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Order and monotonicity

Partial ordering on Rn

x ≥ y ⇐⇒ xi ≥ yi for i = 1, . . . , n,

x > y ⇐⇒ x ≥ y and x 6= y ,

x � y ⇐⇒ xi > yi for i = 1, . . . , n,

x � y ⇐⇒ there is an i such that xi < yi .

Monotone mapping

g : Rn+ × Rm+ → Rn+ monotone if

s ≤ s̃, w ≤ w̃ ⇒ g(s,w) ≤ g(s̃, w̃)
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Björn Rüffer | Dynamics of monotone inequalities | slide 10 of 10111



Basic notions

Discrete-time dynamical systems

x+ = g(x , u)

with g : Rn × Rm → Rn continuous, g(0, 0) = 0.

Input-to-state stability

‖x [k ]‖ ≤ β(‖x [0]‖, k) + γ(‖u‖∞)

where β ∈ KL, γ ∈ K.

K

L
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Motivation I

Theorem (Perron)

Let A a positive n × n matrix. Then

1. ρ(A) is an algebraically simple eigenvalue of A and the

corresponding, normalised eigenvector v is unique and

positive.

2. Any nonnegative eigenvector of A is a multiple of v .

3. Any eigenvalue λ 6= ρ(A) of A satisfies |λ| < ρ(A).
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Motivation II

Let A a nonnegative n × n matrix. Then the following are

equivalent:

I ρ(A) < 1

I the linear system x+ = Ax is asymptotically stable;

I the linear system x+ = Ax + Bu is input-to-state stable;

I Ax � x for all x > 0;

I Ax ≥ x implies x = 0;

I there is a vector v � 0 so that Av � v ;

I the inequality x ≤ Ax + b with b ≥ 0 has the maximal

solution x = (I − A)−1b ≥ 0
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Motivation III: Large-scale systems

ẋ2 = f2(x1, x2, x4)

ẋ1 = f1(x1, x2, u1) ẋ3 = f3(x2, x3, x6, u3)

ẋ4 = f4(x1, x2, x3, x4, u4)

ẋ5 = f5(x1, x4, x5, u5) ẋ6 = f6(x3, x5, x6, u6)

γ21

γ12
γ32

γ42 γ24

γ41 γ43

γ51

γ54

γ63 γ36

γ65

u1 u3

u5 u4
u6
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From subsystem stability to large-scale system stability

For each subsystem ẋi = fi(x1, . . . , xn, u) we assume the existence

of a continuous-time ISS Lyapunov function

Vi(xi) ≥
∑
j 6=i

γij
(

Vj(xj)
)

+ γ̃(‖u‖) ⇒ V̇i < 0.

Modulo some technical details, if for each point s ∈ Rn+, s 6= 0,

Γ(s) � s (small-gain condition)

then the large-scale system ẋ = f (x , u) is ISS.

[e.g. Jiang&Teel&Praly’96, Dashkovskiy&Rüffer&Wirth’10, Karafyllis&Jiang’09,. . . ]
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Aggregating Lyapunov functions

If there exist σi ∈ K∞, i = 1, . . . , n such that for all r > 0,

Γ(σ(r))� σ(r),

then

V(x) = max
i
σ−1
i

(
Vi(xi)

)
is an ISS Lyapunov function for the composite large-scale system:

If V(x) = σ−1
i

(
Vi(xi)

)
> maxj 6=i σ

−1
j

(
Vj(xj)

)
for a unique i then

Vi = σi
(
V
)
> Γi

(
σ1(V), . . . , σn(V)

)
= Γi

(
σ1 ◦ σ−1

i (Vi), . . . , σn ◦ σ−1
i (Vi)

)
≥ Γi(V1, . . . ,Vn)

so V̇i < 0 and hence V̇(x) = (σ−1
i )′

(
Vi(x)

)
V̇i(x) < 0.
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Trajectory estimates

Individual ISS trajectory estimates

‖xi(t)‖ ≤ β(‖xi(0)‖, t) +
∑
j 6=i

γij(‖xj‖∞) + γ̃(‖u‖∞)

leads to the vector-“matrix” inequality

s ≤ Γ(s) + w .

