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Quasi-norms

Definition (Star-shaped domain)

A body K ⊆ Rd is star-shaped if conv({x , 0}) ⊆ K ∀x ∈ K .

Given K ⊆ Rd star-shaped and centrally symmetric, let

‖x‖K = inf
{
t > 0 : x/t ∈ K

}
.

Definition (Quasi-norm in Rd)

‖ · ‖K as defined above is a quasi-norm: same as a norm but
instead of the triangle inequality,

‖x + y‖K ≤ CK

(
‖x‖K + ‖y‖K

)
, CK ≥ 1.
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Quasi-norms

Definition (Quasi-norm in Rd)

‖ · ‖K as defined above is a quasi-norm, that is, same as a norm
but instead of the triangle inequality,

‖x + y‖K ≤ CK

(
‖x‖K + ‖y‖K

)
, CK ≥ 1.

Example: `dp

Take Rd with ‖x‖p =
(∑d

i=1 |xi |p
)1/p

, p > 0.

This is a quasi-norm with Cp = max{21/p−1, 1} (=⇒ if p ≥ 1
this is a norm).

Let Bd
p be the unit ball of this (quasi-)norm.
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Small-Ball Probability

V = {v1, . . . , vn} ⊆ Rd a family of n fixed vectors.

ε1, . . . , εn independent symmetric Bernoulli random variables.

Definition (Small-Ball Probability)

Let r > 0, K ⊆ Rd symmetric star-shaped, V as above. Define

ρKr (V ) = sup
x∈Rd

P
( n∑

j=1

εjvj ∈ x + rK
)
.
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Small-Ball and structure of V

Small-Ball Probability

ρKr (V ) = sup
x∈Rd

P
( n∑

j=1

εjvj ∈ x + rK
)
.

ρKr (V ) is large
m∑

εjvj is highly concentrated
m

Much cancellation between members of V
m

V is ‘well-structured’
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Examples in R1

Theorem (Erdős ’45)

v1, . . . , vn integers, then

ρ
B1

2
0 (V ) = sup

x∈Rd

P
( n∑

j=1

εjvj = x
)

= O(n−1/2).

Theorem (Sárközy-Szemerédi ’65)

v1, . . . , vn different integers, then

ρ
B1

2
0 (V ) = sup

x∈Rd

P
( n∑

j=1

εjvj = x
)

= O(n−3/2).

In gereral: several ways of defining ‘well-structured’.
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Esseen Inequality

Let XV be the random vector
∑n

j=1 εjvj .

Theorem (Esseen inequality ’66)

ρ
Bd

2
r (V ) ≤

(
r√
d

+
√
d

)d ∫
Bd

2

∣∣E(i〈XV , ξ〉
)∣∣dξ.

Theorem (Esseen inequality for quasi-norms, FGG ’14)

ρKr (V ) ≤ Cd
K r

d

∫
Rd

∣∣E(i〈XV , ξ〉
)∣∣e− r2‖ξ‖2

2
2 dξ.

Using the Esseen for quasi-norms, can obtain more general versions
of euclidean results.
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Concentration near a hyperplabe for quasi-norms

Definition

Let ωK be the smallest number such that Bd
2 ⊆ ωKK .

For example: ωBd
2

= ωBd
∞

= 1, ωBd
1

=
√
d .

Theorem (Concentration near a hyperplane in quasi-normed space,
FGG ’15)

Let ‖ · ‖K be a quasi-norm on Rd . Assume that ` ≤ n is such that

ρKr (V ) ≥
(
CK√
`

)d
. Then there exists a hyperplane H and at least

n − ` vectors from V that satisfy

distK (vj ,H) = inf
h∈H
‖vj − h‖K ≤ ωK r .

This result was proved for the euclidean norm by Tao-Vu ’12.
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A question from combinatorics

PK
r (d , n) = sup

V
ρKr (V ).

Sup over all sets of size n of vectors of length ≥ 1.
Question: Estimate PK

r (n, d).

Theorem (Erdős ’65)

PB1
2

r (n, 1) = 2−nS(n, brc+ 1).

S(n,m) is sum of largest m binomial coefficients.

Theorem (Frankl-Füredi ’88, Tao-Vu ’12)

PBd
2

r (d , n) =
(
1 + o(1)

)
2−nS(n, brc+ 1).
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Idea of proof (Tao-Vu)

Theorem (Frankl-Füredi ’88, Tao-Vu ’12)

PBd
2

r (d , n) =
(
1 + o(1)

)
2−nS(n, brc+ 1).

Idea of proof (Tao-Vu)

Lower bound: follows from 1d result.
Upper bound: if the probability is too large, by the hyperplane
theorem can go 1 dimension down and get a contradiction

Projection of euclidean ball on a hyperplane is a euclidean ball in
one dimension lower. Not the case for other norms.

Estimating PK
r (d , n), K 6= Bd

2 is still open...
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Theorem (Frankl-Füredi ’88, Tao-Vu ’12)

PBd
2

r (d , n) =
(
1 + o(1)

)
2−nS(n, brc+ 1).

Idea of proof (Tao-Vu)

Lower bound: follows from 1d result.
Upper bound: if the probability is too large, by the hyperplane
theorem can go 1 dimension down and get a contradiction

Projection of euclidean ball on a hyperplane is a euclidean ball in
one dimension lower. Not the case for other norms.

Estimating PK
r (d , n), K 6= Bd

2 is still open...

Omer Friedland , Ohad Giladi , Olivier Guédon Concentration near a hyperplane in quasi-normed spaces



Quasi-norms
Small-Ball Probability

Sharp estimates

Idea of proof (Tao-Vu)
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The End
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