The dynamics of monotone vector inequalities

Björn S. Rüffer

The University of Newcastle & CARMA bjorn.ruffer@newcastle.edu.au

CARMA Retreat 2015

This talk is largely based on the paper:

B. S. Rüffer and R. Sailer. Input-to-state stability for discrete-time monotone systems. In Proc. 21st Int. Symp. Mathematical Theory of Networks and Systems (MTNS), pages 96–102, 2014.

Order and monotonicity

Partial ordering on \mathbb{R}^n

 $x \ge y \iff x_i \ge y_i \text{ for } i = 1, \dots, n,$ $x > y \iff x \ge y \text{ and } x \ne y,$ $x \gg y \iff x_i > y_i \text{ for } i = 1, \dots, n,$

Monotone mapping $g: \mathbb{R}^n_+ \times \mathbb{R}^m_+ \to \mathbb{R}^n_+$ monotone if $s \leq \tilde{s}, w \leq \tilde{w} \Rightarrow g(s, w) \leq g(\tilde{s}, \tilde{w})$

Biörn Rüffer | Dynamics of monotone inequalities | slide 10 of 10111

Order and monotonicity

Partial ordering on \mathbb{R}^n

 $x \ge y \iff x_i \ge y_i \text{ for } i = 1, \dots, n,$ $x > y \iff x \ge y \text{ and } x \ne y,$ $x \gg y \iff x_i > y_i \text{ for } i = 1, \dots, n,$

 $x \not\geq y \iff$ there is an *i* such that $x_i < y_i$.

 $g \colon \mathbb{R}^n_+ \times \mathbb{R}^m_+ \to \mathbb{R}^n_+$ monotone if

$$s \leq \tilde{s}, w \leq \tilde{w} \Rightarrow g(s, w) \leq g(\tilde{s}, \tilde{w})$$

Basic notions

Discrete-time dynamical systems

 $x^+ = g(x, u)$ with $g: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ continuous, g(0, 0) = 0.

Input-to-state stability

 $\|x[k]\| \le \beta(\|x[0]\|, k) + \gamma(\|u\|_{\infty})$

where $oldsymbol{eta}\in\mathcal{KL},\ \gamma\in\mathcal{K}.$

Björn Rüffer | Dynamics of monotone inequalities | slide 11 of 10111

Theorem (Perron)

Let A a positive $n \times n$ matrix. Then

1. $\rho(A)$ is an algebraically simple eigenvalue of A and the corresponding, normalised eigenvector v is unique and positive.

Theorem (Perron)

Let A a positive $n \times n$ matrix. Then

- 1. $\rho(A)$ is an algebraically simple eigenvalue of A and the corresponding, normalised eigenvector v is unique and positive.
- 2. Any nonnegative eigenvector of A is a multiple of v.

Björn Rüffer | Dynamics of monotone inequalities | slide 100 of 10111

Theorem (Perron)

Let A a positive $n \times n$ matrix. Then

- ρ(A) is an algebraically simple eigenvalue of A and the corresponding, normalised eigenvector v is unique and positive.
- 2. Any nonnegative eigenvector of A is a multiple of v.
- 3. Any eigenvalue $\lambda \neq \rho(A)$ of A satisfies $|\lambda| < \rho(A)$.

- $\rho(A) < 1$
- the linear system $x^+ = Ax$ is asymptotically stable;

- $\rho(A) < 1$
- the linear system $x^+ = Ax$ is asymptotically stable;
- the linear system $x^+ = Ax + Bu$ is input-to-state stable;

- $\rho(A) < 1$
- the linear system $x^+ = Ax$ is asymptotically stable;
- the linear system $x^+ = Ax + Bu$ is input-to-state stable;
- $Ax \not\geq x$ for all x > 0;

- $\rho(A) < 1$
- the linear system $x^+ = Ax$ is asymptotically stable;
- the linear system $x^+ = Ax + Bu$ is input-to-state stable;
- $Ax \not\geq x$ for all x > 0;
- $Ax \ge x$ implies x = 0;

- $\rho(A) < 1$
- the linear system $x^+ = Ax$ is asymptotically stable;
- the linear system $x^+ = Ax + Bu$ is input-to-state stable;
- $Ax \not\geq x$ for all x > 0;
- $Ax \ge x$ implies x = 0;
- there is a vector $v \gg 0$ so that $Av \ll v$;

Let A a nonnegative $n \times n$ matrix. Then the following are equivalent:

