# Totally disconnected locally compact groups and operator algebras

### George Willis The University of Newcastle

July 27th, 2017





## Totally disconnected locally compact groups

The locally compact group *G* is *totally disconnected* if the only connected components in *G* are singletons.

#### Theorem

Let G be a locally compact group. Then the connected component of the identity, N, is a closed normal subgroup of G and G/N is a t.d.l.c. group.

### Theorem (van Dantzig, 1930's)

Suppose that G is a t.d.l.c. group and let  $\mathcal{O} \ni 1$  be neighbourhood of the identity. Then there is a compact open subgroup  $V \subseteq \mathcal{O}$ .

### Compact open subgroups are commensurated

Let U be a compact open subgroup of G. Then

 $[U: U \cap x U x^{-1}] < \infty$  and  $[x U x^{-1}: U \cap x U x^{-1}] < \infty$  for every  $x \in G$ ,

*i.e.*, *U* is a *commensurated* subgroup of *G*.

On the other hand, if *G* is any group and *H* is a commensurated subgroup of *G*, then there is a t.d.l.c. group  $\widetilde{G}$  and a homomorphism  $\varphi : G \to \widetilde{G}$  such that  $\overline{\varphi(H)}$  is a compact open subgroup of  $\widetilde{G}$ .

G is the *relative profinite completion* of the pair (G, H),

see C. D. Reid and P. R. Wesolek, *Homomorphisms into totally disconnected, locally compact groups with dense image,* arXiv:1509.00156v1 and references therein.

## Weight functions and the scale function

For a fixed compact open  $U \leq G$  define *weight* function

$$w_U(x) = [xUx^{-1} : U \cap xUx^{-1}], \quad (x \in G).$$

Then  $w_U(xy) \le w_U(x)w_U(y)$  for all  $x, y \in G$ , that is,  $w_U$  is *submultiplicative*.

The *scale* of  $x \in G$  is the positive integer

 $s(x) = \min \{ w_U(x) \mid U \le G \text{ is compact and open} \}, (x \in G).$ 

Say that U is *minimising* if the minimum is attained at U.

It may be shown that, for every  $U \leq G$  compact and open,

$$s(x) = \lim_{n \to \infty} w_U(x^n)^{\frac{1}{n}}.$$

## A weighted convolution algebra

Given  $U \leq G$  compact and open, let

$$L^1(G, w_U) = \left\{ f \in L(G) \mid \int_G f(x) w_U(x) \, \mathrm{d}x < \infty \right\}.$$

Then  $L^1(G, w_U)$  is a Banach algebra under convolution.

For  $U, V \leq G$  compact and open, there is B > 1 such that

$$B^{-1}w_V \leq w_U \leq Bw_V.$$

Hence  $L^1(G, w_U)$  does not depend on U.

- $w_U$  is bounded  $\iff$  there is  $V \triangleleft G$  compact and open.
- ► s(x) is the spectral radius of the operator on L<sup>1</sup>(G, w<sub>U</sub>) of translation by x.

# A weighted convolution algebra 2

The convolution algebra  $L^1(G, w_U)$  is just natural for the t.d.l.c. group *G* as is  $L^1(G)$ .

#### Problem

How do properties of the Banach algebra  $L^1(G, w_U)$  reflect the structure of the totally disconnected, locally compact group *G*?

- Weighted convolution algebras L<sup>1</sup>(G, w) often have non-trivial cohomology (point derivations in the commutative case).
- ► Unlike L<sup>1</sup>(G) and C\*-algebras, L<sup>1</sup>(G, w<sub>U</sub>) does not have a unique natural norm.

## A characterisation of minimising subgroups

Theorem Let  $x \in G$  and  $U \leq G$  be compact and open. Put

$$U_+ = \bigcap_{k \ge 0} x^k U x^{-k}$$
 and  $U_- = \bigcap_{k \le 0} x^k U x^{-k}$ .

