The dynamics of monotone vector inequalities

Björn S. Rüffer

The University of Newcastle & CARMA bjorn.ruffer@newcastle.edu.au

CARMA Retreat 2015

This talk is largely based on the paper:

B. S. Rüffer and R. Sailer. Input-to-state stability for discrete-time monotone systems. In Proc. 21st Int. Symp. Mathematical Theory of Networks and Systems (MTNS), pages 96–102, 2014.

Order and monotonicity

Partial ordering on \mathbb{R}^n

 $x \geq y \iff x_i \geq y_i$ for $i = 1, ..., n$, $x > y \iff x \geq y$ and $x \neq y$, $x \gg y \iff x_i > y_i$ for $i = 1, ..., n$,

Monotone mapping $g\colon\mathbb{R}^n_+\times\mathbb{R}^m_+\to\mathbb{R}^n_+$ monotone if $s \leq \tilde{s}$, $w \leq \tilde{w} \implies q(s, w) \leq q(\tilde{s}, \tilde{w})$

Order and monotonicity

Partial ordering on \mathbb{R}^n

 $x \geq y \iff x_i \geq y_i$ for $i = 1, ..., n$, $x > y \iff x \geq y$ and $x \neq y$, $x \gg y \iff x_i > y_i$ for $i = 1, ..., n$,

 $x \ngeq y \iff$ there is an *i* such that $x_i < y_i$.

 $g\colon\mathbb{R}^n_+\times\mathbb{R}^m_+\to\mathbb{R}^n_+$ monotone if

$$
s \leq \tilde{s}, \ \ w \leq \tilde{w} \quad \Rightarrow \quad g(s, w) \leq g(\tilde{s}, \tilde{w})
$$

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 10 of 10111

Basic notions

Discrete-time dynamical systems

 $x^+ = g(x, u)$ with $g: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ continuous, $g(0, 0) = 0$.

Input-to-state stability

 $||x[k]|| \leq \beta(||x[0]||, k) + \gamma(||u||_{\infty})$

where $\beta \in \mathcal{KL}$, $\gamma \in \mathcal{K}$.

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 11 of 10111

Theorem (Perron)

Let A a positive $n \times n$ matrix. Then

1. $\rho(A)$ is an algebraically simple eigenvalue of A and the corresponding, normalised eigenvector v is unique and positive.

Theorem (Perron)

Let A a positive $n \times n$ matrix. Then

- 1. $\rho(A)$ is an algebraically simple eigenvalue of A and the corresponding, normalised eigenvector v is unique and positive.
- 2. Any nonnegative eigenvector of \overline{A} is a multiple of v.

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 100 of 10111

Theorem (Perron)

Let A a positive $n \times n$ matrix. Then

- 1. $\rho(A)$ is an algebraically simple eigenvalue of A and the corresponding, normalised eigenvector v is unique and positive.
- 2. Any nonnegative eigenvector of \overline{A} is a multiple of v.
- 3. Any eigenvalue $\lambda \neq \rho(A)$ of A satisfies $|\lambda| < \rho(A)$.

- \blacktriangleright $\rho(A) < 1$
- In the linear system $x^+ = Ax$ is asymptotically stable;

- \blacktriangleright $\rho(A) < 1$
- In the linear system $x^+ = Ax$ is asymptotically stable;
- In the linear system $x^+ = Ax + Bu$ is input-to-state stable;

- \blacktriangleright $\rho(A) < 1$
- In the linear system $x^+ = Ax$ is asymptotically stable;
- In the linear system $x^+ = Ax + Bu$ is input-to-state stable;
- Ax $X \not\geq x$ for all $x > 0$;

- \blacktriangleright $\rho(A) < 1$
- In the linear system $x^+ = Ax$ is asymptotically stable;
- In the linear system $x^+ = Ax + Bu$ is input-to-state stable;
- \blacktriangleright Ax \neq x for all $x > 0$;
- \blacktriangleright Ax \geq x implies $x = 0$;

- \blacktriangleright $\rho(A) < 1$
- In the linear system $x^+ = Ax$ is asymptotically stable;
- In the linear system $x^+ = Ax + Bu$ is input-to-state stable;
- \blacktriangleright Ax \neq x for all $x > 0$;
- \blacktriangleright Ax \geq x implies $x = 0$;
- In there is a vector $v \gg 0$ so that $Av \ll v$;