- $\rho(A) < 1$
- the linear system $x^+ = Ax$ is asymptotically stable;
- the linear system $x^+ = Ax + Bu$ is input-to-state stable;
- $Ax \not\geq x$ for all x > 0;
- $Ax \ge x$ implies x = 0;
- there is a vector $v \gg 0$ so that $Av \ll v$;
- ► the inequality x ≤ Ax + b with b ≥ 0 has the maximal solution x = (I − A)⁻¹b ≥ 0

Björn Rüffer | Dynamics of monotone inequalities | slide 101 of 10111

Motivation III: Large-scale systems

Björn Rüffer | Dynamics of monotone inequalities | slide 110 of 10111

From subsystem stability to large-scale system stability

For each subsystem $\dot{x}_i = f_i(x_1, ..., x_n, u)$ we assume the existence of a continuous-time ISS Lyapunov function

$$V_i(x_i) \geq \sum_{j \neq i} \gamma_{ij} (V_j(x_j)) + \widetilde{\gamma}(||u||) \quad \Rightarrow \quad \dot{V}_i < 0.$$

Modulo some technical details, if for each point $s \in \mathbb{R}^n_+$, $s \neq 0$,

 $\Gamma(s) \not\geq s$ (small-gain condition)

then the large-scale system $\dot{x} = f(x, u)$ is ISS.

[e.g. Jiang&Teel&Praly'96, Dashkovskiy&Rüffer&Wirth'10, Karafyllis&Jiang'09,...]

Björn Rüffer | Dynamics of monotone inequalities | slide 111 of 10111

Aggregating Lyapunov functions

If there exist $\sigma_i \in \mathcal{K}_{\infty}$, i = 1, ..., n such that for all r > 0,

 $\Gamma(\sigma(r)) \ll \sigma(r),$

then

$$\mathcal{V}(x) = \max_{i} \sigma_{i}^{-1} (V_{i}(x_{i}))$$

is an ISS Lyapunov function for the composite large-scale system: If $\mathcal{V}(x) = \sigma_i^{-1}(V_i(x_i)) > \max_{j \neq i} \sigma_j^{-1}(V_j(x_j))$ for a unique *i* then $V_i = \sigma_i(\mathcal{V}) > \Gamma_i(\sigma_1(\mathcal{V}), \dots, \sigma_n(\mathcal{V}))$ $= \Gamma_i(\sigma_1 \circ \sigma_i^{-1}(V_i), \dots, \sigma_n \circ \sigma_i^{-1}(V_i))$ $\geq \Gamma_i(V_1, \dots, V_n)$ so $\dot{V}_i < 0$ and hence $\dot{\mathcal{V}}(x) = (\sigma_i^{-1})'(V_i(x))\dot{V}_i(x) < 0$.

Björn Rüffer | Dynamics of monotone inequalities | slide 1000 of 10111

Trajectory estimates

Individual ISS trajectory estimates

$$\|x_i(t)\| \leq \beta(\|x_i(0)\|, t) + \sum_{j \neq i} \gamma_{ij}(\|x_j\|_{\infty}) + \tilde{\gamma}(\|u\|_{\infty})$$

leads to the vector-"matrix" inequality

 $s \leq \Gamma(s) + w$.

Proving ISS of the composite large-scale system amounts to finding bounds of the form

 $\|s\| \leq \zeta(\|w\|).$

[Dashkovskiy&Rüffer&Wirth'07] Björn Rüffer | Dynamics of monotone inequalities | slide 1001 of 10111

Björn Rüffer | Dynamics of monotone inequalities | slide 1010 of 10111

Monotone systems

Let $g \colon \mathbb{R}^n_+ \times \mathbb{R}^m_+ \to \mathbb{R}^n_+$ be continuous and monotone, g(0,0) = 0, then we call

 $x^+ = g(x, u)$

a montone system.

For constant input u we write

 $g_u^k(x) = g(g(g(\ldots, u), u), u).$

Björn Rüffer | Dynamics of monotone inequalities | slide 1011 of 10111

For the remainder of the talk:

We consider a continuous monotone map

 $g\colon \mathbb{R}^n_+ \times \mathbb{R}^m_+ \to \mathbb{R}^n_+$

with g(0, 0) = 0 and the induced monotone dynamical system

 $x^+ = g(x, u).$

Björn Rüffer | Dynamics of monotone inequalities | slide 1100 of 10111

The map g is called eventually increasable if for all $x \in \mathbb{R}^n_+$ there exists a $k \ge 1$ and $u \in \mathbb{R}^m_+$ such that

$$x \le g_u^k(x). \tag{1}$$

A continuous monotone function $\zeta : \mathbb{R}^n_+ \to \mathbb{R}^m_+$ is called proper if there exists a function $\alpha \in \mathcal{K}_\infty$ such that for all $x \in \mathbb{R}^n_+$,