Then U is minimising for x if and only if TA  $U = U_+U_-$ , and TB  $U_{++} := \bigcup_{k \in \mathbb{Z}} x^k U_+ x^{-k}$  is closed. In this case,  $s(x) = [xU_+x^{-1} : U_+]$ .

A compact open subgroup satisfying TA and TB is *tidy* for *x*.

## The tree representation theorem

The group  $V_{++} \ltimes \langle x \rangle$  is an HNN-extension and so Bass-Serre theory implies the following.

#### Theorem

Suppose that U is tidy for  $x \in G$ . Then  $V_{++} \ltimes \langle x \rangle$  is a closed subgroup of G. There is a regular tree  $\mathcal{T}_{q+1}$ , where q = s(x), and a homomorphism  $\rho : V_{++} \ltimes \langle x \rangle \rightarrow Aut(\mathcal{T}_{q+1})$  such that:

- ρ(V<sub>++</sub> κ ⟨x⟩) is a closed subgroup of Aut(T<sub>q+1</sub>) fixing an
   end, ω, of the tree;
- ker ρ is the largest compact normal subgroup of V<sub>++</sub> ⊨ ⟨x⟩; and
- ρ(x) is a hyperbolic element of Aut(T<sub>q+1</sub>) which translates by distance 1 and has ω is its attracting end.

Closed subgroups of Aut( $\mathcal{T}_{q+1}$ ) fixing and end of the tree are key ingredients in the structure theory of t.d.l.c. groups corresponding to the (ax + b)-group and  $\mathbb{R} \ltimes \mathbb{R}^+$  in Lie theory.

Representations and C\*-algebras of  $\rho(V_{++} \ltimes \langle x \rangle)$ 

### Problem

What are the unitary representations of the closed subgroups of  $Aut(T_{q+1})$  which fix an end of  $T_{q+1}$ ?

(There are uncountably many such groups.)

### Problem

Induce representations of  $\rho(V_{++} \ltimes \langle x \rangle)$  to representations of *G* (for certain groups *G*).

#### Problem

How much information about  $\rho(V_{++} \ltimes \langle x \rangle)$  is retained by  $C^* \rho(V_{++} \ltimes \langle x \rangle)$ ?

## Contraction groups 1

### Theorem (The Mautner phenomenon)

Let  $\sigma : G \to U(\mathfrak{H})$  be a unitary representation of the locally compact group G and suppose that  $\sigma(x)\xi = \xi$  for some  $x \in G$ and non-zero  $\xi \in V$ . Then  $\sigma(h)\xi = \xi$  for every  $h \in G$  such that  $x^n h x^{-n} \to 1$  as  $n \to \infty$ .

The set  $con(x) = \{h \in G \mid x^n h x^{-n} \to 1 \text{ as } n \to \infty\}$  is the *contraction subgroup* for *x*.

Thus the Mautner phenomenon says that, if  $\xi$  is fixed by x, then  $\xi$  is fixed by every  $h \in \overline{\operatorname{con}(x)}$ .

# Contraction groups 2

### Theorem (Baumgartner & W.)

Suppose that V is tidy for  $x \in G$ . Then  $C := \overline{\operatorname{con}(x^{-1})}$  is a co-compact normal subgroup of  $V_{++}$  invariant under conjugation x and  $s(x|_C) = s(x)$ .

### Theorem (Glöckner & W.)

Suppose that H := con(x) is closed. Then

- ► H = T × D, where T, D are closed x-invariant subgroups of H such that T is torsion and D is divisible;
- D is a direct sum of nilpotent p-adic Lie groups for a finite set of primes p; and
- ► T has a finite composition series of x-invariant subgroups where the composition factors are isomorphic to (∏<sub>n≥0</sub> F<sub>i</sub>) × ∑<sub>n<0</sub> F<sub>i</sub>, for some finite simple group F<sub>i</sub> and the automorphism induced by x is the shift.