C[∗]-Algebras generated by semigroups of partial isometries

Ilija Tolich

Authors: Astrid an Huef, Iain Raeburn, Ilija Tolich

Ilija Tolich C^* [-Algebras generated by semigroups of partial isometries](#page-41-0)

K 何 ▶ K ヨ ▶ K ヨ ▶

Partial Isometries

Definition

A bounded operator *T* on a Hilbert space *H* is a partial $\mathsf{isometry} \text{ if } \| \mathit{Th} \| = \| h \| \text{ for all } h \in (\ker \mathit{T})^\perp.$

K 何 ▶ K ヨ ▶ K ヨ ▶

Partial Isometries

Definition

A bounded operator *T* on a Hilbert space *H* is a partial $\mathsf{isometry} \text{ if } \| \mathit{Th} \| = \| h \| \text{ for all } h \in (\ker \mathit{T})^\perp.$

Lemma

The following are equivalent:

- 1. *T is a partial isometry.*
- 2. $TT^*T = T$
- 3. *TT*[∗] *is a projection onto* range *T .*

Partial Isometries

Definition

A bounded operator *T* on a Hilbert space *H* is a partial $\mathsf{isometry} \text{ if } \| \mathit{Th} \| = \| h \| \text{ for all } h \in (\ker \mathit{T})^\perp.$

Lemma

The following are equivalent:

- 1. *T is a partial isometry.*
- 2. $TT^*T = T$
- 3. *TT*[∗] *is a projection onto* range *T .*
- 4. *T* ∗ *is a partial isometry.*
- 5. $T^*TT^* = T^*$
- 6. T^*T *is a projection onto* (ker $T)^{\perp}$.

4 0 8 **Ilija Tolich** C^{*}[-Algebras generated by semigroups of partial isometries](#page-0-0)

 $\left\{ \bigoplus_{i=1}^{n} x_i \in \mathbb{R} \right\} \times \left\{ \bigoplus_{i=1}^{n} x_i \right\}$

 299

∍

Let *P* be a subsemigroup of a group *G* such that $P \cap P^{-1} = \{e\}.$ The pair (*G*, *P*) defines two partial orders on *G*: A left partial order on *G* defined by

$$
x \leq_1 y \text{ if } x^{-1}y \in P, \quad (\Leftrightarrow y \in xP)
$$

メタト メミト メミト

Let *P* be a subsemigroup of a group *G* such that $P \cap P^{-1} = \{e\}.$ The pair (*G*, *P*) defines two partial orders on *G*: A left partial order on *G* defined by

$$
x \leq_1 y \text{ if } x^{-1}y \in P, \quad (\Leftrightarrow y \in xP)
$$

and a right partial order on *G* defined by

$$
x \leq_r y \text{ if } yx^{-1} \in P. \quad (\Leftrightarrow y \in Px)
$$

If *G* is abelian both orders are the same.

Let *P* be a subsemigroup of a group *G* such that $P \cap P^{-1} = \{e\}.$ The pair (*G*, *P*) defines two partial orders on *G*: A left partial order on *G* defined by

$$
x \leq_1 y \text{ if } x^{-1}y \in P, \quad (\Leftrightarrow y \in xP)
$$

and a right partial order on *G* defined by

$$
x \leq_r y \text{ if } yx^{-1} \in P. \quad (\Leftrightarrow y \in Px)
$$

If *G* is abelian both orders are the same.

Definition

The partially ordered group (*G*, *P*) is said to be *doubly quasi-lattice ordered* if, in both left and right orders, any pair $x, y \in G$ with a common upper bound in *P* has a least common upper bound in *P*.

イロト イ押 トイヨ トイヨ トー

 QQ

Let *P* be a subsemigroup of a group *G* such that $P \cap P^{-1} = \{e\}.$ The pair (*G*, *P*) defines two partial orders on *G*: A left partial order on *G* defined by

$$
x \leq_1 y \text{ if } x^{-1}y \in P, \quad (\Leftrightarrow y \in xP)
$$

and a right partial order on *G* defined by

$$
x \leq_r y \text{ if } yx^{-1} \in P. \quad (\Leftrightarrow y \in Px)
$$

If *G* is abelian both orders are the same.