Let A a nonnegative $n \times n$ matrix. Then the following are equivalent:

- \blacktriangleright $\rho(A) < 1$
- In the linear system $x^+ = Ax$ is asymptotically stable;
- In the linear system $x^+ = Ax + Bu$ is input-to-state stable;
- Ax $X \not\geq x$ for all $x > 0$;
- \triangleright Ax > x implies $x = 0$;
- In there is a vector $v \gg 0$ so that $Av \ll v$;
- In the inequality $x \leq Ax + b$ with $b \geq 0$ has the maximal solution $x = (I - A)^{-1}b \geq 0$

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 101 of 10111

Motivation III: Large-scale systems

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 110 of 10111

From subsystem stability to large-scale system stability

For each subsystem $\dot{x}_i = f_i(x_1, \ldots, x_n, u)$ we assume the existence of a continuous-time ISS Lyapunov function

$$
V_i(x_i) \geq \sum_{j \neq i} \gamma_{ij} (V_j(x_j)) + \tilde{\gamma}(\|u\|) \quad \Rightarrow \quad V_i < 0.
$$

Modulo some technical details, if for each point $s \in \mathbb{R}_+^n$, $s \neq 0$,

 $\Gamma(s) \not\geq s$ (small-gain condition)

then the large-scale system $\dot{x} = f(x, u)$ is ISS.

[e.g. Jiang&Teel&Praly'96, Dashkovskiy&R¨uffer&Wirth'10, Karafyllis&Jiang'09,. . .]

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 111 of 10111

Aggregating Lyapunov functions

If there exist $\sigma_i \in \mathcal{K}_{\infty}$, $i = 1, \ldots, n$ such that for all $r > 0$,

 $\Gamma(\sigma(r)) \ll \sigma(r)$,

then

$$
V(x) = \max_i \sigma_i^{-1}(V_i(x_i))
$$

is an ISS Lyapunov function for the composite large-scale system: If $\mathcal{V}(x) = \sigma_i^{-1}\big(V_i(x_i)\big) > \max_{j \neq i} \sigma_j^{-1}\big(V_j(x_j)\big)$ for a unique *i* then $V_i = \sigma_i(\mathcal{V}) > \Gamma_i(\sigma_1(\mathcal{V}), \ldots, \sigma_n(\mathcal{V}))$ $=\Gamma_i(\sigma_1\circ\sigma_i^{-1}(V_i),\ldots,\sigma_n\circ\sigma_i^{-1}(V_i))$ $\sum \Gamma_i(V_1,\ldots,V_n)$ so $\dot{V}_i < 0$ and hence $\dot{\mathcal{V}}(x) = (\sigma_i^{-1})' (V_i(x)) \dot{V}_i(x) < 0$.

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 1000 of 10111

Trajectory estimates

Individual ISS trajectory estimates

$$
||x_i(t)|| \leq \beta(||x_i(0)||, t) + \sum_{j \neq i} \gamma_{ij} (||x_j||_{\infty}) + \tilde{\gamma} (||u||_{\infty})
$$

leads to the vector-"matrix" inequality

 $s \leq \Gamma(s) + w$.

Proving ISS of the composite large-scale system amounts to finding bounds of the form

 $\|s\| \leq \zeta(\|w\|).$

[Dashkovskiy&R¨uffer&Wirth'07] Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 1001 of 10111

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 1010 of 10111

Monotone systems

Let $g: \mathbb{R}_+^n \times \mathbb{R}_+^m \to \mathbb{R}_+^n$ be continuous and monotone, $q(0, 0) = 0$, then we call

 $x^+ = g(x, u)$

a montone system.

For constant input u we write

 $g_u^k(x) = g(g(g(\ldots, u), u), u).$

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 1011 of 10111

For the remainder of the talk:

We consider a continuous monotone map

 $g: \mathbb{R}_+^n \times \mathbb{R}_+^m \to \mathbb{R}_+^n$

with $g(0, 0) = 0$ and the induced monotone dynamical system

 $x^+ = g(x, u).$

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 1100 of 10111

The map g is called eventually increasable if for all $x \in \mathbb{R}^n_+$ there exists a $k \geq 1$ and $u \in \mathbb{R}^m_+$ such that

$$
x \le g_u^k(x). \tag{1}
$$

A continuous monotone function $\zeta \colon \mathbb{R}^n_+ \to \mathbb{R}^m_+$ is called proper if there exists a function $\alpha \in \mathcal{K}_{\infty}$ such that for all $x \in \mathbb{R}^n_+,$

