Product system models for twisted C*-algebras of topological higher-rank graphs

Becky Armstrong

The University of Sydney

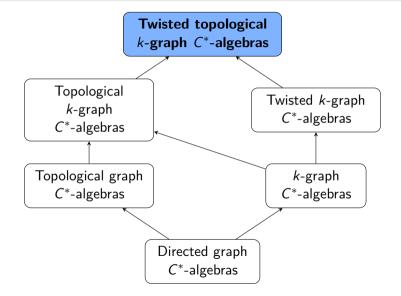
Wednesday, 26th July 2017

(Joint work with Nathan Brownlowe)

Becky Armstrong

Product system models for twisted C^* -algebras of topological k-graphs

Directed graph C^* -algebras and their generalisations



Definition (Katsura 2004)

A **topological graph** is a quadruple $E = (E^0, E^1, r, s)$, such that E^0 and E^1 are locally compact Hausdorff spaces, $r: E^1 \to E^0$ is a continuous map, and $s: E^1 \to E^0$ is a local homeomorphism.

The topological graph correspondence of *E* is a $C_0(E^0)$ -correspondence $X(E) \subseteq C(E^1)$ with bimodule structure given by

$$(h \cdot f)(e) \coloneqq h(r(e)) f(e)$$
 and $(f \cdot h)(e) \coloneqq f(e) h(s(e)),$

and

$$\langle f,g\rangle_{X(E)}(v)\coloneqq \sum_{e\in s^{-1}(v)}\overline{f(e)}g(e).$$

Each topological graph E then has a Toeplitz algebra $\mathcal{T}(X(E))$, and a Cuntz–Pimsner algebra $\mathcal{O}(X(E))$.

Definition (Yeend 2006)

Let $k \in \mathbb{N}\setminus\{0\}$. A **topological** *k*-graph is a pair (Λ, d) consisting of a small category $\Lambda = (\text{Obj}(\Lambda), \text{Mor}(\Lambda), r, s, \circ)$ and a continuous functor $d \colon \Lambda \to \mathbb{N}^k$, called the **degree** map, which satisfy

(i) $Obj(\Lambda)$ and $Mor(\Lambda)$ are both second-countable, locally compact Hausdorff spaces;

(ii) $r, s: Mor(\Lambda) \rightarrow Obj(\Lambda)$ are continuous, and s is a local homeomorphism;

(iii) the composition map

 $\circ \colon \Lambda \times_{\boldsymbol{c}} \Lambda \coloneqq \{(\lambda, \mu) \in \Lambda \times \Lambda \mid \boldsymbol{s}(\lambda) = \boldsymbol{r}(\mu)\} \to \Lambda$

is continuous and open, where $\Lambda \times_c \Lambda$ has the subspace topology inherited from the product topology on $\Lambda \times \Lambda$; and

(iv) the unique factorisation property: for all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ such that $d(\lambda) = m + n$, there exists a unique pair $(\mu, \nu) \in \Lambda \times_c \Lambda$ such that $\lambda = \mu \nu$, $d(\mu) = m$, and $d(\nu) = n$.

We call the elements of $Obj(\Lambda)$ vertices, and the elements of $Mor(\Lambda)$ paths. We call r the range map and s the source map.

For each $n \in \mathbb{N}^k$, we define $\Lambda^n := d^{-1}(n)$. We have $\Lambda^0 = \text{Obj}(\Lambda)$.

Given $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $m \leq n \leq d(\lambda)$, there is a unique path $\lambda(m, n) \in \Lambda^{n-m}$, such that $\lambda = \mu \lambda(m, n) \nu$, for some (unique) $\mu \in \Lambda^m$ and $\nu \in \Lambda^{d(\lambda)-n}$.

We say that Λ is source-free if, for each $v \in \Lambda^0$ and $n \in \mathbb{N}^k$, $r|_{\Lambda^n}^{-1}(v) \neq \emptyset$.

We say that Λ is **proper** if, for each $n \in \mathbb{N}^k$, $r|_{\Lambda^n}$ is a proper map, in the sense that for any compact subset V of Λ^0 , $r|_{\Lambda^n}^{-1}(V)$ is a compact subset of Λ^n .