Definition

The partially ordered group (*G*, *P*) is said to be *doubly quasi-lattice ordered* if, in both left and right orders, any pair $x, y \in G$ with a common upper bound in *P* has a least common upper bound in *P*.

We denote the least upper bound of *x*, *y* in the left order as $x \vee y$ and in the right order as $x \vee y$. スライモン

Theorem (Crisp-Laca)

(*G*, *P*) *is quasi-lattice ordered in the left order if and only if every pair a, b* \in *P* has a greatest right lower bound a \wedge ^r *b*.

Theorem (Crisp-Laca)

(*G*, *P*) *is quasi-lattice ordered in the left order if and only if every pair a, b* \in *P has a greatest right lower bound a* \wedge *r b.*

Corollary

The following are equivalent:

- ► (*G*, *P*) *is doubly quasi-lattice ordered.*
- ^I *Any pair x*, *y* ∈ *G with a common left upper bound in P has a least common left upper bound in P and every pair a*, *b* ∈ *P* has a greatest left lower bound a \wedge _{*l*} *b*.
- ^I *Any pair x*, *y* ∈ *G with a common left upper bound in P has a least common right upper bound in P and every pair a*, *b* ∈ *P* has a greatest right lower bound a \wedge _{*l*} *b*.

つへへ

Ilija Tolich C^* [-Algebras generated by semigroups of partial isometries](#page-0-0)

K ロ ト K 個 ト K 君 ト K 君 ト

重。

 299

 \blacktriangleright $(\mathbb{Z}^2, \mathbb{N}^2)$ is a doubly quasi-lattice ordered group. $(a, b) \le (c, d)$ if $a \le c$ and $b \le d$.

 $(a, b) \vee (c, d) = (\max\{a, c\}, \max\{b, d\}).$

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

 $2Q$

э.

- \blacktriangleright $(\mathbb{Z}^2, \mathbb{N}^2)$ is a doubly quasi-lattice ordered group. $(a, b) < (c, d)$ if $a < c$ and $b < d$. $(a, b) \vee (c, d) = (max{a, c}, max{b, d}).$
- \blacktriangleright Let \mathbb{F}_2 be the free group with generators $\{a, b\}$, and let \mathbb{F}_2^+ 2 be the free semigroup. Then $(\mathbb{F}_2,\mathbb{F}_2^+)$ $_2^{\scriptscriptstyle (+)}$ is a doubly quasi-lattice ordered group.

$$
a\leq_1 ab\qquad b\leq_r ab
$$

Most elements have no common upper bound e.g. *a*, *b* have no common upper bound.

KED KAPD KED KED E YORG

- \blacktriangleright $(\mathbb{Z}^2, \mathbb{N}^2)$ is a doubly quasi-lattice ordered group. $(a, b) < (c, d)$ if $a < c$ and $b < d$. $(a, b) \vee (c, d) = (max{a, c}, max{b, d}).$
- \blacktriangleright Let \mathbb{F}_2 be the free group with generators $\{a, b\}$, and let \mathbb{F}_2^+ 2 be the free semigroup. Then $(\mathbb{F}_2,\mathbb{F}_2^+)$ $_2^{\scriptscriptstyle (+)}$ is a doubly quasi-lattice ordered group.

$$
a\leq_1 ab\qquad b\leq_r ab
$$

Most elements have no common upper bound e.g. *a*, *b* have no common upper bound.

► ($\mathbb{Q} \rtimes \mathbb{Q}^*, \mathbb{N} \rtimes \mathbb{N}^\times$) is doubly quasi-lattice ordered. For $(m, a), (n, b) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$ we have

 $(m, a) \vee (n, b) < \infty \Leftrightarrow (m + a \mathbb{N}) \cap (n + b \mathbb{N}) \neq \emptyset.$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

ミー $2Q$

- \blacktriangleright $(\mathbb{Z}^2, \mathbb{N}^2)$ is a doubly quasi-lattice ordered group. $(a, b) < (c, d)$ if $a < c$ and $b < d$. $(a, b) \vee (c, d) = (max{a, c}, max{b, d}).$
- \blacktriangleright Let \mathbb{F}_2 be the free group with generators $\{a, b\}$, and let \mathbb{F}_2^+ 2 be the free semigroup. Then $(\mathbb{F}_2,\mathbb{F}_2^+)$ $_2^{\scriptscriptstyle (+)}$ is a doubly quasi-lattice ordered group.

$$
a\leq_1 ab\qquad b\leq_r ab
$$

Most elements have no common upper bound e.g. *a*, *b* have no common upper bound.