Proving ISS of the composite large-scale system amounts to

finding bounds of the form

‖s‖ ≤ ζ(‖w‖).

[Dashkovskiy&Rüffer&Wirth’07]
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Monotone systems

Let g : Rn+ × Rm+ → Rn+ be continuous and monotone,

g(0, 0) = 0, then we call

x+ = g(x , u)

a montone system.

For constant input u we write

gku (x) = g(g(g(. . . , u), u), u).
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For the remainder of the talk:

We consider a continuous monotone map

g : Rn+ × Rm+ → Rn+

with g(0, 0) = 0 and the induced monotone dynamical system

x+ = g(x , u).
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The map g is called eventually increasable if for all x ∈ Rn+ there

exists a k ≥ 1 and u ∈ Rm+ such that

x ≤ gku (x). (1)

A continuous monotone function ζ : Rn+ → Rm+ is called proper if

there exists a function α ∈ K∞ such that for all x ∈ Rn+,

α(‖x‖)e ≤ ζ(x).
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ISS-LF

A continuous function V : Rn+ → R+ is an ISS Lyapunov function

for x+ = g(x , u) if

I α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) and

I V (x) ≥ γ(‖u‖) ⇒ V (g(x , u))− V (x) ≤ −α3(V (x)).
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AG

The system has the asymptotic gain (AG) property if there exists

a γ ∈ K such that for all x ∈ Rn+ and u ∈ Rm+,

lim sup
k→∞

‖gku (x)‖ ≤ γ(‖u‖).

γ(‖u‖)
k

gku (x)
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Robust stability

We call the system robustly stable (RS) if there exists a proper

and positive definite map ζ : Rn+ → Rm+ so that the origin is

globally asymptotically stable with respect to

x+ = f (x) := g(x , ζ(x)).
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UOC

The system satisfies the uniform order condition (UOC) if there

exists a proper and positive definite map ζ : Rm+ → Rn+ such that

g(x , u) � x for all x � ζ(u).

Example:

Γ(s) + w � s for all s � w

for w = 0 this reduces to

Γ(s) � s for all s > 0
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NP

The system satisfies the Neumann property (NP) if there exists a

proper and positive definite ζ : Rm+ → Rn+ such that for all

x ∈ Rn+, u ∈ Rm+,

x ≤ g(x , u) ⇒ x ≤ ζ(u).

Example:

x ≤ Ax + b with A nonnegative and ρ(A) < 1, then

x ≤ (I − A)−1b

= (I + A + A2 + A3 + . . .)b.
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ΩP

The system satisfies the Ω path property (ΩP) if there exist

proper and positive definite σ : R+ → Rn+ and ρ : R+ → Rm+ such

that

for all r > 0, g
(
σ(r), ρ(r)

)
� σ(r).

σ(r)

{g(s, 0)� s}

Examples:

Av � v

Γ
(
σ(r)

)
� σ(r)
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Theorem

For a discrete-time monotone system all these system theoretic

properties are essentially the same as ISS:

RS

AG NP UOCISS

ISS-LF

ΩP

shown in Jiang&Wang’2001

g ev. inc’ble

g ev. inc’ble
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RS to ΩP

Sketch of the proof:

1. GAS of a monotone system x+ = f (x) implies that f (x) � x

for all x > 0.

2. This implies the existence of a path σ, s.t. σ(0) = 0, the

components non-decreasing, at least one of them unbounded

and f (σ(r))� σ(r), for r > 0 as per:

I Ωi := {x ∈ Rn+ : f (x)i < xi}

I Sr := {x ∈ Rn+ :
∑
i xi = r}

I f (x) � x ⇒
⋃n
i=1 Ωi = Rn+ \ {0}

Sr
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3. KKM-Lemma: for all r > 0

the intersection
⋂n
i=1 Ωi ∩Sr is

non-empty.

1

2

3

4. If f is proper, i.e., f (x) ≥ α(‖x‖)e, then all components of σ

are unbounded.

5. RS of x+ = g(x , u) means RS of x+ = f (x) = g(x , ζ(x)). If

σ is an Ω-path for f , then ρ := ζ ◦ σ satisfies

g(σ(r), ρ(r))� σ(r).
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Thank you!
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