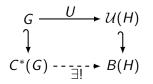
C^* -algebras of left cancellative small categories

Jack Spielberg, Arizona State University

Interactions between semigroups and operator algebras, Newcastle, 24-27 July 2017

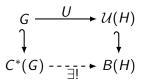
Outline

- 1. C^* -algebras from monoids and categories (my interpretation)
- 2. regular representations
- 3. Wiener-Hopf algebras
- 4. relation with some other constructions



universal for unitary representations.

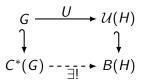
4 / 52



universal for unitary representations.

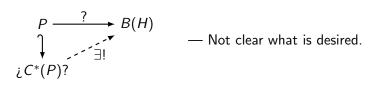
5 / 52

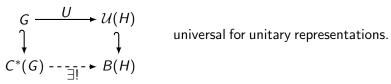
P - discrete monoid. What should be $C^*(P)$?



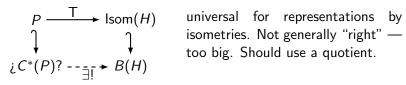
universal for unitary representations.

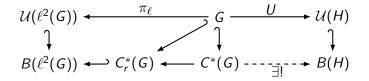
P - discrete monoid. What should be $C^*(P)$?

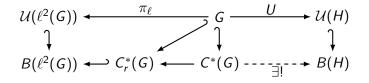


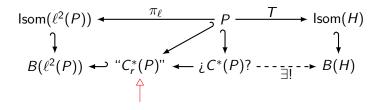


P - discrete monoid. What should be $C^*(P)$?









 $(C_r^*(P))$ is a reasonable choice for the "smallest" quotient that is "right".

What universal property/ies should be used to characterize $C^*(P)$?

Example $P = \mathbb{F}_n^+$ free semigroup.

For α , $\beta \in P$ write $\alpha \leq \beta$ if $\beta = \alpha \alpha'$ for some $\alpha' \in P$ (β is an *extension* of α). Nica observed: for $P = \mathbb{F}_n^+$, if α , β have a common extension then they have a unique minimal common extension:

 $\begin{array}{l} \alpha P \cap \beta P \neq \varnothing \Longrightarrow \exists ! \gamma \in P \text{ such that } \alpha P \cap \beta P = \gamma P. \\ (P \text{ is called singly aligned or } LCM.) \text{ We write } \gamma = \alpha \lor \beta. \\ \text{Letting } T_{\alpha} = \pi_{\ell}(\alpha) \in \text{Isom}(\ell^2(P)) \text{ we have} \\ (*) \ T_{\alpha} T_{\alpha}^* \cdot T_{\beta} T_{\beta}^* = \begin{cases} T_{\gamma} T_{\gamma}^*, & \text{if } \gamma = \alpha \lor \beta \\ 0, & \text{if } \alpha P \cap \beta P = \varnothing. \end{cases} \end{cases}$

Nica: define $C^*(P)$ to be universal for (*).

Example $P = \mathbb{F}_n^+$ free semigroup.

For α , $\beta \in P$ write $\alpha \leq \beta$ if $\beta = \alpha \alpha'$ for some $\alpha' \in P$ (β is an *extension* of α). Nica observed: for $P = \mathbb{F}_n^+$, if α , β have a common extension then they have a unique minimal common extension:

 $\begin{aligned} &\alpha P \cap \beta P \neq \varnothing \Longrightarrow \exists ! \gamma \in P \text{ such that } \alpha P \cap \beta P = \gamma P. \\ (P \text{ is called singly aligned or } LCM.) \text{ We write } \gamma = \alpha \lor \beta. \\ \text{Letting } &T_{\alpha} = \pi_{\ell}(\alpha) \in \text{Isom}(\ell^2(P)) \text{ we have} \\ (*) &T_{\alpha} T_{\alpha}^* \cdot T_{\beta} T_{\beta}^* = \begin{cases} T_{\gamma} T_{\gamma}^*, & \text{if } \gamma = \alpha \lor \beta \\ 0, & \text{if } \alpha P \cap \beta P = \varnothing. \end{cases} \end{aligned}$

Nica: define $C^*(P)$ to be universal for (*).

Q: Why is this "right"?

Example $P = \mathbb{F}_n^+$ free semigroup.