► ($\mathbb{Q} \rtimes \mathbb{Q}^*, \mathbb{N} \rtimes \mathbb{N}^\times$) is doubly quasi-lattice ordered. For $(m, a), (n, b) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$ we have

 $(m, a) \vee (n, b) < \infty \Leftrightarrow (m + a \mathbb{N}) \cap (n + b \mathbb{N}) \neq \emptyset.$

However, $(m, a) \vee_r (n, b) < \infty$ for all $(m, a), (n, b) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$ $(m, a), (n, b) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$ $(m, a), (n, b) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$ [.](#page-41-0)

► Let $c, d \geq 0$ and

$$
BS(c, d) := \langle a, b | ab^c = b^d a \rangle.
$$

Let BS $(c, d)^+$ be the subsemigroup generated by $\{a, b, e\}.$ Then (BS(*c*, *d*), BS(*c*, *d*) ⁺) is a doubly quasi-lattice ordered group. **(Spielberg)**

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

G.

► Let $c, d \geq 0$ and

$$
BS(c, d) := \langle a, b | ab^c = b^d a \rangle.
$$

Let BS $(c, d)^+$ be the subsemigroup generated by $\{a, b, e\}.$ Then (BS(*c*, *d*), BS(*c*, *d*) ⁺) is a doubly quasi-lattice ordered group. **(Spielberg)**

If $d \geq 0$ then BS(1, $-d$) is a quasi-lattice ordered group (in the left order) but not a doubly quasi-lattice ordered group.

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

4 0 8 **Ilija Tolich** C^{*}[-Algebras generated by semigroups of partial isometries](#page-0-0)

K 御 ▶ K ヨ ▶ K ヨ ▶

 299

Definition

Let (*G*, *P*) be a doubly quasi-lattice ordered group. A *partial isometric representation* of *P* is a map $W : P \rightarrow A$ such that W_p is a partial isometry for all $p \in P$, $W_e = 1$ and $W_x W_y = W_{xy}$ for all $x, y \in P$.

Definition

Let (*G*, *P*) be a doubly quasi-lattice ordered group. A *partial isometric representation* of *P* is a map $W : P \rightarrow A$ such that W_p is a partial isometry for all $p \in P$, $W_e = 1$ and $W_x W_y = W_{xy}$ for all $x, y \in P$.

A partial isometric representation is *left-covariant* if it satisfies

$$
W_x W_x^* W_y W_y^* = \begin{cases} W_{x \vee_i y} W_{x \vee_i y}^* & \text{if } x \vee_i y < \infty. \\ 0 & \text{otherwise.} \end{cases}
$$

Definition

Let (*G*, *P*) be a doubly quasi-lattice ordered group. A *partial isometric representation* of *P* is a map $W : P \rightarrow A$ such that W_p is a partial isometry for all $p \in P$, $W_e = 1$ and $W_x W_y = W_{xy}$ for all $x, y \in P$.

A partial isometric representation is *left-covariant* if it satisfies

$$
W_x W_x^* W_y W_y^* = \begin{cases} W_{x \vee_i y} W_{x \vee_i y}^* & \text{if } x \vee_i y < \infty. \\ 0 & \text{otherwise.} \end{cases}
$$

A partial isometric representation is *right-covariant* if it satisfies

$$
W_x^* W_x W_y^* W_y = \begin{cases} W_{x \vee_r y}^* W_{x \vee_r y} & \text{if } x \vee_r y < \infty \\ 0 & \text{otherwise.} \end{cases}
$$

If a partial isometric representation is both left- and right-covariant we say that it is *covariant*.

