Product system models for twisted C^* -algebras of topological higher-rank graphs

Becky Armstrong

The University of Sydney

Wednesday, 26th July 2017

(Joint work with Nathan Brownlowe)

Becky Armstrong [Product system models for twisted](#page-23-0) C [∗]**-algebras of topological** k**-graphs 1 / 22**

Directed graph C^* -algebras and their generalisations

Definition (Katsura 2004)

 ${\sf A}$ $\bf topological$ graph is a quadruple ${\sf E}=({\sf E}^0,{\sf E}^1,r,s)$, such that ${\sf E}^0$ and ${\sf E}^1$ are locally compact Hausdorff spaces, $r\colon E^1\to E^0$ is a continuous map, and $s\colon E^1\to E^0$ is a local homeomorphism.

The $\mathsf{topological}$ graph correspondence of E is a $\mathcal{C}_0(E^0)$ -correspondence $X(E) \subseteq C(E^1)$ with bimodule structure given by

$$
(h \cdot f)(e) \coloneqq h(r(e)) f(e) \text{ and } (f \cdot h)(e) \coloneqq f(e) h(s(e)),
$$

and

$$
\langle f, g \rangle_{X(E)}(v) \coloneqq \sum_{e \in s^{-1}(v)} \overline{f(e)}g(e).
$$

Each topological graph E then has a Toeplitz algebra $\mathcal{T}(X(E))$, and a Cuntz–Pimsner algebra $\mathcal{O}(X(E))$.

Definition (Yeend 2006)

Let $k \in \mathbb{N} \setminus \{0\}$. A **topological** k-graph is a pair (Λ, d) consisting of a small category $\Lambda = (\mathsf{Obj}(\Lambda), \mathsf{Mor}(\Lambda), r, s, \circ)$ and a continuous functor $d \colon \Lambda \to \mathbb{N}^k$, called the $\operatorname{\mathbf{degree}}$ **map**, which satisfy

(i) $Obj(\Lambda)$ and $Mor(\Lambda)$ are both second-countable, locally compact Hausdorff spaces;

(ii) r, s : Mor(Λ) \rightarrow Obj(Λ) are continuous, and s is a local homeomorphism;

(iii) the composition map

 \circ : $\Lambda \times_c \Lambda := \{ (\lambda, \mu) \in \Lambda \times \Lambda \mid s(\lambda) = r(\mu) \} \rightarrow \Lambda$

is continuous and open, where $\Lambda \times_{c} \Lambda$ has the subspace topology inherited from the product topology on $\Lambda \times \Lambda$; and

(iv) the **unique factorisation property**: for all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ such that $d(\lambda) = m + n$, there exists a unique pair $(\mu, \nu) \in \Lambda \times_{c} \Lambda$ such that $\lambda = \mu \nu$, $d(\mu) = m$, and $d(\nu) = n$.

We call the elements of Obj(Λ) **vertices**, and the elements of Mor(Λ) **paths**. We call r the **range** map and s the **source** map.

For each $n \in \mathbb{N}^k$, we define $\Lambda^n := d^{-1}(n)$. We have $\Lambda^0 = \mathrm{Obj}(\Lambda)$.

Given $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $m \leq n \leq d(\lambda)$, there is a unique path $\lambda(m,n) \in \Lambda^{n-m}$, such that $\lambda = \mu \, \lambda(m,n) \, \nu$, for some (unique) $\mu \in \Lambda^m$ and ν ∈ Λ^{d(λ)−n}.

We say that Λ is source-free if, for each $v \in \Lambda^0$ and $n \in \mathbb{N}^k$, $r|_{\Lambda^n}^{-1}(v) \neq \emptyset$.

We say that Λ is <mark>proper</mark> if, for each $n ∈ ℕ^k$, $r|_{\Lambda^n}$ is a proper map, in the sense that for any compact subset V of Λ^0 , $r|_{\Lambda^n}^{-1}(V)$ is a compact subset of Λ^n .

