Concentration near a hyperplane in quasi-normed spaces

Omer Friedland 1 Ohad Giladi 2 Olivier Guédon 3

¹Université Paris VI

²University of Newcastle

³Université Paris-Est

September 5, 2015

 $4.17 \times$

ALCOHOL:

Outline

Outline

- Quasi-norms
- **•** Small-ball estimates and structure of vectors
- **•** Esseen inequality
- **Euclidean vs non-euclidean result**
- The real problem

 $4.17 \times$

 \Box **ALCOHOL:** \rightarrow \equiv \rightarrow

Quasi-norms

Definition (Star-shaped domain)

A body $K \subseteq \mathbb{R}^d$ is star-shaped if $\mathrm{conv}(\{x,0\}) \subseteq K \,\, \forall x \in K.$

Omer Friedland, Ohad Giladi, Olivier Guédon [Concentration near a hyperplane in quasi-normed spaces](#page-0-0)

メタメメ ミメメ ミメ

 $4.17 \times$

 $2Q$

重

Quasi-norms

Definition (Star-shaped domain)

A body $K \subseteq \mathbb{R}^d$ is star-shaped if $\mathrm{conv}(\{x,0\}) \subseteq K \,\, \forall x \in K.$

Given $K \subseteq \mathbb{R}^d$ star-shaped and centrally symmetric, let

$$
||x||_K = \inf \big\{ t > 0 \; : \; x/t \in K \big\}.
$$

マーター マートマート

 $4.17 \times$

Quasi-norms

Definition (Star-shaped domain)

A body $K \subseteq \mathbb{R}^d$ is star-shaped if $\mathrm{conv}(\{x,0\}) \subseteq K \,\, \forall x \in K.$

Given $K \subseteq \mathbb{R}^d$ star-shaped and centrally symmetric, let

$$
||x||_K = \inf \big\{ t > 0 \; : \; x/t \in K \big\}.
$$

Definition (Quasi-norm in \mathbb{R}^d)

 $\|\cdot\|_{K}$ as defined above is a quasi-norm: same as a norm but instead of the triangle inequality,

$$
||x+y||_K \leq C_K (||x||_K + ||y||_K), \quad C_K \geq 1.
$$

 Ω

Quasi-norms

Definition (Quasi-norm in \mathbb{R}^d)

 $\|\cdot\|_{K}$ as defined above is a quasi-norm, that is, same as a norm but instead of the triangle inequality,

 $||x + y||_K \leq C_K (||x||_K + ||y||_K), C_K \geq 1.$

Example: ℓ_p^d

- Take \mathbb{R}^d with $\|x\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}$, $p > 0$.
- This is a quasi-norm with $\mathcal{C}_\rho = \max\{2^{1/\rho-1},1\}$ (\Longrightarrow if $\rho \geq 1$ this is a norm).
- Let B_p^d be the unit ball of this (quasi-)norm.

[Small-Ball and structure of vectors](#page-7-0) [Esseen Inequality](#page-11-0) [Concentration near a hyperplane](#page-13-0)

Small-Ball Probability

- $V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^d$ a family of *n* fixed vectors.
- $\bullet \varepsilon_1, \ldots, \varepsilon_n$ independent symmetric Bernoulli random variables.

 $4.60 \times 4.75 \times 4.75 \times$

 $4.17 \times$

[Small-Ball and structure of vectors](#page-6-0) [Esseen Inequality](#page-11-0) [Concentration near a hyperplane](#page-13-0)

Small-Ball Probability

•
$$
V = \{v_1, \ldots, v_n\} \subseteq \mathbb{R}^d
$$
 a family of *n* fixed vectors.

 \bullet $\varepsilon_1, \ldots, \varepsilon_n$ independent symmetric Bernoulli random variables.

Definition (Small-Ball Probability)

Let $r>0$, $K\subseteq \mathbb{R}^d$ symmetric star-shaped, V as above. Define

$$
\rho_r^K(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j \in x + rK\Big).
$$

 $4.11 \times 4.49 \times 4.77 \times 4.$

[Small-Ball and structure of vectors](#page-6-0) [Esseen Inequality](#page-11-0) [Concentration near a hyperplane](#page-13-0)

Small-Ball and structure of V

Small-Ball Probability

$$
\rho_r^K(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j \in x + rK\Big).
$$

メロメ メ御 メメ ミメ メミメ

[Small-Ball and structure of vectors](#page-6-0) [Esseen Inequality](#page-11-0) [Concentration near a hyperplane](#page-13-0)

