The semigroup of a higher rank graph

Adam Sierakowski (joint with Aidan Sims and David Pask)

University of Wollongong

Newcastle, 26 July 2017

MODEL / ANALYSE / FORMULATE / ILLUMINATE CONNECT:IMIA

Classification

Theorem (Kirchberg-Phillips)

Let A and B be a separable, simple, nuclear and purely infinite C^* -algebra in UCT, then

$$A \cong B \Leftrightarrow \operatorname{Ell}(A) \cong \operatorname{Ell}(B).$$

Definition

A C^* -algebra is a subalgebra of B(H) which is norm-closed and closed under adjoints. A separable, simple, nuclear C^* -algebra A is *purely infinite* iff $A \cong A \otimes \mathcal{O}_{\infty}$. A C^* -algebra A is *nuclear* iff $A \otimes_{\min} B \cong A \otimes_{\max} B$ for any C^* -algebra B. A separable C^* -algebra satisfies UCT iff it is KK-equivalent to an abelian C^* -algebra. The *Elliott invariant* of a C^* -algebra is its K-theory paired with traces.

Question

When is a simple k-graph C^* -algebra purely infinite?

k-graphs

Definition (Kumjian-Pask)

Let Λ be a countable small category and let $d : \Lambda \to \mathbb{N}^k$ be a functor. Then (Λ, d) is a k-graph if it satisfies the factorization property: For every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k = \operatorname{span}_{\mathbb{N}} \{e_1, \ldots, e_k\}$ s.t.

$$d(\lambda) = m + n$$

there exist unique $\mu, \nu \in \Lambda$ satisfying: $d(\mu) = m$, $d(\nu) = n$ and $\lambda = \mu \nu$.

Set $\Lambda^n := d^{-1}(n)$ and identify $\Lambda^0 = \text{Obj}(\Lambda)$, the set of vertices. An element $\lambda \in \Lambda^{e_i}$ is called an edge. For $\lambda : u \to v$ we write

$$s(\lambda) = u, r(\lambda) = v.$$

For a vertex v, set $v\Lambda^n := \{\lambda \in \Lambda^n : r(\lambda) = v\}.$

Drawing 2-graphs

For every 2-graph A, its 2-coloured directed graph or skeleton E_A is:

- draw a dot for each vertex
- draw an arrow from $s(\lambda)$ to $r(\lambda)$ for each edge λ
- Colour the arrows: if λ ∈ Λ^{e₁} = d⁻¹(e₁) colour its arrow blue, if λ ∈ Λ^{e₂} colour its arrow red,

Recall, by factorisation property, for each $\lambda \in \Lambda^{e_1+e_2}$ there exist unique edges $e_{\lambda}, h_{\lambda} \in \Lambda^{e_1}$ and $f_{\lambda}, g_{\lambda} \in \Lambda^{e_2}$ s.t. $\lambda = e_{\lambda}f_{\lambda} = g_{\lambda}h_{\lambda}$.

► record
$$C_{\Lambda} = \{(e_{\lambda}f_{\lambda}, g_{\lambda}h_{\lambda}) : \lambda \in \Lambda^{e_1+e_2}\}$$

Using the equivalence relation $\sim_{\mathcal{C}_{\Lambda}}$ on E^*_{Λ} generated by \mathcal{C}_{Λ} we recover Λ : $\Lambda \cong E^*_{\Lambda}/\sim_{\mathcal{C}_{\Lambda}}$. Conversely, for any 2-coloured directed graph E and collection \mathcal{C} s.t. each blue-red and red-blue path of length 2 appears precisely once in \mathcal{C} , then $E^*/\sim_{\mathcal{C}_{\Lambda}}$.

▲ □ ▶ ▲ @ ▶ ▲ E ▶ ▲ E ▶ E

Sac

The k-graph C^* -algebra

Definition (Kumjian-Pask)

Let Λ be a row-finite k-graph with no sources (i.e., the set $v\Lambda^n$ is finite and non-empty for each $v \in \Lambda^0$ and $n \in \mathbb{N}^k$). Then $C^*(\Lambda)$ is the universal C^* -algebra generated by a Cuntz-Krieger Λ -family: a collection of partial isometries $\{s_{\lambda} : \lambda \in \Lambda\}$ s.t.

▶ $\{s_{\nu} : \nu \in \Lambda^0\}$ are mutually orthogonal projections,

•
$$s_{\mu}s_{
u} = s_{\mu
u}$$
 whenever $r(
u) = s(\mu)$

•
$$s_{\lambda}^* s_{\lambda} = s_{s(\lambda)}$$
 for all paths λ , and

•
$$s_v = \sum_{\lambda \in v \wedge^n} s_\lambda s_\lambda^*$$
 for each $v \in \Lambda^0$ and $n \in \mathbb{N}^k$.

$$C^*(1 \text{ vertex}, 1 \text{ edge}) \cong C(\mathbb{T}), \ C^*(1 \text{ vertex}, 2 \text{ edges}) \cong \mathcal{O}_2.$$

Classification

Recall that for A and B separable, simple, nuclear, UCT and purely infinite, $A \cong B \Leftrightarrow \text{Ell}(A) \cong \text{Ell}(B)$. Every k-graph C*-algebra is separable, nuclear and in UCT (Kumjian-Pask, Tu). Simplicity is also characterized in terms of properties of the k-graph (Robertson-Sims).

Question

When is a simple k-graph C^* -algebra purely infinite?

Theorem (Kumjian-Pask-Raeburn)

Every simple 1-graph C^{*}-algebra C^{*}(Λ) is either purely infinite or AF depending on if there is a loop or not.

Theorem (Pask-Raeburn-Rrdam-Sims)

The dichotomy of Kumjian-Pask-Raeburn fails for k = 2.