Let Ω_k be the category with

- $\mathsf{Obj}(\Omega_\mathsf{k}) \coloneqq \mathbb{N}^\mathsf{k};$
- $\mathsf{Mor}(\Omega_k) \coloneqq \{ (m,n) \in \mathbb{N}^k \times \mathbb{N}^k \mid m \leq n \};$
- $r(m, n) := m$;
- $s(m, n) := n$; and
- **c** composition $(m, n)(n, p) := (m, p)$.

Define a functor $d \colon \Omega_k \to \mathbb{N}^k$ by $d(m, n) := n - m$.

Then (Ω_k, d) is a k-graph.

The infinite-path space

Definition

Let Λ be a proper, source-free topological k-graph. The **infinite-path space** of Λ is the set

$$
\Lambda^\infty\coloneqq\{x\colon \Omega_k\to \Lambda\mid x\text{ is a k-graph morphism}\}.
$$

For any subset U of Λ , we define

$$
Z(U) \coloneqq \{x \in \Lambda^\infty \mid x(0,n) \in U \text{ for some } n \in \mathbb{N}^k\}.
$$

Proposition (Yeend 2006)

Let Λ be a proper, source-free topological k-graph. The collection

 $\{Z(U) | U$ is an open subset of Λ^n for some $n \in \mathbb{N}^k\}$

is a basis for a locally compact Hausdorff topology on Λ^{∞} .

Building C^* [-correspondences from topological](#page-1-0) k -graphs

For each $n \in \mathbb{N}^k$, there is a local homeomorphism $T^n \colon \Lambda^\infty \to \Lambda^\infty$ given by $T^{n}(x)(p, q) \coloneqq x(p+n, q+n)$. We call each T^{n} a shift map.

Proposition

Let Λ be a proper, source-free topological k-graph. For each $n \in \mathbb{N}^k$, the quadruples $\Lambda_n \coloneqq (\Lambda^0, \Lambda^n, r|_{\Lambda^n}, s|_{\Lambda^n})$ and $\Lambda_{\infty,n} \coloneqq (\Lambda^\infty, \Lambda^\infty, \mathcal T^0, \mathcal T^n)$ are topological graphs.

For each $n \in \mathbb{N}^k$, let $X_n \coloneqq X(\Lambda_n)$ and $Y_n \coloneqq X(\Lambda_{\infty,n})$ be the topological graph correspondences associated to Λ_n and $\Lambda_{\infty,n}$, respectively. The homomorphisms implementing the left actions, $\phi_{X_n}\colon C_0(\Lambda^0)\to {\cal L}(X_n)$ and $\phi_{Y_n}\colon C_0(\Lambda^\infty)\to {\cal L}(Y_n)$, are both injective and have range in the compact operators.

Definition

A **continuous** T**-valued** 2**-cocycle** on a topological k-graph Λ is a continuous map $c: \Lambda \times_{c} \Lambda \rightarrow \mathbb{T}$ satisfying

\n- (C1)
$$
c(\lambda, \mu)c(\lambda\mu, \nu) = c(\lambda, \mu\nu)c(\mu, \nu)
$$
; and
\n- (C2) $c(\lambda, s(\lambda)) = c(r(\lambda), \lambda) = 1$, for all $\lambda \in \Lambda$.
\n

We define $\underline{Z}^2(\Lambda,\mathbb{T})$ to be the group of continuous $\mathbb{T}\text{-}$ valued 2-cocycles on $\Lambda.$

Example (A–Brownlowe 2017)

Let Λ be a topological *k*-graph, and β an action of \mathbb{Z}^I by automorphisms of Λ .

We can form a topological $(k+l)$ -graph $\mathsf{\Gamma} \coloneqq \mathsf{\Lambda} \times_{\beta} \mathbb{Z}^{l}$ as follows:

- $Obj(\Gamma) \coloneqq \Lambda^0 \times \{0\}$, and $Mor(\Gamma) \coloneqq \Lambda \times \mathbb{N}^I$, both with the product topology;
- $r(\mu, m) := (r_{\Lambda}(\mu), 0)$, and $s(\mu, m) := (\beta_{-m}(s_{\Lambda}(\mu)), 0)$;
- **o** composition is given by $(\mu, m)(\nu, n) := (\mu \beta_m(\nu), m + n)$, whenever $s_{\Lambda}(\mu) = r_{\Lambda}(\beta_m(\nu))$; and
- $d(\mu, m) := (d_{\Lambda}(\mu), m) \in \mathbb{N}^{k+l}.$

If Λ is proper and source-free, then so is Γ.

