C*-Algebras generated by semigroups of partial isometries

Ilija Tolich

Authors: Astrid an Huef, Iain Raeburn, Ilija Tolich

Ilija Tolich C*-Algebras generated by semigroups of partial isometries

< 回 > < 回 > < 回 >

Partial Isometries

Definition

A bounded operator *T* on a Hilbert space *H* is a partial isometry if ||Th|| = ||h|| for all $h \in (\ker T)^{\perp}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Partial Isometries

Definition

A bounded operator *T* on a Hilbert space *H* is a partial isometry if ||Th|| = ||h|| for all $h \in (\ker T)^{\perp}$.

Lemma

The following are equivalent:

- 1. T is a partial isometry.
- **2**. $TT^*T = T$
- 3. *TT*^{*} *is a projection onto* range *T*.

- (E) - (

Partial Isometries

Definition

A bounded operator *T* on a Hilbert space *H* is a partial isometry if ||Th|| = ||h|| for all $h \in (\ker T)^{\perp}$.

Lemma

The following are equivalent:

- 1. T is a partial isometry.
- **2**. $TT^*T = T$
- 3. *TT*^{*} *is a projection onto* range *T*.
- 4. T* is a partial isometry.
- 5. $T^*TT^* = T^*$
- 6. T^*T is a projection onto $(\ker T)^{\perp}$.

Ilija Tolich C*-Algebras generated by semigroups of partial isometries

・ 同 ト ・ ヨ ト ・ ヨ ト

Let *P* be a subsemigroup of a group *G* such that $P \cap P^{-1} = \{e\}$. The pair (*G*, *P*) defines two partial orders on *G*: A left partial order on *G* defined by

$$x \leq_I y$$
 if $x^{-1}y \in P$, $(\Leftrightarrow y \in xP)$

イロト イ押ト イヨト イヨトー

Let *P* be a subsemigroup of a group *G* such that $P \cap P^{-1} = \{e\}$. The pair (*G*, *P*) defines two partial orders on *G*: A left partial order on *G* defined by

$$x \leq_I y \text{ if } x^{-1}y \in P, \quad (\Leftrightarrow y \in xP)$$

and a right partial order on G defined by

$$x \leq_r y$$
 if $yx^{-1} \in P$. ($\Leftrightarrow y \in Px$)

If G is abelian both orders are the same.

Let *P* be a subsemigroup of a group *G* such that $P \cap P^{-1} = \{e\}$. The pair (*G*, *P*) defines two partial orders on *G*: A left partial order on *G* defined by

$$x \leq_I y \text{ if } x^{-1}y \in P, \quad (\Leftrightarrow y \in xP)$$

and a right partial order on G defined by

$$x \leq_r y$$
 if $yx^{-1} \in P$. ($\Leftrightarrow y \in Px$)

If G is abelian both orders are the same.

Definition

The partially ordered group (G, P) is said to be *doubly quasi-lattice ordered* if, in both left and right orders, any pair $x, y \in G$ with a common upper bound in P has a least common upper bound in P.

ヘロト 人間 ト ヘヨト ヘヨト

Let *P* be a subsemigroup of a group *G* such that $P \cap P^{-1} = \{e\}$. The pair (*G*, *P*) defines two partial orders on *G*: A left partial order on *G* defined by

$$x \leq_l y \text{ if } x^{-1}y \in P, \quad (\Leftrightarrow y \in xP)$$

and a right partial order on G defined by

$$x \leq_r y$$
 if $yx^{-1} \in P$. ($\Leftrightarrow y \in Px$)

If G is abelian both orders are the same.

Definition

The partially ordered group (G, P) is said to be *doubly quasi-lattice ordered* if, in both left and right orders, any pair $x, y \in G$ with a common upper bound in P has a least common upper bound in P.

We denote the least upper bound of x, y in the left order as $x \lor_l y$ and in the right order as $x \lor_r y$.

Theorem (Crisp-Laca)

(G, P) is quasi-lattice ordered in the left order if and only if every pair $a, b \in P$ has a greatest right lower bound $a \wedge_r b$.

.⊒...>

Theorem (Crisp-Laca)

(G, P) is quasi-lattice ordered in the left order if and only if every pair $a, b \in P$ has a greatest right lower bound $a \wedge_r b$.