For α , $\beta \in P$ write $\alpha \leq \beta$ if $\beta = \alpha \alpha'$ for some $\alpha' \in P$ (β is an *extension* of α). Nica observed: for $P = \mathbb{F}_n^+$, if α , β have a common extension then they have a unique minimal common extension:

 $\alpha P \cap \beta P \neq \varnothing \Longrightarrow \exists ! \gamma \in P \text{ such that } \alpha P \cap \beta P = \gamma P.$ $(P \text{ is called singly aligned or } LCM.) \text{ We write } \gamma = \alpha \lor \beta.$ $\text{Letting } T_{\alpha} = \pi_{\ell}(\alpha) \in \text{Isom}(\ell^{2}(P)) \text{ we have}$ $(*) T_{\alpha}T_{\alpha}^{*} \cdot T_{\beta}T_{\beta}^{*} = \begin{cases} T_{\gamma}T_{\gamma}^{*}, & \text{if } \gamma = \alpha \lor \beta \\ 0, & \text{if } \alpha P \cap \beta P = \varnothing. \end{cases}$

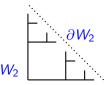
Nica: define $C^*(P)$ to be universal for (*).

Q: Why is this "right"? A: $C^*(\mathbb{F}_n^+) = \mathcal{TO}_n$.

There ought to be a more fundamental reason . . .

<ロ > < 部 > < 言 > < 言 > こ > < の < で 13/52 There ought to be a more fundamental reason . . .

 (\mathbb{F}_n^+, \leq) is a tree, W_n . For $\alpha \in \mathbb{F}_n^+$, $\tau^{\alpha} : \beta \mapsto \alpha\beta$ is an endomorphism.



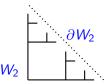
イロト 不得下 イヨト イヨト 二日

14 / 52

 τ^{α} , $\sigma^{\alpha} = (\tau^{\alpha})^{-1}$ extend to partial homeomorphisms of $W_n \cup \partial W_n$. σ^{α} is the one-sided Bernoulli shift.

Renault: there is a groupoid *G* with $G^{(0)} = W_n \cup \partial W_n$ — the groupoid of germs of $\{\sigma^{\alpha}, \tau^{\alpha}\}$. Moreover $C^*(G) = \mathcal{TO}_n$. We don't have to "guess" at the relation (*). There ought to be a more fundamental reason . . .

 (\mathbb{F}_n^+, \leq) is a tree, W_n . For $\alpha \in \mathbb{F}_n^+$, $\tau^{\alpha} : \beta \mapsto \alpha\beta$ is an endomorphism.



 τ^{α} , $\sigma^{\alpha} = (\tau^{\alpha})^{-1}$ extend to partial homeomorphisms of $W_n \cup \partial W_n$. σ^{α} is the one-sided Bernoulli shift.

Renault: there is a groupoid G with $G^{(0)} = W_n \cup \partial W_n$ — the groupoid of germs of $\{\sigma^{\alpha}, \tau^{\alpha}\}$. Moreover $C^*(G) = \mathcal{TO}_n$. We don't have to "guess" at the relation (*).

Many situations pose a similar problem: which came first, the relations or the algebra? (E.g. graphs, higher rank graphs, arbitrary monoids.) We can generalize the above construction.

 Λ - a *small category* (like a monoid, only multiplication is not always defined).

For $\alpha \in \Lambda$ define the right shift $\tau^{\alpha} : \beta \in s(\alpha)\Lambda \mapsto \alpha\beta \in \alpha\Lambda$. Assume Λ is left cancellative: $\alpha\beta = \alpha\gamma \Longrightarrow \beta = \gamma$. Then τ^{α} is one-to-one. Let $\sigma^{\alpha} = (\tau^{\alpha})^{-1}$.

How to imitate the construction of ∂W_n ?

 Λ - a *small category* (like a monoid, only multiplication is not always defined).

For $\alpha \in \Lambda$ define the right shift $\tau^{\alpha} : \beta \in s(\alpha)\Lambda \mapsto \alpha\beta \in \alpha\Lambda$. Assume Λ is left cancellative: $\alpha\beta = \alpha\gamma \Longrightarrow \beta = \gamma$. Then τ^{α} is one-to-one. Let $\sigma^{\alpha} = (\tau^{\alpha})^{-1}$.