Let Ω_k be the category with

- $\operatorname{Obj}(\Omega_k) \coloneqq \mathbb{N}^k$;
- $Mor(\Omega_k) \coloneqq \{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k \mid m \leq n\};$
- $r(m, n) \coloneqq m;$
- $s(m, n) \coloneqq n$; and
- composition (m, n)(n, p) := (m, p).

Define a functor $d \colon \Omega_k \to \mathbb{N}^k$ by $d(m, n) \coloneqq n - m$.

Then (Ω_k, d) is a k-graph.

The infinite-path space

Definition

Let Λ be a proper, source-free topological *k*-graph. The **infinite-path space** of Λ is the set

 $\Lambda^{\infty} \coloneqq \{x \colon \Omega_k \to \Lambda \mid x \text{ is a } k\text{-graph morphism}\}.$

For any subset U of Λ , we define

$$Z(U)\coloneqq \{x\in \Lambda^\infty\mid x(0,n)\in U ext{ for some } n\in \mathbb{N}^k\}.$$

Proposition (Yeend 2006)

Let Λ be a proper, source-free topological k-graph. The collection

 $\{Z(U) \mid U \text{ is an open subset of } \Lambda^n \text{ for some } n \in \mathbb{N}^k\}$

is a basis for a locally compact Hausdorff topology on Λ^{∞} .

Becky Armstrong

Product system models for twisted C^* -algebras of topological k-graphs

For each $n \in \mathbb{N}^k$, there is a local homeomorphism $T^n \colon \Lambda^{\infty} \to \Lambda^{\infty}$ given by $T^n(x)(p,q) \coloneqq x(p+n,q+n)$. We call each T^n a shift map.

Proposition

Let Λ be a proper, source-free topological k-graph. For each $n \in \mathbb{N}^k$, the quadruples $\Lambda_n := (\Lambda^0, \Lambda^n, r|_{\Lambda^n}, s|_{\Lambda^n})$ and $\Lambda_{\infty,n} := (\Lambda^\infty, \Lambda^\infty, T^0, T^n)$ are topological graphs.

For each $n \in \mathbb{N}^k$, let $X_n := X(\Lambda_n)$ and $Y_n := X(\Lambda_{\infty,n})$ be the topological graph correspondences associated to Λ_n and $\Lambda_{\infty,n}$, respectively. The homomorphisms implementing the left actions, $\phi_{X_n} : C_0(\Lambda^0) \to \mathcal{L}(X_n)$ and $\phi_{Y_n} : C_0(\Lambda^\infty) \to \mathcal{L}(Y_n)$, are both injective and have range in the compact operators.

Definition

A continuous \mathbb{T} -valued 2-cocycle on a topological *k*-graph Λ is a continuous map $c \colon \Lambda \times_c \Lambda \to \mathbb{T}$ satisfying

$$\begin{array}{ll} ({\rm C1}) \ \ c(\lambda,\mu)c(\lambda\mu,\nu)=c(\lambda,\mu\nu)c(\mu,\nu); \text{ and} \\ ({\rm C2}) \ \ c(\lambda,s(\lambda))=c(r(\lambda),\lambda)=1, \text{ for all } \lambda\in\Lambda. \end{array}$$

We define $\underline{Z}^2(\Lambda, \mathbb{T})$ to be the group of continuous \mathbb{T} -valued 2-cocycles on Λ .

Example (A–Brownlowe 2017)

Let Λ be a topological k-graph, and β an action of \mathbb{Z}^{l} by automorphisms of Λ .

We can form a topological (k + l)-graph $\Gamma := \Lambda \times_{\beta} \mathbb{Z}^{l}$ as follows:

• $Obj(\Gamma) := \Lambda^0 \times \{0\}$, and $Mor(\Gamma) := \Lambda \times \mathbb{N}'$, both with the product topology;

•
$$r(\mu, m) \coloneqq (r_{\Lambda}(\mu), 0)$$
, and $s(\mu, m) \coloneqq (\beta_{-m}(s_{\Lambda}(\mu)), 0)$;

- composition is given by $(\mu, m)(\nu, n) := (\mu \beta_m(\nu), m + n)$, whenever $s_{\Lambda}(\mu) = r_{\Lambda}(\beta_m(\nu))$; and
- $d(\mu, m) \coloneqq (d_{\Lambda}(\mu), m) \in \mathbb{N}^{k+l}$.