Example (A–Brownlowe 2017)

We can construct several continuous T-valued 2-cocycles on Γ. For each $q \in \mathbb{N} \setminus \{0\}$ and $m \in \mathbb{N}^q$, we define $|m| \coloneqq \sum_{i=1}^q m_i$.

Let $f: \Lambda \to \mathbb{T}$ be a continuous functor such that $f \circ \beta_m = f$, for all $m \in \mathbb{N}^l$. For example, take $f(\mu)\coloneqq e^{i|d(\mu)|}.$ We define $c_f\in \underline{Z}^2(\Gamma,\mathbb{T})$ by

$$
c_f((\mu,m),(\nu,n)):=f(\nu)^{|m|}.
$$

Let $\omega\colon \mathbb{N}^I\to \mathbb{T}$ be a continuous homomorphism. We define $c_\omega\in \underline{Z}^2(\Gamma,\mathbb{T})$ by $c_\omega((\mu,m),(\nu,n))\coloneqq \omega(m)^{|d(\nu)|}.$

Let A be a C^* -algebra. A $\bm{\mathsf{product}}$ system over \mathbb{N}^k is a semigroup $X=\sqcup_{n\in\mathbb{N}^k}X_n$ such that

- (i) each X_n is an A-correspondence, with the homomorphism implementing the left action denoted by $\phi_{X_n} \colon A \to \mathcal{L}(X_n)$;
- (ii) the A-correspondence X_0 is a copy of $_A A_A$;
- (iii) for each nonzero $m, n \in \mathbb{N}^k$, the map $X_m \times X_n \to X_{m+n}$ given by $x \otimes y \mapsto xy$ extends to an isomorphism of A-correspondences $X_m \otimes_A X_n \cong X_{m+n},$ and
- (iv) $ax = a \cdot x$ and $xa = x \cdot a$, for each $x \in X$ and $a \in X_0$.

We say that X is **compactly aligned**, if, for all $S \in \mathcal{K}(X_m)$ and $T \in \mathcal{K}(X_n)$, we have

$$
(S\otimes_A 1_{(m\vee n)-m})(T\otimes_A 1_{(m\vee n)-n})\in K(X_{m\vee n}).
$$

A $\mathop{\mathsf{representation}}\nolimits \psi$ of a product system X in a C^* -algebra B is a linear map $\psi: X \to B$ such that

 (\mathfrak{i}) each (ψ_n, ψ_0) is a representation of X_n , where $\psi_n \coloneqq \psi|_{X_n};$ and

(ii) $\psi_{m+n}(xy) = \psi_m(x)\psi_n(y)$, for all $x \in X_m$, $y \in X_n$.

For each $n\in\mathbb{N}^k$, there is a homomorphism $\psi^{(n)}\colon \mathcal{K}(X_n)\to B$ such that $\psi^{(n)}(\Theta_{x,y}) = \psi_n(x)\psi_n(y)^*.$

If X is a compactly aligned product system of A-correspondences, we say that a representation ψ of X is **Nica covariant** if, for each $S \in \mathcal{K}(X_m)$ and $T \in \mathcal{K}(X_n)$, we have

$$
\psi^{(m)}(S)\psi^{(n)}(T)=\psi^{(m\vee n)}\Big((S\otimes_A 1_{(m\vee n)-m})(T\otimes_A 1_{(m\vee n)-n})\Big).
$$

Theorem (Fowler 2002)

There is a universal C^* -algebra $\mathcal{NT}(X)$, called the **Nica–Toeplitz algebra of** X, which is generated by an isometric Nica-covariant representation $i_X \colon X \to \mathcal{NT}(X)$. That is, if *ψ* is a Nica-covariant representation of X, then there exists a homomorphism $\psi^{\mathcal{NT}}$ such that $\psi^{\mathcal{NT}} \circ i_{\mathsf{X}} = \psi$.