Corollary

The following are equivalent:

- (G, P) is doubly quasi-lattice ordered.
- Any pair x, y ∈ G with a common left upper bound in P has a least common left upper bound in P and every pair a, b ∈ P has a greatest left lower bound a ∧₁ b.
- Any pair x, y ∈ G with a common left upper bound in P has a least common right upper bound in P and every pair a, b ∈ P has a greatest right lower bound a ∧₁ b.

イロト イ押ト イヨト イヨトー

Ilija Tolich C*-Algebras generated by semigroups of partial isometries

◆□ > ◆圖 > ◆臣 > ◆臣 >

æ

(Z², N²) is a doubly quasi-lattice ordered group.
 (a, b) ≤ (c, d) if a ≤ c and b ≤ d.

 $(a,b) \lor (c,d) = (\max\{a,c\},\max\{b,d\}).$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

э.

- (Z², N²) is a doubly quasi-lattice ordered group.
 (a, b) ≤ (c, d) if a ≤ c and b ≤ d.
 (a, b) ∨ (c, d) = (max{a, c}, max{b, d}).
- Let 𝔽₂ be the free group with generators {*a*, *b*}, and let 𝔽₂⁺ be the free semigroup. Then (𝔽₂, 𝔽₂⁺) is a doubly quasi-lattice ordered group.

$$a \leq_l ab$$
 $b \leq_r ab$

Most elements have no common upper bound e.g. *a*, *b* have no common upper bound.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- (Z², N²) is a doubly quasi-lattice ordered group.
 (a, b) ≤ (c, d) if a ≤ c and b ≤ d.
 (a, b) ∨ (c, d) = (max{a, c}, max{b, d}).
- Let 𝔽₂ be the free group with generators {*a*, *b*}, and let 𝔽₂⁺ be the free semigroup. Then (𝔽₂, 𝔽₂⁺) is a doubly quasi-lattice ordered group.

$$a \leq_l ab$$
 $b \leq_r ab$

Most elements have no common upper bound e.g. *a*, *b* have no common upper bound.

(Q ⋊ Q*, N ⋊ N[×]) is doubly quasi-lattice ordered. For (m, a), (n, b) ∈ N ⋊ N[×] we have

 $(m,a) \lor_l (n,b) < \infty \Leftrightarrow (m+a\mathbb{N}) \cap (n+b\mathbb{N}) \neq \emptyset.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- (Z², N²) is a doubly quasi-lattice ordered group.
 (a, b) ≤ (c, d) if a ≤ c and b ≤ d.
 (a, b) ∨ (c, d) = (max{a, c}, max{b, d}).
- Let 𝔽₂ be the free group with generators {*a*, *b*}, and let 𝔽₂⁺ be the free semigroup. Then (𝔽₂, 𝔽₂⁺) is a doubly quasi-lattice ordered group.

$$a \leq_l ab$$
 $b \leq_r ab$

Most elements have no common upper bound e.g. *a*, *b* have no common upper bound.

(Q ⋊ Q*, N ⋊ N[×]) is doubly quasi-lattice ordered. For (m, a), (n, b) ∈ N ⋊ N[×] we have

 $(m,a) \vee_{l} (n,b) < \infty \Leftrightarrow (m+a\mathbb{N}) \cap (n+b\mathbb{N}) \neq \emptyset.$

However, $(m, a) \lor_r (n, b) < \infty$ for all $(m, a), (n, b) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$.

▶ Let *c*, *d* ≥ 0 and

$$\mathsf{BS}(c,d) := \langle a, b | ab^c = b^d a \rangle.$$

Let $BS(c, d)^+$ be the subsemigroup generated by $\{a, b, e\}$. Then $(BS(c, d), BS(c, d)^+)$ is a doubly quasi-lattice ordered group. **(Spielberg)**

個 とく ヨ とく ヨ とう

1

▶ Let *c*, *d* ≥ 0 and

$$\mathsf{BS}(c,d) := \langle a, b | ab^c = b^d a \rangle.$$

Let $BS(c, d)^+$ be the subsemigroup generated by $\{a, b, e\}$. Then $(BS(c, d), BS(c, d)^+)$ is a doubly quasi-lattice ordered group. **(Spielberg)**

If d ≥ 0 then BS(1, -d) is a quasi-lattice ordered group (in the left order) but not a doubly quasi-lattice ordered group.

Ilija Tolich C*-Algebras generated by semigroups of partial isometries

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let (G, P) be a doubly quasi-lattice ordered group. A *partial isometric representation* of *P* is a map $W : P \to A$ such that W_p is a partial isometry for all $p \in P$, $W_e = 1$ and $W_x W_y = W_{xy}$ for all $x, y \in P$.