Examples in \mathbb{R}^1

Theorem (Erdős '45)

 v_1, \ldots, v_n integers, then

$$
\rho_0^{B_2^1}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j = x\Big) = O(n^{-1/2}).
$$

Theorem (Sárközy-Szemerédi '65)

 v_1, \ldots, v_n different integers, then

$$
\rho_0^{B_2^1}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j = x\Big) = O(n^{-3/2}).
$$

イロト イ押 トイモト イモト

 $2Q$

重

[Small-Ball and structure of vectors](#page-6-0) [Esseen Inequality](#page-11-0) [Concentration near a hyperplane](#page-13-0)

Examples in \mathbb{R}^1

Theorem (Erdős '45)

 v_1, \ldots, v_n integers, then

$$
\rho_0^{B_2^1}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j = x\Big) = O(n^{-1/2}).
$$

Theorem (Sárközy-Szemerédi '65)

 v_1, \ldots, v_n different integers, then

$$
\rho_0^{B_2^1}(V) = \sup_{x \in \mathbb{R}^d} \mathbb{P}\Big(\sum_{j=1}^n \varepsilon_j v_j = x\Big) = O(n^{-3/2}).
$$

In gereral: several ways of defining 'well-structured'.

Omer Friedland, Ohad Giladi, Olivier Guédon **[Concentration near a hyperplane in quasi-normed spaces](#page-0-0)**

[Quasi-norms](#page-2-0) [Small-Ball Probability](#page-6-0) [Sharp estimates](#page-14-0) [Small-Ball and structure of vectors](#page-6-0) [Esseen Inequality](#page-12-0) [Concentration near a hyperplane](#page-13-0)

Esseen Inequality

Let
$$
X_V
$$
 be the random vector $\sum_{j=1}^n \varepsilon_j v_j$.

Theorem (Esseen inequality '66)

$$
\rho_r^{B_2^d}(V) \leq \left(\frac{r}{\sqrt{d}} + \sqrt{d}\right)^d \int_{B_2^d} \left| \mathbb{E}\left(i\langle X_V, \xi\rangle\right) \right| d\xi.
$$

Omer Friedland, Ohad Giladi, Olivier Guédon **[Concentration near a hyperplane in quasi-normed spaces](#page-0-0)**

a mills.

→ 伊 → → 目 →

(人 語)

 $2Q$

≣

[Quasi-norms](#page-2-0) [Small-Ball Probability](#page-6-0) [Sharp estimates](#page-14-0) [Small-Ball and structure of vectors](#page-6-0) [Esseen Inequality](#page-11-0) [Concentration near a hyperplane](#page-13-0)

Esseen Inequality

Let X_V be the random vector $\sum_{j=1}^n \varepsilon_j v_j$.

Theorem (Esseen inequality '66)

$$
\rho_r^{\mathcal{B}_2^d}(V) \leq \left(\frac{r}{\sqrt{d}} + \sqrt{d}\right)^d \int_{\mathcal{B}_2^d} \left|\mathbb{E}\left(i\langle X_V, \xi\rangle\right)\right| d\xi.
$$

Theorem (Esseen inequality for quasi-norms, FGG '14)

$$
\rho_r^K(V) \leq C_K^d r^d \int_{\mathbb{R}^d} \left| \mathbb{E} \left(i \langle X_V, \xi \rangle \right) \right| e^{-\frac{r^2 ||\xi||_2^2}{2}} d\xi.
$$

Using the Esseen for quasi-norms, can obtain more general versions of euclidean results.

Omer Friedland, Ohad Giladi, Olivier Guédon [Concentration near a hyperplane in quasi-normed spaces](#page-0-0)

 $($ O $)$ $($ θ $)$ $($ θ $)$ $($ θ $)$ $($ θ $)$

 290

[Quasi-norms](#page-2-0) [Small-Ball Probability](#page-6-0) [Sharp estimates](#page-14-0) [Small-Ball and structure of vectors](#page-6-0) [Esseen Inequality](#page-11-0) [Concentration near a hyperplane](#page-13-0)

Concentration near a hyperplabe for quasi-norms

Definition

Let ω_K be the smallest number such that $B_2^d \subseteq \omega_K K$. For example: $\omega_{\mathcal{B}_2^d} = \omega_{\mathcal{B}_{\infty}^d} = 1$, $\omega_{\mathcal{B}_1^d} = \sqrt{d}$.