 $\alpha(\|x\|)e\leq \zeta(x).$

Björn Rüffer | Dynamics of monotone inequalities | slide 1101 of 10111

A continuous function $V : \mathbb{R}^n_+ \to \mathbb{R}_+$ is an ISS Lyapunov function for $x^+ = g(x, u)$ if

• $\alpha_1(\|x\|) \le V(x) \le \alpha_2(\|x\|)$ and

► $V(x) \ge \gamma(||u||) \Rightarrow V(g(x, u)) - V(x) \le -\alpha_3(V(x)).$

Björn Rüffer | Dynamics of monotone inequalities | slide 1110 of 10111

AG

The system has the asymptotic gain (AG) property if there exists a $\gamma \in \mathcal{K}$ such that for all $x \in \mathbb{R}^n_+$ and $u \in \mathbb{R}^m_+$,

 $\limsup_{k\to\infty} \|g_u^k(x)\| \leq \gamma(\|u\|).$

Björn Rüffer | Dynamics of monotone inequalities | slide 1111 of 10111

We call the system robustly stable (RS) if there exists a proper and positive definite map $\zeta \colon \mathbb{R}^n_+ \to \mathbb{R}^m_+$ so that the origin is globally asymptotically stable with respect to

 $x^+ = f(x) \coloneqq g(x, \zeta(x)).$

Björn Rüffer | Dynamics of monotone inequalities | slide 10000 of 10111

UOC

The system satisfies the uniform order condition (UOC) if there exists a proper and positive definite map $\zeta \colon \mathbb{R}^m_+ \to \mathbb{R}^n_+$ such that

 $g(x, u) \not\geq x$ for all $x \not\leq \zeta(u)$.

Example:

 $\Gamma(s) + w \not\geq s$ for all $s \not\leq w$

for w = 0 this reduces to

 $\Gamma(s) \not\geq s$ for all s > 0

Björn Rüffer | Dynamics of monotone inequalities | slide 10001 of 10111

NP

The system satisfies the Neumann property (NP) if there exists a proper and positive definite $\zeta \colon \mathbb{R}^m_+ \to \mathbb{R}^n_+$ such that for all $x \in \mathbb{R}^n_+$, $u \in \mathbb{R}^m_+$,

$$x \leq g(x, u) \quad \Rightarrow \quad x \leq \zeta(u).$$

Example:

 $x \le Ax + b$ with A nonnegative and $\rho(A) < 1$, then $x \le (I - A)^{-1}b$ $= (I + A + A^2 + A^3 + ...)b.$ The system satisfies the Ω path property (Ω P) if there exist proper and positive definite $\sigma \colon \mathbb{R}_+ \to \mathbb{R}_+^n$ and $\rho \colon \mathbb{R}_+ \to \mathbb{R}_+^m$ such that

for all r > 0, $g(\sigma(r), \rho(r)) \ll \sigma(r)$.

Examples: $Av \ll v$ $\Gamma(\sigma(r)) \ll \sigma(r)$

Theorem

For a discrete-time monotone system all these system theoretic properties are essentially the same as ISS:

RS to ΩP

Sketch of the proof:

- 1. GAS of a monotone system $x^+ = f(x)$ implies that $f(x) \not\geq x$ for all x > 0.
- This implies the existence of a path σ, s.t. σ(0) = 0, the components non-decreasing, at least one of them unbounded and f(σ(r)) ≪ σ(r), for r > 0 as per:
 - $\Omega_i := \{x \in \mathbb{R}^n_+ : f(x)_i < x_i\}$
 - $S_r := \{x \in \mathbb{R}^n_+ : \sum_i x_i = r\}$
 - $f(x) \not\geq x \Rightarrow \bigcup_{i=1}^{n} \Omega_i = \mathbb{R}^n_+ \setminus \{0\}$

3. KKM-Lemma: for all r > 0the intersection $\bigcap_{i=1}^{n} \Omega_i \cap S_r$ is non-empty.

- If *f* is proper, i.e., *f*(*x*) ≥ α(||*x*||)*e*, then all components of *σ* are unbounded.
- 5. RS of $x^+ = g(x, u)$ means RS of $x^+ = f(x) = g(x, \zeta(x))$. If σ is an Ω -path for f, then $\rho := \zeta \circ \sigma$ satisfies $g(\sigma(r), \rho(r)) \ll \sigma(r)$.

Thank you!

Björn Rüffer | Dynamics of monotone inequalities | slide 10111 of 10111