If Λ is proper and source-free, then so is $\Gamma.$

Example (A–Brownlowe 2017)

We can construct several continuous \mathbb{T} -valued 2-cocycles on Γ . For each $q \in \mathbb{N} \setminus \{0\}$ and $m \in \mathbb{N}^q$, we define $|m| := \sum_{i=1}^q m_i$.

• Let $f : \Lambda \to \mathbb{T}$ be a continuous functor such that $f \circ \beta_m = f$, for all $m \in \mathbb{N}^l$. For example, take $f(\mu) := e^{i|d(\mu)|}$. We define $c_f \in \underline{Z}^2(\Gamma, \mathbb{T})$ by

$$c_f((\mu,m),(
u,n)) \coloneqq f(
u)^{|m|}.$$

• Let $\omega \colon \mathbb{N}^{\prime} \to \mathbb{T}$ be a continuous homomorphism. We define $c_{\omega} \in \underline{Z}^{2}(\Gamma, \mathbb{T})$ by $c_{\omega}((\mu, m), (\nu, n)) \coloneqq \omega(m)^{|d(\nu)|}.$

Let A be a C^{*}-algebra. A product system over \mathbb{N}^k is a semigroup $X = \sqcup_{n \in \mathbb{N}^k} X_n$ such that

- (i) each X_n is an A-correspondence, with the homomorphism implementing the left action denoted by $\phi_{X_n} \colon A \to \mathcal{L}(X_n)$;
- (ii) the A-correspondence X_0 is a copy of ${}_AA_A$;
- (iii) for each nonzero $m, n \in \mathbb{N}^k$, the map $X_m \times X_n \to X_{m+n}$ given by $x \otimes y \mapsto xy$ extends to an isomorphism of A-correspondences $X_m \otimes_A X_n \cong X_{m+n}$; and
- (iv) $ax = a \cdot x$ and $xa = x \cdot a$, for each $x \in X$ and $a \in X_0$.

We say that X is **compactly aligned**, if, for all $S \in \mathcal{K}(X_m)$ and $T \in \mathcal{K}(X_n)$, we have

$$(S \otimes_A 1_{(m \vee n)-m}) (T \otimes_A 1_{(m \vee n)-n}) \in \mathcal{K}(X_{m \vee n}).$$

A representation ψ of a product system X in a C*-algebra B is a linear map $\psi: X \to B$ such that

(i) each (ψ_n, ψ_0) is a representation of X_n , where $\psi_n \coloneqq \psi|_{X_n}$; and

(ii)
$$\psi_{m+n}(xy) = \psi_m(x)\psi_n(y)$$
, for all $x \in X_m$, $y \in X_n$.

For each $n \in \mathbb{N}^k$, there is a homomorphism $\psi^{(n)} \colon \mathcal{K}(X_n) \to B$ such that $\psi^{(n)}(\Theta_{x,y}) = \psi_n(x)\psi_n(y)^*$.

If X is a compactly aligned product system of A-correspondences, we say that a representation ψ of X is **Nica covariant** if, for each $S \in \mathcal{K}(X_m)$ and $T \in \mathcal{K}(X_n)$, we have

$$\psi^{(m)}(S)\psi^{(n)}(T) = \psi^{(m\vee n)}\big((S\otimes_{\mathcal{A}} 1_{(m\vee n)-m})(T\otimes_{\mathcal{A}} 1_{(m\vee n)-n})\big).$$

Theorem (Fowler 2002)

There is a universal C*-algebra $\mathcal{NT}(X)$, called the **Nica–Toeplitz algebra of** X, which is generated by an isometric Nica-covariant representation $i_X : X \to \mathcal{NT}(X)$. That is, if ψ is a Nica-covariant representation of X, then there exists a homomorphism $\psi^{\mathcal{NT}}$ such that $\psi^{\mathcal{NT}} \circ i_X = \psi$.