Definition

Let (G, P) be a doubly quasi-lattice ordered group. A *partial isometric representation* of *P* is a map $W : P \to A$ such that W_p is a partial isometry for all $p \in P$, $W_e = 1$ and $W_x W_y = W_{xy}$ for all $x, y \in P$.

A partial isometric representation is *left-covariant* if it satisfies

$$W_{x}W_{x}^{*}W_{y}W_{y}^{*} = \begin{cases} W_{x\vee_{l}y}W_{x\vee_{l}y}^{*} & \text{if } x\vee_{l}y < \infty. \\ 0 & \text{otherwise.} \end{cases}$$

Definition

Let (G, P) be a doubly quasi-lattice ordered group. A *partial isometric representation* of *P* is a map $W : P \to A$ such that W_p is a partial isometry for all $p \in P$, $W_e = 1$ and $W_x W_y = W_{xy}$ for all $x, y \in P$.

A partial isometric representation is *left-covariant* if it satisfies

$$W_{x}W_{x}^{*}W_{y}W_{y}^{*} = \begin{cases} W_{x\vee_{l}y}W_{x\vee_{l}y}^{*} & \text{if } x\vee_{l}y < \infty. \\ 0 & \text{otherwise.} \end{cases}$$

A partial isometric representation is right-covariant if it satisfies

$$W_x^* W_x W_y^* W_y = egin{cases} W_{x ee r y}^* W_{x ee r y} & ext{if } x ee r \, y < \infty \ 0 & ext{otherwise.} \end{cases}$$

If a partial isometric representation is both left- and right-covariant we say that it is *covariant*.

Covariant representations properties

We can rewrite the covariance identities as:

$$W_{x}^{*}W_{y} = W_{x}^{*}W_{x\vee_{I}y}W_{y^{-1}(x\vee_{I}y)}^{*}$$
$$W_{x}W_{y}^{*} = W_{(x\vee_{r}y)x^{-1}}^{*}W_{x\vee_{r}y}W_{y}^{*}$$

→ E → < E →</p>

Covariant representations properties

We can rewrite the covariance identities as:

$$W_{x}^{*}W_{y} = W_{x}^{*}W_{x\vee_{I}y}W_{y^{-1}(x\vee_{I}y)}^{*}$$
$$W_{x}W_{y}^{*} = W_{(x\vee_{I}y)x^{-1}}^{*}W_{x\vee_{I}y}W_{y}^{*}$$

Lemma

Let $W : P \to A$ be a covariant partial isometric representation. Any product of the form $W_{n_1}W_{n_2}^*W_{n_3}W_{n_4}^*\dots$ where $n_i \in P$ is either 0 or may be expressed as $W_p^*W_qW_r^*$ for some $p, q, r \in P$ satisfying $p \leq_l q$ and $r \leq_r q$.

Analogue of Truncated shifts

Definition Let $A \subset P$. Define $J^A : P \to B(\ell^2(a))$ by

$$J^{A}_{p}\epsilon_{a} = egin{cases} \epsilon_{pa} & ext{if } pa \in A \ 0 & ext{otherwise} \end{cases}$$

Lemma

- 1. $J_{\rho}^{A}J_{q}^{A} = J_{\rho q}^{A}$ if and only if for all $a, b \in A$ we have $\{x \in P : a \leq_{r} x \leq_{r} b\} \subseteq A$.
- 2. J^A is left-covariant if and only if, for all $a, b \in A$ with a common right upper bound in A, $a \wedge_r b \in A$.
- 3. J^A is right-covariant if and only if, for all $a, b \in A$ with a common right lower bound in A, $a \lor_r b \in A$.

イロト イポト イヨト イヨト 三日

Direct sums of Truncated shifts

Let (G, P) be a doubly quasi-lattice ordered group. For $a \in P$ let $I_a := \{x \in P : x \leq_r a\}$. Let $\{\epsilon_x\}$ be an orthonormal basis for $\ell^2(I_a)$. Then $J^a : P \to B(\ell^2(I_a))$ defined

$$J^a_{
ho}\epsilon_x = egin{cases} \epsilon_{
ho x} & ext{if }
ho x \leq_r a \ 0 & ext{otherwise} \end{cases}$$

is a covariant partial isometric representation.

