Concentration near a hyperplane in quasi-normed spaces

Omer Friedland ¹ Ohad Giladi ² Olivier Guédon ³

¹Université Paris VI

²University of Newcastle

³Université Paris-Est

September 5, 2015

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Outline

- Quasi-norms
- Small-ball estimates and structure of vectors
- Esseen inequality
- Euclidean vs non-euclidean result
- The real problem

(4回) (4回) (4回)

Quasi-norms

Definition (Star-shaped domain)

A body $K \subseteq \mathbb{R}^d$ is star-shaped if $\operatorname{conv}(\{x, 0\}) \subseteq K \ \forall x \in K$.

Omer Friedland , Ohad Giladi , Olivier Guédon Concentration near a hyperplane in quasi-normed spaces

- 4 回 2 - 4 回 2 - 4 回 2 - 4

3

Quasi-norms

Definition (Star-shaped domain)

A body $K \subseteq \mathbb{R}^d$ is star-shaped if $\operatorname{conv}(\{x, 0\}) \subseteq K \ \forall x \in K$.

Given $K \subseteq \mathbb{R}^d$ star-shaped and centrally symmetric, let

$$\|x\|_{\mathcal{K}} = \inf \{t > 0 : x/t \in \mathcal{K} \}.$$

イロト イヨト イヨト イヨト

Quasi-norms

Definition (Star-shaped domain)

A body $K \subseteq \mathbb{R}^d$ is star-shaped if $\operatorname{conv}(\{x, 0\}) \subseteq K \ \forall x \in K$.

Given $K \subseteq \mathbb{R}^d$ star-shaped and centrally symmetric, let

$$\|x\|_{K} = \inf \{t > 0 : x/t \in K \}.$$

Definition (Quasi-norm in \mathbb{R}^d)

 $\|\cdot\|_{\mathcal{K}}$ as defined above is a quasi-norm: same as a norm but instead of the triangle inequality,

$$\|x+y\|_{K} \leq C_{K}(\|x\|_{K}+\|y\|_{K}), \quad C_{K} \geq 1.$$

(D) (A) (A) (A) (A)

Quasi-norms

Definition (Quasi-norm in \mathbb{R}^d)

 $\|\cdot\|_{\mathcal{K}}$ as defined above is a quasi-norm, that is, same as a norm but instead of the triangle inequality,

$$\|x+y\|_{\mathcal{K}} \le C_{\mathcal{K}} (\|x\|_{\mathcal{K}} + \|y\|_{\mathcal{K}}), \quad C_{\mathcal{K}} \ge 1.$$

Example: ℓ_{μ}^{a}

• Take
$$\mathbb{R}^d$$
 with $\|x\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}$, $p > 0$.

- This is a quasi-norm with $C_p = \max\{2^{1/p-1}, 1\} \iff p \ge 1$ this is a norm).
- Let B_p^d be the unit ball of this (quasi-)norm.

Small-Ball and structure of vectors Esseen Inequality Concentration near a hyperplane

Small-Ball Probability

- $V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^d$ a family of *n* fixed vectors.
- $\varepsilon_1, \ldots, \varepsilon_n$ independent symmetric Bernoulli random variables.

イロト イポト イヨト イヨト

Small-Ball and structure of vectors Esseen Inequality Concentration near a hyperplane

Small-Ball Probability

•
$$V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^d$$
 a family of *n* fixed vectors.

• $\varepsilon_1, \ldots, \varepsilon_n$ independent symmetric Bernoulli random variables.

Definition (Small-Ball Probability)

Let r > 0, $K \subseteq \mathbb{R}^d$ symmetric star-shaped, V as above. Define

$$\rho_r^K(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j \in x + rK\Big).$$

・ロト ・日本 ・モート ・モート

Small-Ball and structure of vectors Esseen Inequality Concentration near a hyperplane

Small-Ball and structure of V

Small-Ball Probability

$$\varrho_r^{\mathcal{K}}(\mathcal{V}) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j \in x + r\mathcal{K}\Big).$$

イロト イヨト イヨト イヨト

Examples in \mathbb{R}^1

Theorem (Erdős '45)

 v_1, \ldots, v_n integers, then

$$\rho_0^{B_2^1}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j = x\Big) = O(n^{-1/2}).$$

Theorem (Sárközy-Szemerédi '65)

 v_1, \ldots, v_n different integers, then

$$\rho_0^{B_2^1}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j = x\Big) = O(n^{-3/2}).$$

イロト イヨト イヨト イヨト

3

Examples in \mathbb{R}^1

Theorem (Erdős '45)

 v_1, \ldots, v_n integers, then

$$\rho_0^{B_2^1}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j = x\Big) = O(n^{-1/2}).$$

Theorem (Sárközy-Szemerédi '65)

 v_1, \ldots, v_n different integers, then

$$\rho_0^{B_2^1}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j = x\Big) = O(n^{-3/2}).$$

In gereral: several ways of defining 'well-structured'.

Omer Friedland , Ohad Giladi , Olivier Guédon

Concentration near a hyperplane in quasi-normed spaces

Esseen Inequality

Let X_V be the random vector $\sum_{j=1}^n \varepsilon_j v_j$.

Theorem (Esseen inequality '66)

$$ho_r^{B_2^d}(V) \leq \left(rac{r}{\sqrt{d}} + \sqrt{d}
ight)^d \int_{B_2^d} \left|\mathbb{E}ig(i\langle X_V,\xi
angleig)
ight|d\xi.$$

Omer Friedland , Ohad Giladi , Olivier Guédon Concentration near a hyperplane in quasi-normed spaces

イロン イヨン イヨン イヨ

Esseen Inequality

Let X_V be the random vector $\sum_{j=1}^n \varepsilon_j v_j$.