Theorem (Concentration near a hyperplane in quasi-normed space, FGG '15)

Let $\|\cdot\|_{\mathsf{K}}$ be a quasi-norm on \mathbb{R}^d . Assume that $\ell \leq n$ is such that $\rho_r^{\mathcal{K}}(V) \geq \left(\frac{\mathsf{C}_\mathcal{K}}{\sqrt{\ell}}\right)$ $\big)^d$. Then there exists a hyperplane H and at least $n - \ell$ vectors from V that satisfy

$$
\mathrm{dist}_K(v_j, H) = \inf_{h \in H} ||v_j - h||_K \leq \omega_K r.
$$

This result was proved for the euclidean norm by Tao-Vu '12.

A question from combinatorics

$$
\mathcal{P}_r^K(d,n) = \sup_V \rho_r^K(V).
$$

Sup over all sets of size *n* of vectors of length ≥ 1 . Question: Estimate $\mathcal{P}_r^{\mathcal{K}}(n,d)$.

A question from combinatorics

$$
\mathcal{P}_r^K(d,n) = \sup_V \rho_r^K(V).
$$

Sup over all sets of size *n* of vectors of length > 1 . Question: Estimate $\mathcal{P}_r^{\mathcal{K}}(n,d)$.

Theorem (Erdős '65)

$$
\mathcal{P}_r^{\mathcal{B}_2^1}(n,1)=2^{-n}S(n,\lfloor r\rfloor+1).
$$

 $S(n, m)$ is sum of largest m binomial coefficients.

 $2Q$

 \mathcal{A} and \mathcal{A} in the form \mathcal{A} . The form \mathcal{A} is a set of \mathcal{B}

A question from combinatorics

$$
\mathcal{P}_r^K(d,n) = \sup_V \rho_r^K(V).
$$

Sup over all sets of size *n* of vectors of length > 1 . Question: Estimate $\mathcal{P}_r^{\mathcal{K}}(n,d)$.

Theorem (Erdős '65)

$$
\mathcal{P}_r^{\mathcal{B}_2^1}(n,1)=2^{-n}S(n,\lfloor r\rfloor+1).
$$

 $S(n, m)$ is sum of largest m binomial coefficients.

Theorem (Frankl-Füredi '88, Tao-Vu '12)

$$
\mathcal{P}_r^{B_2^d}(d,n) = (1+o(1))2^{-n}S(n,\lfloor r \rfloor + 1).
$$

K ロ ト K 倒 ト K ミ ト K ミ ト Omer Friedland , Ohad Giladi , Olivier Guédon [Concentration near a hyperplane in quasi-normed spaces](#page-0-0)

÷

Idea of proof (Tao-Vu)

Theorem (Frankl-Füredi '88, Tao-Vu '12)

$$
\mathcal{P}_r^{B_2^d}(d,n) = (1+o(1))2^{-n}S(n, \lfloor r \rfloor + 1).
$$

Idea of proof (Tao-Vu)

Lower bound: follows from 1d result.

Upper bound: if the probability is too large, by the hyperplane theorem can go 1 dimension down and get a contradiction

 \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{B}

つくい

Idea of proof (Tao-Vu)

Theorem (Frankl-F¨uredi '88, Tao-Vu '12)

$$
\mathcal{P}_r^{B_2^d}(d,n) = (1+o(1))2^{-n}S(n, \lfloor r \rfloor + 1).
$$

Idea of proof (Tao-Vu)

Lower bound: follows from 1d result.

Upper bound: if the probability is too large, by the hyperplane theorem can go 1 dimension down and get a contradiction

Projection of euclidean ball on a hyperplane is a euclidean ball in one dimension lower. Not the case for other norms.

- イート イート イー

へのへ

Idea of proof (Tao-Vu)

<u>Theorem (Frank</u>l-Füredi '88, Tao-Vu '12),

$$
\mathcal{P}_r^{B_2^d}(d,n) = (1+o(1))2^{-n}S(n,\lfloor r \rfloor + 1).
$$

Idea of proof (Tao-Vu)

Lower bound: follows from 1d result. Upper bound: if the probability is too large, by the hyperplane theorem can go 1 dimension down and get a contradiction

Projection of euclidean ball on a hyperplane is a euclidean ball in one dimension lower. Not the case for other norms.

Estimating $\mathcal{P}_r^{\mathcal{K}}(d,n)$, $\mathcal{K} \neq \mathcal{B}_2^d$ is still open...

イロメ イ母メ イヨメ イヨメ

 000

The End

Omer Friedland , Ohad Giladi , Olivier Guédon [Concentration near a hyperplane in quasi-normed spaces](#page-0-0)

メロメメ 御き メミメメ ミト

重

 299