(個) (目) (日)

Direct sums of Truncated shifts

Let (G, P) be a doubly quasi-lattice ordered group. For $a \in P$ let $I_a := \{x \in P : x \leq_r a\}$. Let $\{\epsilon_x\}$ be an orthonormal basis for $\ell^2(I_a)$. Then $J^a : P \to B(\ell^2(I_a))$ defined

$$J^a_{
ho}\epsilon_x = egin{cases} \epsilon_{
ho x} & ext{if }
ho x \leq_r a \ 0 & ext{otherwise} \end{cases}$$

is a covariant partial isometric representation. Let $J : P \to B(\bigoplus_{a \in P} \ell^2(I_a))$ be defined as $J_p = \bigoplus J_p^a$. Let $C^*(J)$ be the C^* -algebra generated by $\{J_p : p \in P\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Direct sums of Truncated shifts

Let (G, P) be a doubly quasi-lattice ordered group. For $a \in P$ let $I_a := \{x \in P : x \leq_r a\}$. Let $\{\epsilon_x\}$ be an orthonormal basis for $\ell^2(I_a)$. Then $J^a : P \to B(\ell^2(I_a))$ defined

$$J^a_p \epsilon_x = egin{cases} \epsilon_{px} & ext{if } px \leq_r a \ 0 & ext{otherwise} \end{cases}$$

is a covariant partial isometric representation. Let $J : P \to B(\bigoplus_{a \in P} \ell^2(I_a))$ be defined as $J_p = \bigoplus J_p^a$. Let $C^*(J)$ be the C^* -algebra generated by $\{J_p : p \in P\}$.

Lemma

The set $S := \{J_p^* J_q J_r^* : p, q, r \in P, p \leq_l q, r \leq_r q\}$ is linearly independent and span S is a dense unital *-subalgebra of $C^*(J)$.

ヘロト ヘアト ヘビト ヘビト

Proposition

There is a C^* -algebra $C^*(G, P)$ generated by partial isometries $\{v_p : p \in P\}$ which has the following property: for every covariant partial isometric representation $W : P \to A$ there is a unital homomorphism $\pi_W : C^*(G, P) \to A$ such that $\pi_W(v_p) = W_p$.

イロト イ押ト イヨト イヨト

э.

Faithful Representations of $C^*(G, P)$

When is $\pi_J : C^*(G, P) \to C^*(J)$ faithful?

Proposition

There is a norm-decreasing linear idempotent $E : C^*(G, P) \rightarrow \overline{\text{span}}\{v_p^*v_pv_rv_r^* : p, r \in P\}$ such that

$$E(\sum \lambda_{p,q,r} \mathbf{v}_p^* \mathbf{v}_q \mathbf{v}_r^*) = \sum \lambda_{p,pr,r} \mathbf{v}_p^* \mathbf{v}_{pr} \mathbf{v}_r^*.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Faithful Representations of $C^*(G, P)$

When is $\pi_J : C^*(G, P) \to C^*(J)$ faithful?

Proposition

There is a norm-decreasing linear idempotent $E : C^*(G, P) \rightarrow \overline{\text{span}}\{v_p^* v_p v_r v_r^* : p, r \in P\}$ such that

$$E(\sum \lambda_{p,q,r} \mathbf{v}_{p}^{*} \mathbf{v}_{q} \mathbf{v}_{r}^{*}) = \sum \lambda_{p,pr,r} \mathbf{v}_{p}^{*} \mathbf{v}_{pr} \mathbf{v}_{r}^{*}$$

Definition

A doubly quasi-lattice ordered group (G, P) is *amenable* if *E* is faithful for positive elements, in the sense that $E(a^*a) = 0$ implies a = 0.

ヘロン 人間 とくほ とくほ とう

Faithful Representations of $C^*(G, P)$

When is $\pi_J : C^*(G, P) \to C^*(J)$ faithful?

Proposition

There is a norm-decreasing linear idempotent $E : C^*(G, P) \rightarrow \overline{\text{span}}\{v_p^*v_pv_rv_r^* : p, r \in P\}$ such that

$$E(\sum \lambda_{\rho,q,r} v_{\rho}^* v_q v_r^*) = \sum \lambda_{\rho,\rho,r,r} v_{\rho}^* v_{\rho,r} v_r^*.$$

Definition

A doubly quasi-lattice ordered group (G, P) is *amenable* if *E* is faithful for positive elements, in the sense that $E(a^*a) = 0$ implies a = 0.