 $\alpha(||x||)e \leq \zeta(x).$

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 1101 of 10111

A continuous function $V \colon \mathbb{R}^n_+ \to \mathbb{R}_+$ is an ISS Lyapunov function for $x^+ = g(x, u)$ if

 $\triangleright \alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||)$ and

 $V(x) > \gamma(||u||)$ \Rightarrow $V(g(x, u)) - V(x) < -\alpha_3(V(x)).$

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 1110 of 10111

AG

The system has the asymptotic gain (AG) property if there exists a $\gamma \in \mathcal{K}$ such that for all $x \in \mathbb{R}^n_+$ and $u \in \mathbb{R}^m_+$,

> $\limsup ||g_u^k(x)|| \leq \gamma(||u||).$ $k\rightarrow\infty$

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 1111 of 10111

Robust stability

We call the system robustly stable (RS) if there exists a proper and positive definite map $\zeta \colon \mathbb{R}^n_+ \to \mathbb{R}^m_+$ so that the origin is globally asymptotically stable with respect to

 $x^+ = f(x) \coloneqq g(x, \zeta(x)).$

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 10000 of 10111

UOC

The system satisfies the uniform order condition (UOC) if there exists a proper and positive definite map $\zeta \colon \mathbb{R}^m_+ \to \mathbb{R}^n_+$ such that

 $g(x, u) \not\geq x$ for all $x \nleq \zeta(u)$.

Example:

 $\Gamma(s) + w \not\geq s$ for all $s \nleq w$

for $w = 0$ this reduces to

 $\Gamma(s) \neq s$ for all $s > 0$

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 10001 of 10111

NP

The system satisfies the Neumann property (NP) if there exists a proper and positive definite $\zeta \colon \mathbb{R}^m_+ \to \mathbb{R}^n_+$ such that for all $x \in \mathbb{R}_+^n$, $u \in \mathbb{R}_+^m$,

$$
x\leq g(x,u) \quad \Rightarrow \quad x\leq \zeta(u).
$$

Example:

 $x \le Ax + b$ with A nonnegative and $\rho(A) < 1$, then $x \leq (1 - A)^{-1}b$ $= (1 + A + A^2 + A^3 + \ldots) b.$

The system satisfies the Ω path property (Ω P) if there exist proper and positive definite $\sigma\colon \mathbb{R}_+\to\mathbb{R}^n_+$ and $\rho\colon \mathbb{R}_+\to\mathbb{R}^m_+$ such that

for all $r > 0$, $g(\sigma(r), \rho(r)) \ll \sigma(r)$.

Examples:

 $Av \ll v$ $\Gamma(\sigma(r)) \ll \sigma(r)$

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 10011 of 10111

Theorem

For a discrete-time monotone system all these system theoretic

properties are essentially the same as ISS:

RS to ΩP

Sketch of the proof:

- 1. GAS of a monotone system $x^+ = f(x)$ implies that $f(x) \ngeq x$ for all $x > 0$.
- 2. This implies the existence of a path σ , s.t. $\sigma(0) = 0$, the components non-decreasing, at least one of them unbounded and $f(\sigma(r)) \ll \sigma(r)$, for $r > 0$ as per:
	- $\blacktriangleright \ \Omega_i \coloneqq \{x \in \mathbb{R}^n_+ : f(x)_i < x_i\}$
	- $S_r := \{x \in \mathbb{R}_+^n: \sum_i x_i = r\}$
	- \blacktriangleright $f(x) \ngeq x \Rightarrow \bigcup_{i=1}^{n} \Omega_i = \mathbb{R}^n_+ \setminus \{0\}$

3. KKM-Lemma: for all $r > 0$ the intersection $\bigcap_{i=1}^n \Omega_i \cap S_r$ is non-empty.

- 4. If f is proper, i.e., $f(x) \ge \alpha(\Vert x \Vert) e$, then all components of σ are unbounded.
- 5. RS of $x^+ = g(x, u)$ means RS of $x^+ = f(x) = g(x, \zeta(x))$. If σ is an Ω-path for f, then $\rho := \zeta \circ \sigma$ satisfies $q(\sigma(r), \rho(r)) \ll \sigma(r)$.

Thank you!

Björn Rüffer | [Dynamics of monotone inequalities](#page-0-0) | slide 10111 of 10111