Dichotomy

Conjecture (Astrid an Huef)

Let $C^*(\Lambda)$ be a simple C^* -algebra of a row-finite k-graph Λ with no sources. Then $C^*(\Lambda)$ is either purely infinite or stably finite.

Theorem (Pask-Sims-S)

Let $C^*(\Lambda)$ be a simple C^* -algebra of a row-finite k-graph Λ with no sources. Suppose its semigroup $S(\Lambda)$ (to be defined) is almost unperforated. Then $C^*(\Lambda)$ is either purely infinite or stably finite.

Definition

A pre-ordered (abelian) semigroup S is almost unperforated if for every $n \in \mathbb{N}$, $x, y \in S$,

$$(n+1)x \leq ny \Rightarrow x \leq y.$$

The type semigroup of a *k*-graph

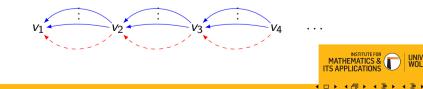
Definition

Let Λ be a row-finite *k*-graph with no sources. Denote the basis for \mathbb{N}^k by e_1, \ldots, e_k and let $\mathbb{N}\Lambda^0 := \operatorname{span}_{\mathbb{N}} \{ \delta_v : v \in \Lambda^0 \}$ be the abelian semigroup of finitely supported functions $f : \Lambda^0 \to \mathbb{N}$. We define

$$S(\Lambda) := \mathbb{N}\Lambda^0 / \approx_{\Lambda}, \quad [f+g]_{\Lambda} := [f]_{\Lambda} + [g]_{\Lambda}$$

where \approx_{Λ} is the smallest equivalence relation on $\mathbb{N}\Lambda^0$ making $S(\Lambda)$ into the semigroup s.t. $\delta_{\nu} \approx_{\Lambda} \sum_{\lambda \in \nu \Lambda^{e_i}} \delta_{s(\lambda)}$ for each $\nu \in \Lambda^0$ and $1 \leq i \leq k$.

Example



Sac

The type semigroup of a *k*-graph

Definition

Let S be an (abelian) semigroup with identity. We say that $x \in S$ is *infinite* if x + y = x for some nonzero $y \in S$. We call S stably finite if it contains no infinite elements. If S is pre-ordered it is *purely infinite* if $2x \le x$ for each nonzero $x \in S$.

Theorem (Pask-Sims-S, cf. Clark-an Huef-Sims)

Let $C^*(\Lambda)$ be a simple C^* -algebra of a row-finite k-graph Λ with no sources. Then

- If $S(\Lambda)$ is stably finite or purely infinite then so is $C^*(\Lambda)$.
- If k = 1 then $S(\Lambda)$ is stably finite or purely infinite.
- $S(\Lambda)$ is stably finite $\Leftrightarrow C^*(\Lambda)$ is stably finite.
- $S(\Lambda)$ is purely infinite $\Leftrightarrow C^*(\Lambda)$ is purely infinite and $S(\Lambda)$ is almost unperforated.

When is $S(\Lambda)$ almost unperforated?

Definition

Recall a pre-ordered (abelian) semigroup S is *almost unperforated* if for every $n \in \mathbb{N}$, $x, y \in S$,

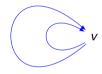
$$(n+1)x \leq ny \Rightarrow x \leq y.$$

Theorem (Pask-Sims-S)

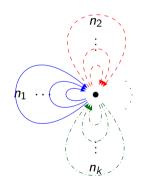
Let $C^*(\Lambda)$ be a simple C^* -algebra of a row-finite k-graph Λ with no sources. Then

- If Λ has finitely many vertices, then $S(\Lambda)$ is almost unperforated.
- If Λ is strongly connected then $S(\Lambda)$ is almost unperforated.
- If ∧ contains a cycle λ satisfying d(λ) ≥ (1,...,1), then S(∧) is almost unperforated.

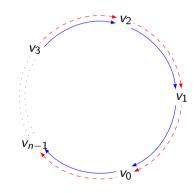
More Examples



More Examples



More Examples



Thank you.

References

- P. Ara and K.R. Goodearl. Tame and wild refinement monoids. Semigroup Forum, 91(1):1–27, 2015.
- P. Ara and E. Pardo. Refinement monoids with weak comparability and applications to regular rings and C*-algebras.
 Proc. Amer. Math. Soc., 124(3):715–720, 1996.
- L.O. Clark, A. an Huef, and A. Sims. AF-embeddability of 2-graph algebras and quasidiagonality of k-graph algebras.
 J. Funct. Anal., 271(4):958–991, 2016.
- E. Ortega, F. Perera, and M. Rørdam. The corona factorization property and refinement monoids.
 Trans. Amer. Math. Soc., 363(9):4505–4525, 2011.
- F. Ortus and E. Pardo. Monoids of intervals of simple refinement monoids and non-stable
 K-theory of multiplier algebras.
 Comm. Algebra, 31(10):5011–5037, 2003.

Sac

References

- T. Rainone. MF actions and K-theoretic dynamics. J. Funct. Anal., 267(2):542–578, 2014.
- T. Rainone. Finiteness and Paradoxical Decompositons in C*-Dynamical Systems. Preprint on http://arxiv.org/abs/1502.06153, 2015.
- T. Rainone and C. Schafhauser. Crossed products of nuclear C*-algebras by free groups and their traces. Preprint on http://arxiv.org/abs/1601.06090, 2016.
- W. Winter and J. Zacharias. The nuclear dimension of C*-algebras. *Adv. Math.*, 224(2):461–498, 2010.
- S. Zhang. A Riesz decomposition property and ideal structure of multiplier algebras. *J. Operator Theory*, 24(2):209–225, 1990.