Suppose that X is a product system of A-correspondences such that each left action $\phi_{\boldsymbol{X}_n}$ is injective and has range in $\mathcal{K}(X_n).$ We say that a representation ζ of X is **Cuntz–Pimsner covariant** if

$$
\zeta^{(n)}(\phi_{X_n}(a))=\zeta_0(a),
$$

for all $a \in A$ and $n \in \mathbb{N}^k$.

Theorem (Fowler 2002)

There is a universal C^* -algebra $O(X)$, called the **Cuntz–Pimsner algebra of** X, which is generated by an isometric Cuntz–Pimsner-covariant representation $j_X: X \to \mathcal{O}(X)$. That is, if ζ is a Cuntz–Pimsner-covariant representation of X, then there exists a homomorphism $\zeta^\mathcal{O}$ such that $\zeta^\mathcal{O} \circ j_X = \zeta$. There is a quotient map $q_X : \mathcal{NT}(X) \to \mathcal{O}(X)$ satisfying $j_X = q_X \circ i_X$.

A product system built from finite paths

Let Λ be a proper, source-free topological *k*-graph, and $c\in \underline{Z}^2(\Lambda,\mathbb{T}).$ Recall that $\Lambda_n=(\Lambda^0,\Lambda^n,r|_{\Lambda^n},s|_{\Lambda^n})$, and $X_n=X(\Lambda_n)$, for each $n\in\mathbb{N}^k$.

Proposition (A–Brownlowe 2017)

For $f \in X_m$ and $g \in X_n$, define fg : $\Lambda^{m+n} \to \mathbb{C}$ by

 $(fg)(\lambda) := c(\lambda(0, m), \lambda(m, m + n)) f(\lambda(0, m)) g(\lambda(m, m + n)).$

Then fg $\in X_{m+n}$, and under this multiplication, the family

$$
X\coloneqq\bigsqcup_{n\in\mathbb{N}^k}X_n
$$

of $C_0(\Lambda^0)$ -correspondences is a compactly aligned product system over \mathbb{N}^k .

Definition (A–Brownlowe 2017)

We define the **twisted Toeplitz algebra** T C ∗ (Λ*,* c) to be the Nica–Toeplitz algebra $\mathcal{NT}(X)$.

We define the **twisted Cuntz–Krieger algebra** C ∗ (Λ*,* c) to be the Cuntz–Pimsner algebra $\mathcal{O}(X)$.

A product system built from infinite paths

Let Λ be a proper, source-free topological *k*-graph, and $c\in \underline{Z}^2(\Lambda,\mathbb{T}).$ Recall that $\Lambda_{\infty,n}=(\Lambda^\infty,\Lambda^\infty,\,T^0,\,T^n)$, and $Y_n=X(\Lambda_{\infty,n})$, for each $n\in\mathbb{N}^k.$

Proposition (A–Brownlowe 2017)

For $f \in Y_m$ and $g \in Y_n$, define fg: $\Lambda^{\infty} \to \mathbb{C}$ by

$$
(fg)(x) := c(x(0, m), x(m, m + n)) f(x) g(Tm(x)).
$$

Then fg $\in Y_{m+n}$, and under this multiplication, the family

$$
Y:=\bigsqcup_{n\in\mathbb{N}^k}Y_n
$$

of $C_0(\Lambda^\infty)$ -correspondences is a compactly aligned product system over \mathbb{N}^k .

Proposition (A–Brownlowe 2017)

For each $n \in \mathbb{N}^k$, there is a map $\alpha_n \colon X_n \to Y_n$, given by $\alpha_n(f)(x) \coloneqq f(x(0, n))$, for all $f \in X_n$ and $x \in \Lambda^\infty$. We have

\n- (i)
$$
\alpha_m(g \cdot f) = \alpha_0(g) \cdot \alpha_m(f)
$$
, for all $f \in X_m$, $g \in C_0(\Lambda^0)$;
\n- (ii) $\alpha_m(f \cdot g) = \alpha_m(f) \cdot \alpha_0(g)$, for all $f \in X_m$, $g \in C_0(\Lambda^0)$;
\n- (iii) $\langle \alpha_m(f), \alpha_m(g) \rangle_{Y_m} = \alpha_0(\langle f, g \rangle_{X_m})$, for all $f, g \in X_m$;
\n- (iv) $\alpha_{m+n}(fg) = \alpha_m(f)\alpha_n(g)$, for all $f \in X_m$, $g \in X_n$; and
\n- (v) α_n is injective, for each $n \in \mathbb{N}^k$.
\n