Suppose that X is a product system of A-correspondences such that each left action ϕ_{X_n} is injective and has range in $\mathcal{K}(X_n)$. We say that a representation ζ of X is **Cuntz-Pimsner covariant** if

$$\zeta^{(n)}(\phi_{X_n}(a)) = \zeta_0(a),$$

for all $a \in A$ and $n \in \mathbb{N}^k$.

Theorem (Fowler 2002)

There is a universal C*-algebra $\mathcal{O}(X)$, called the **Cuntz–Pimsner algebra of** X, which is generated by an isometric Cuntz–Pimsner-covariant representation $j_X : X \to \mathcal{O}(X)$. That is, if ζ is a Cuntz–Pimsner-covariant representation of X, then there exists a homomorphism $\zeta^{\mathcal{O}}$ such that $\zeta^{\mathcal{O}} \circ j_X = \zeta$. There is a quotient map $q_X : \mathcal{NT}(X) \to \mathcal{O}(X)$ satisfying $j_X = q_X \circ i_X$.

A product system built from finite paths

Let Λ be a proper, source-free topological *k*-graph, and $c \in \underline{Z}^2(\Lambda, \mathbb{T})$. Recall that $\Lambda_n = (\Lambda^0, \Lambda^n, r|_{\Lambda^n}, s|_{\Lambda^n})$, and $X_n = X(\Lambda_n)$, for each $n \in \mathbb{N}^k$.

Proposition (A–Brownlowe 2017)

For $f \in X_m$ and $g \in X_n$, define $fg \colon \Lambda^{m+n} \to \mathbb{C}$ by

 $(fg)(\lambda) \coloneqq c(\lambda(0,m),\lambda(m,m+n)) f(\lambda(0,m)) g(\lambda(m,m+n)).$

Then $fg \in X_{m+n}$, and under this multiplication, the family

$$X \coloneqq \bigsqcup_{n \in \mathbb{N}^k} X_n$$

of $C_0(\Lambda^0)$ -correspondences is a compactly aligned product system over \mathbb{N}^k .

Definition (A–Brownlowe 2017)

We define the **twisted Toeplitz algebra** $\mathcal{T}C^*(\Lambda, c)$ to be the Nica–Toeplitz algebra $\mathcal{NT}(X)$.

We define the **twisted Cuntz–Krieger algebra** $C^*(\Lambda, c)$ to be the Cuntz–Pimsner algebra $\mathcal{O}(X)$.

A product system built from infinite paths

Let Λ be a proper, source-free topological k-graph, and $c \in \underline{Z}^2(\Lambda, \mathbb{T})$. Recall that $\Lambda_{\infty,n} = (\Lambda^{\infty}, \Lambda^{\infty}, T^0, T^n)$, and $Y_n = X(\Lambda_{\infty,n})$, for each $n \in \mathbb{N}^k$.

Proposition (A–Brownlowe 2017)

For $f \in Y_m$ and $g \in Y_n$, define $fg \colon \Lambda^\infty \to \mathbb{C}$ by

$$(fg)(x) \coloneqq c(x(0,m), x(m,m+n)) f(x) g(T^m(x)).$$

Then $fg \in Y_{m+n}$, and under this multiplication, the family

$$Y \coloneqq \bigsqcup_{n \in \mathbb{N}^k} Y_n$$

of $C_0(\Lambda^{\infty})$ -correspondences is a compactly aligned product system over \mathbb{N}^k .

