$ and Δ_n is the Laplacian on \mathbb{R}^n .

Alternate Representations

Equivalently, for $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$

$$\mathcal{F}{f(x)}(y) = \int e^{-i\frac{\pi}{2}\Gamma} e^{-i\langle x,y\rangle} f(x) dx$$

or equivalently

$$\mathcal{F}{f(x)}(y) = e^{-i\frac{\pi}{2}\Gamma}F{f(x)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Alternate Representations

Equivalently, for $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$

$$\mathcal{F}{f(x)}(y) = \int e^{-i\frac{\pi}{2}\Gamma} e^{-i\langle x,y\rangle} f(x) dx$$

or equivalently

$$\mathcal{F}{f(x)}(y) = e^{-i\frac{\pi}{2}\Gamma}F{f(x)}.$$

In 2D specifically,

$$\mathcal{F}{f(x)}(y) = \frac{1}{2\pi} \int e^{-x \wedge y} f(x) dx.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Properties of the Clifford FT

For any
$$f, g: \mathbb{R}^n \to \mathbb{R}_{(n)}, \lambda, \mu \in \mathbb{R}_{(n)}$$
 and $x_0 \in \mathbb{R}^n$ Linearity $\mathcal{F}\{f\lambda + g\mu\} = \mathcal{F}\{f\}\lambda + \mathcal{F}\{g\}\mu$ Translation(2D) $\mathcal{F}\{f(x - x_0)\} = e^{y \wedge x_0} \mathcal{F}\{f\}$ Differentiation $\mathcal{F}\{Df\} = -y \mathcal{F}_-\{f\}$ Scaling $\mathcal{F}\{f(\lambda x)\} = \frac{1}{|\lambda|^n} \mathcal{F}\{f\}(\frac{y}{\lambda})$ Plancherel $\|\mathcal{F}\{f\}\|^2 = \|f\|^2$ Convolution $\mathcal{F}\{f\}\mathcal{F}\{g\} = \mathcal{F}\{e^{i\frac{\pi}{2}\Gamma}(e^{-i\frac{\pi}{2}\Gamma}f) * (e^{-i\frac{\pi}{2}\Gamma}g)\}$ Convolution(2D) $[\mathcal{F}f][\mathcal{F}g] = [\mathcal{F}\{f * g\}]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

x Y If a function $f : \mathbb{R}^n \to \mathbb{R}$ has a Fourier Transform supported on the positive half line,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

If a function $f : \mathbb{R}^n \to \mathbb{R}$ has a Fourier Transform supported on the positive half line,

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

If a function $f : \mathbb{R}^n \to \mathbb{R}$ has a Fourier Transform supported on the positive half line, then it has an analytic extension f(x, t) for t > 0.

If a function $f : \mathbb{R}^n \to \mathbb{R}$ has a Fourier Transform supported on the positive half line, then it has an analytic extension f(x, t) for t > 0. Further $\int |f(x, t_0)|^2 dx \le ||f||^2$.

Clifford Hardy Spaces

Algebraically, $f \in H^2_{\pm}$ if

$$\frac{1}{2}(1\pm\frac{y}{|y|})Ff=Ff.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Clifford Hardy Spaces

Algebraically, $f \in H^2_\pm$ if

$$\frac{1}{2}(1\pm\frac{y}{|y|})Ff=Ff.$$

For Clifford functions we define $f \in H^2_{\pm}$ if

$$[\frac{1}{2}(1\mp \frac{y}{|y|})][\mathcal{F}f] = [\mathcal{F}f].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Clifford Hardy Spaces

Algebraically, $f \in H^2_{\pm}$ if

$$\frac{1}{2}(1\pm\frac{y}{|y|})Ff = Ff$$

For Clifford functions we define $f \in H^2_{\pm}$ if

$$\left[\frac{1}{2}(1\mp\frac{y}{|y|})\right][\mathcal{F}f]=[\mathcal{F}f].$$

Note $\left[\frac{1}{2}\left(1+\frac{y}{|y|}\right)\right]^2 = \left[\frac{1}{2}\left(1+\frac{y}{|y|}\right)\right]$ and $\left[\frac{1}{2}\left(1+\frac{y}{|y|}\right)\right]\left[\frac{1}{2}\left(1-\frac{y}{|y|}\right)\right] = 0.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Franklin, 2015) If a function $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$ has a Clifford Fourier Transform such that $\left[\frac{1}{2}(1-\frac{y}{|y|})\right][\mathcal{F}f] = [\mathcal{F}f],$

Theorem (Franklin, 2015) If a function $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$ has a Clifford Fourier Transform such that $\left[\frac{1}{2}(1-\frac{y}{|y|})\right][\mathcal{F}f] = [\mathcal{F}f],$

Theorem (Franklin, 2015) If a function $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$ has a Clifford Fourier Transform such that $\left[\frac{1}{2}(1-\frac{y}{|y|})\right][\mathcal{F}f] = [\mathcal{F}f]$, then it has an monogenic extension f(x, t) for t > 0.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Theorem (Franklin, 2015) If a function $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$ has a Clifford Fourier Transform such that $\left[\frac{1}{2}(1-\frac{y}{|y|})\right][\mathcal{F}f] = [\mathcal{F}f]$, then it has an monogenic extension f(x,t) for t > 0. Further $\int |f(x,t_0)|^2 dx \le ||f||^2$.

If a function $f : \mathbb{R}^n \to \mathbb{R}$ has a Fourier Transform supported on a interval of length R,

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

If a function $f : \mathbb{R}^n \to \mathbb{R}$ has a Fourier Transform supported on a interval of length R,

If a function $f : \mathbb{R}^n \to \mathbb{R}$ has a Fourier Transform supported on a interval of length R, then it has an analytic extension f(x, t),

イロト 不得 トイヨト イヨト

э

If a function $f : \mathbb{R}^n \to \mathbb{R}$ has a Fourier Transform supported on a interval of length R, then it has an analytic extension f(x, t), such that $\int |f(x, t_0)|^2 dx \le e^{2|t|R} ||f||^2$.

Theorem (Franklin, 2015) If a function $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$ has a Clifford Fourier Transform supported on the ball of radius R,

Theorem (Franklin, 2015) If a function $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$ has a Clifford Fourier Transform supported on the ball of radius R,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Franklin, 2015)

If a function $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$ has a Clifford Fourier Transform supported on the ball of radius R, then it has a monogenic extension f(x, t),

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (Franklin, 2015)

If a function $f : \mathbb{R}^n \to \mathbb{R}_{(n)}$ has a Clifford Fourier Transform supported on the ball of radius R, then it has a monogenic extension f(x, t), such that $\int |f(x, t_0)|^2 dx \le e^{2|t|R} ||f||^2$.

Conclusion and Questions

Thanks to Jeff Hogan and Kieran Larkin for their valuable support and advice. Thanks for listening.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?