 Ω

Covariant representations properties

We can rewrite the covariance identities as:

$$
W_X^* W_Y = W_X^* W_{X \vee_i y} W_{y^{-1}(X \vee_i y)}^*
$$

$$
W_X W_Y^* = W_{(X \vee_i y)X^{-1}}^* W_{X \vee_i y} W_Y^*
$$

Covariant representations properties

We can rewrite the covariance identities as:

$$
W_x^* W_y = W_x^* W_{x \vee_i y} W_{y^{-1}(x \vee_i y)}^*
$$

$$
W_x W_y^* = W_{(x \vee_i y)x^{-1}}^* W_{x \vee_i y} W_y^*
$$

Lemma

Let W : *P* → *A be a covariant partial isometric representation.* \mathcal{A} *ny product of the form* $\mathcal{W}_{n_1}\mathcal{W}_{n_2}^*\mathcal{W}_{n_3}\mathcal{W}_{n_4}^* \ldots$ *where* $n_i \in P$ *is* e^{i} *either 0 or may be expressed as* $W_{\rho}^*W_qW_r^*$ *for some* $p,q,r \in P$ *satisfying p* \leq _{*l*} *q and r* \leq _{*r*} *q*.

つへへ

Analogue of Truncated shifts

Definition Let $A\subset P.$ Define $J^A: P \rightarrow B(\ell^2(a))$ by

$$
J_{p}^{A} \epsilon_{a} = \begin{cases} \epsilon_{pa} & \text{if } pa \in A \\ 0 & \text{otherwise} \end{cases}.
$$

Lemma

- 1. $J^A_p J^A_q = J^A_{pq}$ if and only if for all a, $b \in A$ we have ${x \in P : a \leq r} x \leq r b} \subset A$.
- 2. *J ^A is left-covariant if and only if, for all a*, *b* ∈ *A with a common right upper bound in A, a* \wedge *r b* \in *A*.
- 3. *J ^A is right-covariant if and only if, for all a*, *b* ∈ *A with a common right lower bound in A, a* \vee *r* $b \in A$.

イロト イ押 トイヨ トイヨト

 QQ

Direct sums of Truncated shifts

Let (*G*, *P*) be a doubly quasi-lattice ordered group. For $a \in P$ let $I_a := \{x \in P : x \leq r a\}.$ Let $\{\epsilon_{\mathsf{x}}\}$ be an orthonormal basis for $\ell^2(I_{\mathsf{a}})$. Then $J^a: P \rightarrow B(\ell^2(I_a))$ defined

$$
J_{p}^{a} \epsilon_{x} = \begin{cases} \epsilon_{px} & \text{if } px \leq_{r} a \\ 0 & \text{otherwise} \end{cases}
$$

is a covariant partial isometric representation.

Direct sums of Truncated shifts

Let (*G*, *P*) be a doubly quasi-lattice ordered group. For $a \in P$ let $I_a := \{x \in P : x \leq r a\}.$ Let $\{\epsilon_{\mathsf{x}}\}$ be an orthonormal basis for $\ell^2(I_{\mathsf{a}})$. Then $J^a: P \rightarrow B(\ell^2(I_a))$ defined

$$
J_{\rho}^{a} \epsilon_{x} = \begin{cases} \epsilon_{px} & \text{if } px \leq_{r} a \\ 0 & \text{otherwise} \end{cases}
$$

is a covariant partial isometric representation. Let $J: P \to B(\oplus_{a \in P} \ell^2(I_a))$ be defined as $J_p = \oplus J_p^a.$ Let $C^*(J)$ be the C^{*}-algebra generated by $\{J_p : p \in P\}$.

つへへ

Direct sums of Truncated shifts

Let (*G*, *P*) be a doubly quasi-lattice ordered group. *For* $a \in P$ let $I_a := \{x \in P : x \leq r a\}.$ Let $\{\epsilon_{\mathsf{x}}\}$ be an orthonormal basis for $\ell^2(I_{\mathsf{a}})$. Then $J^a: P \rightarrow B(\ell^2(I_a))$ defined

$$
J_{\rho}^{a} \epsilon_{x} = \begin{cases} \epsilon_{\rho x} & \text{if } \rho x \leq_{r} a \\ 0 & \text{otherwise} \end{cases}
$$

is a covariant partial isometric representation. Let $J: P \to B(\oplus_{a \in P} \ell^2(I_a))$ be defined as $J_p = \oplus J_p^a.$ Let $C^*(J)$ be the C^{*}-algebra generated by $\{J_p : p \in P\}$.