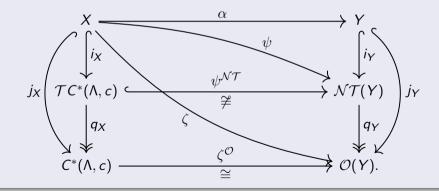
Proposition (A–Brownlowe 2017)

For each $n \in \mathbb{N}^k$, there is a map $\alpha_n \colon X_n \to Y_n$, given by $\alpha_n(f)(x) \coloneqq f(x(0, n))$, for all $f \in X_n$ and $x \in \Lambda^\infty$. We have

(i)
$$\alpha_m(g \cdot f) = \alpha_0(g) \cdot \alpha_m(f)$$
, for all $f \in X_m$, $g \in C_0(\Lambda^0)$;
(ii) $\alpha_m(f \cdot g) = \alpha_m(f) \cdot \alpha_0(g)$, for all $f \in X_m$, $g \in C_0(\Lambda^0)$;
(iii) $\langle \alpha_m(f), \alpha_m(g) \rangle_{Y_m} = \alpha_0(\langle f, g \rangle_{X_m})$, for all $f, g \in X_m$;
(iv) $\alpha_{m+n}(fg) = \alpha_m(f)\alpha_n(g)$, for all $f \in X_m$, $g \in X_n$; and
(v) α_n is injective, for each $n \in \mathbb{N}^k$.

Theorem (A–Brownlowe 2017)

Let Λ be a proper, source-free topological k-graph, and $c \in \underline{Z}^2(\Lambda, \mathbb{T})$. Then $\mathcal{T}C^*(\Lambda, c) = \mathcal{N}\mathcal{T}(X)$ embeds into $\mathcal{N}\mathcal{T}(Y)$, and $C^*(\Lambda, c) = \mathcal{O}(X)$ is isomorphic to $\mathcal{O}(Y)$, as illustrated by the following commuting diagram.



Product system models for twisted C*-algebras of topological k-graphs

- B. Armstrong and N. Brownlowe, Product systems models for twisted C*-algebras of topological higher-rank graphs, preprint, 2017, arXiv:1706.09358v1 [math.OA].
- [2] N. Brownlowe, *Realising the C*-algebra of a higher-rank graph as an Exel crossed product*, J. Operator Theory **68** (2012), 101–130.
- [3] T.M. Carlsen, N.S. Larsen, A. Sims, and S.T. Vittadello, *Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems*, Proceedings of the London Mathematical Society **103** (2011), no. 4, 563–600.
- [4] C. Farthing, D. Pask, and A. Sims, Crossed products of k-graph C^{*}-algebras by Z^I, Houston J. Math. 35 (2009), 903–933.
- [5] J. Fletcher, A uniqueness theorem for the Nica–Toeplitz algebra of a compactly aligned product system, preprint, 2017, arXiv:1705.00775v1 [math.OA].

References

- [6] N.J. Fowler, Discrete product systems of Hilbert bimodules, Pacific Journal of Mathematics 204 (2002), no. 2, 335–375.
- T. Katsura, A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras I, fundamental results, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4287–4322.
- [8] A. Kumjian and D. Pask, Higher Rank Graph C*-Algebras, New York J. Math. 6 (2000), 1–20.
- [9] A. Kumjian, D. Pask, and I. Raeburn, *Cuntz-Krieger algebras of directed graphs*, Pacific J. Math. 184 (1998), 161–174.
- [10] A. Kumjian, D. Pask, I. Raeburn, and J. Renault, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), 505–541.
- [11] A. Kumjian, D. Pask, and A. Sims, Homology for higher-rank graphs and twisted C*-algebras, J. Funct. Anal. 263 (2012), 1539–1574.

- [12] _____, On twisted higher-rank graph C*-algebras, Trans. Amer. Math. Soc. **367** (2015), 5177–5216.
- [13] A. Sims and T. Yeend, C*-algebras associated to product systems of Hilbert bimodules, J. Operator Theory 64 (2010), no. 2, 349–376.
- [14] S. Yamashita, Cuntz's ax + b-semigroup C*-algebra over N and product system C*-algebras, J. Ramanujan Mathematical Society 24 (2009), no. 3, 299–322.
- [15] T. Yeend, Topological higher-rank graphs and the C*-algebras of topological 1-graphs, Operator theory, operator algebras, and applications, Contemporary Mathematics, vol. 414, American Mathematical Society, Providence, RI, 2006, pp. 231–244.
- [16] _____, Groupoid models for the C*-algebras of topological higher-rank graphs, J. Operator Theory 57 (2007), no. 1, 95–120.

Thanks!