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Background Essentially chief series: existence Essentially chief series: uniqueness

A topological group is a group that is also a topological space,
such that (x , y) 7→ xy and x 7→ x−1 are continuous.
G is locally compact if there is a compact neighbourhood of 1.
G is compactly generated if there is a compact subset of G
that generates G as a group.

Examples of compactly generated locally compact groups:
I Finitely generated groups (with the discrete topology)
I Compact groups
I Any connected locally compact group (e.g. connected

subgroups of GL(Rn))
I Many examples of totally disconnected locally compact

groups, e.g. the automorphism group of any connected
locally finite graph with finitely many orbits of vertices
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A normal factor of a topological group G is a quotient K/L,
such that K and L are closed normal subgroups of G. We say it
is a chief factor if K > L there does not exist K > M > L such
that M is closed and normal in G.

A (finite) chief series for G is a series

{1} = G0 < G1 < G2 < · · · < Gn = G

of closed normal subgroups of G, such that each Gi+1/Gi is a
chief factor.
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I Every finite group has a chief series. Given any group G,
any finite chief factor of G is the product of finitely many
copies of a simple group.

I Connected Lie groups have something like a chief series:
there is a finite series in which every factor is chief or
abelian. Every non-abelian chief factor is a product of
finitely many copies of a simple connected Lie group.

I Compact groups have descending chief series, but these
are usually infinite.

I Finitely generated discrete groups can have a very
complicated normal subgroup structure (e.g. a finitely
generated free group), and chief series fail to capture this
structure.
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Theorem 1 (Caprace–Monod 2011)
Let G be a compactly generated locally compact group with no
non-trivial compact or discrete normal subgroups. Then every
non-trivial closed normal subgroup of G contains a minimal one.

Theorem 2 (R.–Wesolek)
Let G be a compactly generated locally compact group.

(i) Let G1 < G2 < G3 . . . be an ascending chain of closed
normal subgroups of G and let K =

⋃
i Gi . Then there

exists i such that K/Gi is compact-by-discrete.
(ii) Let G1 > G2 > G3 . . . be a descending chain of closed

normal subgroups of G and let K =
⋂

i Gi . Then there
exists i such that Gi/K is compact-by-discrete.
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Theorem 3 (R.–Wesolek)
For every compactly generated locally compact group G, there
is an essentially chief series, i.e. a finite series

{1} = G0 < G1 < G2 < · · · < Gn = G

of closed normal subgroups of G, such that each Gi+1/Gi is
compact, discrete or a chief factor of G.
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Let G be a compactly generated locally compact group. Write
G◦ for the largest connected subgroup of G.

Fact
G has an action on a graph Γ, called a Cayley-Abels graph for
G, such that:

I G acts transitively on vertices;
I The degree of Γ (= maximum number of neighbours of a

vertex) is finite;
I If U is the stabiliser of a vertex, then U is open in G (so

G◦ ≤ U) and U/G◦ is compact.

If N is a closed normal subgroup of G, then Γ/N is a
Cayley-Abels graph for G/N.
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Outline of proof of Theorem 2 (e.g. Theorem 2(i)):

I Fix a Cayley-Abels graph Γ for G and consider deg(Γ/Gi).
By dividing out by a large enough Gi , can assume
deg(Γ) = deg(Γ/K ). Then all the vertex stabilisers in K
acting on Γ are equal, so K/N is a discrete group, where N
is the kernel of the action of K .

I By dividing out by a compact group, can assume K ◦ is a
Lie group (solution to Hilbert’s 5th problem).

I Use the structure of Lie groups to deduce that there exists
i such that K ◦/(Gi)

◦ is compact.
I N is connected-by-compact, so N/(Gi)

◦ is
compact-by-compact = compact, and K/N is discrete, so
K/(Gi)

◦ is compact-by-discrete, and hence K/Gi is
compact-by-discrete.