Theorem (Esseen inequality '66)

$$ho_r^{B_2^d}(V) \leq \left(rac{r}{\sqrt{d}} + \sqrt{d}
ight)^d \int_{B_2^d} \left|\mathbb{E}ig(i\langle X_V,\xi
angleig)\Big|d\xi.$$

Theorem (Esseen inequality for quasi-norms, FGG '14)

$$\rho_r^{K}(V) \leq C_K^d r^d \int_{\mathbb{R}^d} \left| \mathbb{E} \left(i \langle X_V, \xi \rangle \right) \right| e^{-\frac{r^2 \|\xi\|_2^2}{2}} d\xi.$$

Using the Esseen for quasi-norms, can obtain more general versions of euclidean results.

Omer Friedland , Ohad Giladi , Olivier Guédon Concentration near a hyperplane in quasi-normed spaces

イロン イビン イビン イビン

Concentration near a hyperplabe for quasi-norms

Definition

Let ω_K be the smallest number such that $B_2^d \subseteq \omega_K K$. For example: $\omega_{B_2^d} = \omega_{B_\infty^d} = 1$, $\omega_{B_1^d} = \sqrt{d}$.

Theorem (Concentration near a hyperplane in quasi-normed space, FGG '15)

Let $\|\cdot\|_{\mathcal{K}}$ be a quasi-norm on \mathbb{R}^d . Assume that $\ell \leq n$ is such that $\rho_r^{\mathcal{K}}(\mathcal{V}) \geq \left(\frac{C_{\mathcal{K}}}{\sqrt{\ell}}\right)^d$. Then there exists a hyperplane \mathcal{H} and at least $n - \ell$ vectors from \mathcal{V} that satisfy

$$\operatorname{dist}_{\mathcal{K}}(v_j, H) = \inf_{h \in H} \|v_j - h\|_{\mathcal{K}} \leq \omega_{\mathcal{K}} r.$$

This result was proved for the euclidean norm by Tao-Vu '12.

Concentration near a hyperplane in quasi-normed spaces

A question from combinatorics

$$\mathcal{P}_r^K(d,n) = \sup_V \rho_r^K(V).$$

Sup over all sets of size *n* of vectors of length ≥ 1 . Question: Estimate $\mathcal{P}_{r}^{K}(n, d)$.

向下 イヨト イヨ

A question from combinatorics

$$\mathcal{P}_r^K(d,n) = \sup_V \rho_r^K(V).$$

Sup over all sets of size *n* of vectors of length ≥ 1 . Question: Estimate $\mathcal{P}_r^K(n, d)$.

Theorem (Erdős '65)

$$\mathcal{P}_r^{B_2^1}(n,1)=2^{-n}S(n,\lfloor r\rfloor+1).$$

S(n,m) is sum of largest m binomial coefficients.

- 4 回 2 - 4 □ 2 - 4 □

A question from combinatorics

$$\mathcal{P}_r^K(d,n) = \sup_V \rho_r^K(V).$$

Sup over all sets of size *n* of vectors of length > 1. Question: Estimate $\mathcal{P}_{r}^{K}(n, d)$.

Theorem (Erdős '65)

$$\mathcal{P}_r^{\mathcal{B}_2^1}(n,1)=2^{-n}S(n,\lfloor r\rfloor+1).$$

S(n,m) is sum of largest m binomial coefficients.

Theorem (Frankl-Füredi '88, Tao-Vu '12)

$$\mathcal{P}_r^{B_2^{\sigma}}(d,n) = (1+o(1))2^{-n}S(n,\lfloor r \rfloor+1).$$

Omer Friedland , Ohad Giladi , Olivier Guédon

・ロン ・回と ・ヨン ・ヨン Concentration near a hyperplane in quasi-normed spaces

э

Idea of proof (Tao-Vu)

Theorem (Frankl-Füredi '88, Tao-Vu '12)

$$\mathcal{P}_r^{B_2^d}(d,n) = (1+o(1))2^{-n}S(n,\lfloor r \rfloor+1).$$

Idea of proof (Tao-Vu)

<u>Lower bound:</u> follows from 1d result. <u>Upper bound:</u> if the probability is too large, by the hyperplane theorem can go 1 dimension down and get a contradiction

- 4 同 2 4 日 2 4 日 2

Idea of proof (Tao-Vu)

Theorem (Frankl-Füredi '88, Tao-Vu '12)

$$\mathcal{P}_r^{B_2^d}(d,n) = (1+o(1))2^{-n}S(n,\lfloor r \rfloor+1).$$

Idea of proof (Tao-Vu)

<u>Lower bound:</u> follows from 1d result. <u>Upper bound:</u> if the probability is too large, by the hyperplane theorem can go 1 dimension down and get a contradiction

Projection of euclidean ball on a hyperplane is a euclidean ball in one dimension lower. <u>Not</u> the case for other norms.

イロト イポト イヨト イヨト

Idea of proof (Tao-Vu)

Theorem (Frankl-Füredi '88, Tao-Vu '12)

$$\mathcal{P}_r^{B_2^d}(d,n) = (1+o(1))2^{-n}S(n,\lfloor r \rfloor+1).$$

Idea of proof (Tao-Vu)

<u>Lower bound:</u> follows from 1d result. <u>Upper bound:</u> if the probability is too large, by the hyperplane theorem can go 1 dimension down and get a contradiction

Projection of euclidean ball on a hyperplane is a euclidean ball in one dimension lower. <u>Not</u> the case for other norms.

Estimating $\mathcal{P}_r^K(d, n)$, $K \neq B_2^d$ is still open...

Concentration near a hyperplane in quasi-normed spaces

The End

Omer Friedland , Ohad Giladi , Olivier Guédon Concentration near a hyperplane in quasi-normed spaces

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

æ