Theorem

The homomorphism $\pi_J : C^*(G, P) \to C^*(J)$ is faithful if and only if (G, P) is amenable.

Faithful representations

Definition

Let $W : P \to A$ be a covariant partial isometric representation. Let $L_{(x_1,x_2)}^W = W_{x_1}W_{x_1}^*W_{x_2}^*W_{x_2}$. A covariant partial isometric representations $W : P \to A$ sees all projections if, for every finite set $F \subset P_r \times P_l$ and $(x_1, x_2) \notin F$ such that (x_1, x_2) is a lower bound for F, we have

$$\prod_{y\in F} (L^W_{(x_1,x_2)}-L^W_y)\neq 0.$$

(同) くほう くほう

Faithful representations

Definition

Let $W : P \to A$ be a covariant partial isometric representation. Let $L_{(x_1,x_2)}^W = W_{x_1}W_{x_1}^*W_{x_2}^*W_{x_2}$. A covariant partial isometric representations $W : P \to A$ sees all projections if, for every finite set $F \subset P_r \times P_l$ and $(x_1, x_2) \notin F$ such that (x_1, x_2) is a lower bound for F, we have

$$\prod_{y\in F} (L^W_{(x_1,x_2)}-L^W_y)\neq 0.$$

Theorem

Let (G, P) be an amenable group and let $W : P \to A$ be a covariant partial isometric representation. Further, let π_W be the corresponding homomorphism of $C^*(G, P)$. If W sees all projections then π_W is faithful.

ヘロト 人間 ト ヘヨト ヘヨト

Ilija Tolich C*-Algebras generated by semigroups of partial isometries

< 🗇 🕨

→ E > < E >

Definition

Suppose that (G, P) and (K, Q) are doubly quasi-lattice ordered groups. A *controlled map* is an order preserving homomorphism $\phi : (G, P) \to (K, Q)$ such that

1. the restriction $\phi|_P : P \to Q$ is finite-to-1,

Definition

Suppose that (G, P) and (K, Q) are doubly quasi-lattice ordered groups. A *controlled map* is an order preserving homomorphism $\phi : (G, P) \to (K, Q)$ such that

- 1. the restriction $\phi|_{P} : P \to Q$ is finite-to-1,
- 2. for all $x, y \in P$ satisfying $x \vee_l y \neq \infty$ we have $\phi(x) \vee_l \phi(y) = \phi(x \vee_l y)$, and
- 3. for all $x, y \in P$ satisfying $x \vee_r y \neq \infty$ we have $\phi(x) \vee_r \phi(y) = \phi(x \vee_r y)$.

イロト イ押ト イヨト イヨトー

Definition

Suppose that (G, P) and (K, Q) are doubly quasi-lattice ordered groups. A *controlled map* is an order preserving homomorphism $\phi : (G, P) \to (K, Q)$ such that

- 1. the restriction $\phi|_{P} : P \to Q$ is finite-to-1,
- 2. for all $x, y \in P$ satisfying $x \vee_l y \neq \infty$ we have $\phi(x) \vee_l \phi(y) = \phi(x \vee_l y)$, and
- 3. for all $x, y \in P$ satisfying $x \vee_r y \neq \infty$ we have $\phi(x) \vee_r \phi(y) = \phi(x \vee_r y)$.

Theorem

Let (G, P) and (K, Q) be doubly quasi-lattice ordered groups with a controlled map $\phi : (G, P) \rightarrow (K, Q)$. If K is amenable then (G, P) is amenable and $C^*(G, P)$ is nuclear.

ヘロン 人間 とくほ とくほ とう

= 990

Ilija Tolich C*-Algebras generated by semigroups of partial isometries

→ E > < E >

• If G is an amenable group then (G, P) is amenable.

・ 同 ト ・ ヨ ト ・ ヨ ト

- If G is an amenable group then (G, P) is amenable.
- (𝔽_n,𝔽_n⁺) is amenable. The abelianization map φ : (𝔽_n,𝔄_n⁺) → (ℤⁿ, ℕⁿ) given by φ(a_i) = e_i is a controlled map.

・ 同 ト ・ 国 ト ・ 国 ト …

- If G is an amenable group then (G, P) is amenable.
- (𝔽_n,𝔽_n⁺) is amenable. The abelianization map φ : (𝔽_n,𝔄_n⁺) → (ℤⁿ, ℕⁿ) given by φ(a_i) = e_i is a controlled map.

・ 同 ト ・ 国 ト ・ 国 ト …