Colin Reid

Chief series of locally compact groups



Background Essentially chief series: existence Essentially chief series: uniqueness

Outline of proof of Theorem 2 (e.g. Theorem 2(i)):

I Fix a Cayley-Abels graph Γ for G and consider deg(Γ/Gi).
By dividing out by a large enough Gi , can assume
deg(Γ) = deg(Γ/K ). Then all the vertex stabilisers in K
acting on Γ are equal, so K/N is a discrete group, where N
is the kernel of the action of K .

I By dividing out by a compact group, can assume K ◦ is a
Lie group (solution to Hilbert’s 5th problem).

I Use the structure of Lie groups to deduce that there exists
i such that K ◦/(Gi)

◦ is compact.
I N is connected-by-compact, so N/(Gi)

◦ is
compact-by-compact = compact, and K/N is discrete, so
K/(Gi)

◦ is compact-by-discrete, and hence K/Gi is
compact-by-discrete.

Colin Reid

Chief series of locally compact groups



Background Essentially chief series: existence Essentially chief series: uniqueness

Outline of proof of Theorem 2 (e.g. Theorem 2(i)):

I Fix a Cayley-Abels graph Γ for G and consider deg(Γ/Gi).
By dividing out by a large enough Gi , can assume
deg(Γ) = deg(Γ/K ). Then all the vertex stabilisers in K
acting on Γ are equal, so K/N is a discrete group, where N
is the kernel of the action of K .

I By dividing out by a compact group, can assume K ◦ is a
Lie group (solution to Hilbert’s 5th problem).

I Use the structure of Lie groups to deduce that there exists
i such that K ◦/(Gi)

◦ is compact.
I N is connected-by-compact, so N/(Gi)

◦ is
compact-by-compact = compact, and K/N is discrete, so
K/(Gi)

◦ is compact-by-discrete, and hence K/Gi is
compact-by-discrete.

Colin Reid

Chief series of locally compact groups



Background Essentially chief series: existence Essentially chief series: uniqueness

Outline of proof of Theorem 2 (e.g. Theorem 2(i)):

I Fix a Cayley-Abels graph Γ for G and consider deg(Γ/Gi).
By dividing out by a large enough Gi , can assume
deg(Γ) = deg(Γ/K ). Then all the vertex stabilisers in K
acting on Γ are equal, so K/N is a discrete group, where N
is the kernel of the action of K .

I By dividing out by a compact group, can assume K ◦ is a
Lie group (solution to Hilbert’s 5th problem).

I Use the structure of Lie groups to deduce that there exists
i such that K ◦/(Gi)

◦ is compact.
I N is connected-by-compact, so N/(Gi)

◦ is
compact-by-compact = compact, and K/N is discrete, so
K/(Gi)

◦ is compact-by-discrete, and hence K/Gi is
compact-by-discrete.

Colin Reid

Chief series of locally compact groups



Background Essentially chief series: existence Essentially chief series: uniqueness

Say the normal factors K1/L1 and K2/L2 are associated if

K1L2 = K2L1; Ki ∩ L1L2 = Li for i = 1,2.

E.g. for any closed normal subgroups A and B of G, A/(A ∩ B)
is associated to AB/B.

Proposition (R.–Wesolek)
For non-abelian chief factors, association is an equivalence
relation. For each equivalence class, there is a canonical
uppermost representative M/C, such that any chief factor
associated to M/C is of the form A/(A ∩ C) such that M = AC.
In particular, there is a continuous injective homomorphism
from A/(A ∩ C) to M/C with dense image.
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Theorem 4 (R.–Wesolek)
Let G be a Polish group and let

{1} = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gn = G

be a series of closed normal subgroups for G and let K/L be a
non-abelian chief factor of G. Then there exists a unique i and
Gi ≤ B < A ≤ Gi+1 such that A/B is a non-abelian chief factor
associated to K/L.
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Say a chief factor is non-negligible if it is non-abelian and not
associated to any compact or discrete chief factor.

Corollary
Given an essentially chief series

{1} = G0 < G1 < G2 < · · · < Gn = G

for the compactly generated locally compact group G, then
each association class of non-negligible chief factor is
represented exactly once as a factor Gi+1/Gi .
Consequently, G has only finitely many association classes of
non-negligible chief factors.
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