Lemma

The set S := $\{J_p^*J_qJ_r^*: p, q, r \in P, p \leq q, r \leq r q\}$ is linearly *independent and* span *S is a dense unital* ∗*-subalgebra of C* ∗ (*J*)*.*

←ロト ←何 ト ← ヨ ト ← ヨ ト

つへへ

Proposition

There is a C[∗] *-algebra C*[∗] (*G*, *P*) *generated by partial isometries* {*v^p* : *p* ∈ *P*} *which has the following property: for every covariant partial isometric representation W* : *P* → *A there is a* $\mathsf{unital}\ \mathsf{homomorphism}\ \pi_{\mathsf{W}}: \mathsf{C}^*(\mathsf{G},\mathsf{P}) \rightarrow \mathsf{A} \ \mathsf{such}\ \mathsf{that}$ $\pi_W(V_p) = W_p$.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

 $2Q$

э.

Faithful Representations of *C* ∗ (*G*,*P*)

When is $\pi_J : C^*(G,P) \to C^*(J)$ faithful?

Proposition

There is a norm-decreasing linear idempotent $E: C^*(G, P) \rightarrow \overline{\operatorname{span}}\{ \mathsf{v}_\rho^*\mathsf{v}_\rho\mathsf{v}_r\mathsf{v}_r^*: \rho, r\in P\}$ *such that*

$$
E(\sum \lambda_{p,q,r}v_p^*v_qv_r^*)=\sum \lambda_{p,pr,r}v_p^*v_{pr}v_r^*.
$$

Faithful Representations of *C* ∗ (*G*,*P*)

When is $\pi_J : C^*(G,P) \to C^*(J)$ faithful?

Proposition

There is a norm-decreasing linear idempotent $E: C^*(G, P) \rightarrow \overline{\operatorname{span}}\{ \mathsf{v}_\rho^*\mathsf{v}_\rho\mathsf{v}_r\mathsf{v}_r^*: \rho, r\in P\}$ *such that*

$$
E(\sum \lambda_{p,q,r}v_p^*v_qv_r^*)=\sum \lambda_{p,pr,r}v_p^*v_{pr}v_r^*.
$$

Definition

A doubly quasi-lattice ordered group (*G*, *P*) is *amenable* if *E* is faithful for positive elements, in the sense that $E(a^*a) = 0$ implies $a = 0$.

Faithful Representations of *C* ∗ (*G*,*P*)

When is $\pi_J : C^*(G,P) \to C^*(J)$ faithful?

Proposition

There is a norm-decreasing linear idempotent

 $E: C^*(G, P) \rightarrow \overline{\operatorname{span}}\{ \mathsf{v}_\rho^*\mathsf{v}_\rho\mathsf{v}_r\mathsf{v}_r^*: \rho, r\in P\}$ *such that*

$$
E(\sum \lambda_{p,q,r}v_p^*v_qv_r^*)=\sum \lambda_{p,pr,r}v_p^*v_{pr}v_r^*.
$$

Definition

A doubly quasi-lattice ordered group (*G*, *P*) is *amenable* if *E* is faithful for positive elements, in the sense that $E(a^*a) = 0$ implies $a = 0$.

Theorem

The homomorphism π_J : $C^*(G, P) \to C^*(J)$ *is faithful if and only if* (*G*, *P*) *is amenable.* **≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト**

 2990

Faithful representations

Definition

Let $W: P \to A$ be a covariant partial isometric representation. Let $L_{(x_1,x_2)}^W = W_{x_1} W_{x_1}^* W_{x_2}^* W_{x_2}.$ A covariant partial isometric representations *W* : *P* → *A sees all projections* if, for every finite set $F \subset P_r \times P_l$ and $(x_1, x_2) \notin F$ such that (x_1, x_2) is a lower bound for *F*, we have

$$
\prod_{y\in F} (L_{(x_1,x_2)}^W - L_y^W) \neq 0.
$$

 Ω

Faithful representations

Definition

Let $W: P \to A$ be a covariant partial isometric representation. Let $L_{(x_1,x_2)}^W = W_{x_1} W_{x_1}^* W_{x_2}^* W_{x_2}.$ A covariant partial isometric representations *W* : *P* → *A sees all projections* if, for every finite set $F \subset P_r \times P_l$ and $(x_1, x_2) \notin F$ such that (x_1, x_2) is a lower bound for *F*, we have

$$
\prod_{y\in F}(L_{(x_1,x_2)}^W-L_y^W)\neq 0.
$$

Theorem

Let (G, P) *be an amenable group and let* $W : P \rightarrow A$ *be a covariant partial isometric representation. Further, let* π *W be the corresponding homomorphism of C*[∗] (*G*, *P*)*. If W sees all projections then* $π_W$ *is faithful.*