Theorem (A–Brownlowe 2017)

Let Λ be a proper, source-free topological k-graph, and $c\in \underline{Z}^2(\Lambda, \mathbb{T}).$ Then $\mathcal{TC}^*(\Lambda,\mathsf{c})=\mathcal{NT}(X)$ embeds into $\mathcal{NT}(Y)$, and $\mathcal{C}^*(\Lambda,\mathsf{c})=\mathcal{O}(X)$ is isomorphic to $O(Y)$, as illustrated by the following commuting diagram.

Becky Armstrong [Product system models for twisted](#page-0-0) C [∗]**-algebras of topological** k**-graphs 20 / 22**

- [1] B. Armstrong and N. Brownlowe, Product systems models for twisted C^{*}-algebras of topological higher-rank graphs, preprint, 2017, arXiv:1706.09358v1 [math.OA].
- [2] N. Brownlowe, Realising the C^{*}-algebra of a higher-rank graph as an Exel crossed product, J. Operator Theory **68** (2012), 101–130.
- [3] T.M. Carlsen, N.S. Larsen, A. Sims, and S.T. Vittadello, *Co-universal algebras associated* to product systems, and gauge-invariant uniqueness theorems, Proceedings of the London Mathematical Society **103** (2011), no. 4, 563–600.
- [4] C. Farthing, D. Pask, and A. Sims, Crossed products of k-graph C^* -algebras by \mathbb{Z}^l , Houston J. Math. **35** (2009), 903–933.
- [5] J. Fletcher, A uniqueness theorem for the Nica–Toeplitz algebra of a compactly aligned product system, preprint, 2017, arXiv:1705.00775v1 [math.OA].

References

- [6] N.J. Fowler, Discrete product systems of Hilbert bimodules, Pacific Journal of Mathematics **204** (2002), no. 2, 335–375.
- [7] T. Katsura, A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C ∗ -algebras I, fundamental results, Trans. Amer. Math. Soc. **356** (2004), no. 11, 4287–4322.
- [8] A. Kumjian and D. Pask, Higher Rank Graph C[∗] -Algebras, New York J. Math. **6** (2000), $1 - 20$.
- [9] A. Kumjian, D. Pask, and I. Raeburn, Cuntz–Krieger algebras of directed graphs, Pacific J. Math. **184** (1998), 161–174.
- [10] A. Kumjian, D. Pask, I. Raeburn, and J. Renault, Graphs, groupoids, and Cuntz–Krieger algebras, J. Funct. Anal. **144** (1997), 505–541.
- [11] A. Kumjian, D. Pask, and A. Sims, Homology for higher-rank graphs and twisted C ∗ -algebras, J. Funct. Anal. **263** (2012), 1539–1574.
- [12] ____, On twisted higher-rank graph C^{*}-algebras, Trans. Amer. Math. Soc. 367 (2015), 5177–5216.
- [13] A. Sims and T. Yeend, C*-algebras associated to product systems of Hilbert bimodules, J. Operator Theory **64** (2010), no. 2, 349–376.
- [14] S. Yamashita, Cuntz's $ax + b$ -semigroup C^{*}-algebra over $\mathbb N$ and product system C ∗ -algebras, J. Ramanujan Mathematical Society **24** (2009), no. 3, 299–322.
- [15] T. Yeend, Topological higher-rank graphs and the C^{*}-algebras of topological 1-graphs, Operator theory, operator algebras, and applications, Contemporary Mathematics, vol. 414, American Mathematical Society, Providence, RI, 2006, pp. 231–244.
- [16] ____, Groupoid models for the C^{*}-algebras of topological higher-rank graphs, J. Operator Theory **57** (2007), no. 1, 95–120.

Thanks!