イロト イ押 トイヨ トイヨ トー

4 0 8 **Ilija Tolich** C^{*}[-Algebras generated by semigroups of partial isometries](#page-0-0)

∢⊖ਾ × 医电影 美国

 298

Definition

Suppose that (*G*, *P*) and (*K*, *Q*) are doubly quasi-lattice ordered groups. A *controlled map* is an order preserving homomorphism ϕ : (*G*, *P*) \rightarrow (*K*, *Q*) such that

1. the restriction $\phi|_P$: $P \rightarrow Q$ is finite-to-1,

Definition

Suppose that (*G*, *P*) and (*K*, *Q*) are doubly quasi-lattice ordered groups. A *controlled map* is an order preserving homomorphism ϕ : $(G, P) \rightarrow (K, Q)$ such that

- 1. the restriction $\phi|_P$: $P \rightarrow Q$ is finite-to-1,
- 2. for all $x, y \in P$ satisfying $x \vee y \neq \infty$ we have $\phi(x) \vee_i \phi(y) = \phi(x \vee_i y)$, and
- 3. for all $x, y \in P$ satisfying $x \vee y \neq \infty$ we have $\phi(x) \vee_r \phi(y) = \phi(x \vee_r y).$

イロト イ押ト イヨト イヨト

 Ω

Definition

Suppose that (*G*, *P*) and (*K*, *Q*) are doubly quasi-lattice ordered groups. A *controlled map* is an order preserving homomorphism ϕ : (*G*, *P*) \rightarrow (*K*, *Q*) such that

- 1. the restriction $\phi|_P$: $P \rightarrow Q$ is finite-to-1,
- 2. for all $x, y \in P$ satisfying $x \vee y \neq \infty$ we have $\phi(x) \vee_i \phi(y) = \phi(x \vee_i y)$, and
- 3. for all $x, y \in P$ satisfying $x \vee y \neq \infty$ we have $\phi(x) \vee_r \phi(y) = \phi(x \vee_r y).$

Theorem

Let (*G*, *P*) *and* (*K*, *Q*) *be doubly quasi-lattice ordered groups with a controlled map* ϕ : $(G, P) \rightarrow (K, Q)$ *. If K is amenable then* (*G*, *P*) *is amenable and C*[∗] (*G*, *P*) *is nuclear.*

イロメ 不優 トメ ヨ メ ス ヨ メー

 $2Q$

∍

4 0 8 **Ilija Tolich** C^{*}[-Algebras generated by semigroups of partial isometries](#page-0-0)

有 × 医电影 美国

 299

If *G* is an amenable group then (G, P) is amenable.

- 4 周 メ イ 周

- If *G* is an amenable group then (G, P) is amenable.
- \blacktriangleright (\mathbb{F}_n , \mathbb{F}_n^+) is amenable. The abelianization map $\phi: (\mathbb{F}_n,\mathbb{F}_n^+) \to (\mathbb{Z}^n,\mathbb{N}^n)$ given by $\phi(\boldsymbol{a}_i) = \boldsymbol{e}_i$ is a controlled map.

← 伊 * + ヨ * + ヨ *

- If *G* is an amenable group then (G, P) is amenable.
- \blacktriangleright (\mathbb{F}_n , \mathbb{F}_n^+) is amenable. The abelianization map $\phi: (\mathbb{F}_n,\mathbb{F}_n^+) \to (\mathbb{Z}^n,\mathbb{N}^n)$ given by $\phi(\boldsymbol{a}_i) = \boldsymbol{e}_i$ is a controlled map.

← 伊 * + ヨ * + ヨ *