How to imitate the construction of ∂W_n ? One of many ways:

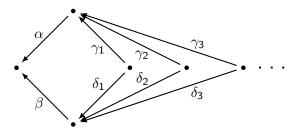
 $\mathscr{A} =$ smallest ring of sets such that for all $\alpha \in \Lambda$,

- (i) $\alpha \Lambda \in \mathscr{A}$ (ii) $E \in \mathscr{A} \implies \tau^{\alpha}(E), \ \sigma^{\alpha}(E) \in \mathscr{A};$
- $\boldsymbol{X} := \{\textit{ultrafilters} \text{ in } \mathscr{A}\}$

(Equivalently, let $A = \overline{\text{span}}\{\chi_E : E \in \mathscr{A}\} \subseteq \ell^{\infty}(\Lambda)$, an abelian C^* -algebra. Then $X = \widehat{A}$.)

 $x \in X \leftrightarrow \mathcal{U}_x \subseteq \mathscr{A}$ ultrafilter. $\tau^{\alpha}(\mathcal{U}_x) \neq \varnothing$ iff $s(\alpha) \Lambda \in \mathcal{U}_x$. Then $\tau^{\alpha}(\mathcal{U}_x)$ is an ultrafilter base; write $\mathcal{U}_{\widehat{\tau^{\alpha}}(x)}$ for the ultrafilter it generates. $\widehat{\tau^{\alpha}}, \widehat{\sigma^{\alpha}} = \widehat{\tau^{\alpha}}^{-1}$ are partial homeomorphisms of X.

What do typical sets in \mathscr{A} look like? Consider the following LCSC Λ :



with relations $\alpha \gamma_i = \beta \delta_i$.

 $\tau^{\beta}(\Lambda) = \beta \Lambda = \{\beta, \beta \delta_1, \beta \delta_2, \ldots\} = \{\beta, \alpha \gamma_1, \alpha \gamma_2, \ldots\}.$ $\sigma^{\alpha} \circ \tau^{\beta}(\Lambda) = \{\gamma_1, \gamma_2, \ldots\} \text{ (Note: } \beta \text{ is no longer in the domain.)}$ Let $\zeta = (\alpha, \beta).$ Then $A(\zeta) = \text{dom}(\varphi_{\zeta}) = \{\delta_1, \delta_2, \ldots\},$ and $\varphi_{\zeta}(\delta_i) = \gamma_i.$

More generally,

. . .

 $\beta_n \Lambda = \tau^{\beta_n}(\Lambda)$ $\sigma^{\alpha_n} \circ \tau^{\beta_n}(\Lambda)$

 $\sigma^{\alpha_1} \circ \tau^{\beta_1} \circ \cdots \circ \sigma^{\alpha_n} \circ \tau^{\beta_n}(\Lambda).$ Write $\zeta = (\alpha_1, \beta_1, \dots, \alpha_n, \beta_n)$ - a zigzag:

 $\begin{aligned} \mathcal{Z}(\Lambda) &= \text{set of all zigzags; composition by concatenation.} \\ \varphi_{\zeta} &= \sigma^{\alpha_1} \circ \tau^{\beta_1} \circ \cdots \circ \sigma^{\alpha_n} \circ \tau^{\beta_n} - zigzag \ map, \text{ partial bijection of } \Lambda. \\ \varphi_{\zeta}^{-1} &= \varphi_{\overline{\zeta}}, \text{ where } \overline{\zeta} &= (\beta_n, \alpha_n, \dots, \beta_1, \alpha_1). \\ \mathcal{A}(\zeta) &:= \text{dom}(\varphi_{\zeta}) - \text{the zigzag set (or constructible right ideal).} \end{aligned}$

$\mathcal{D}^{(0)} = \{ A(\zeta) \neq \emptyset : \zeta \in \mathcal{Z}(\Lambda) \};$

closed under intersection: $A(\zeta) = A(\overline{\zeta}\zeta), A(\zeta) \cap A(\theta) = A(\overline{\zeta}\zeta\overline{\theta}\theta).$ $\mathcal{D} = \{E \setminus \bigcup_{i=1}^{n} F_i : E, F_i \in \mathcal{D}^{(0)}, \bigcup_{i=1}^{n} F_i \subsetneq E\}.$ $\mathscr{A} = \{\bigcup_{j=1}^{m} D_j : D_j \in \mathcal{D}\}.$

 $\Phi_{\zeta} = \widehat{\sigma^{\alpha_1}} \circ \widehat{\tau^{\beta_1}} \circ \cdots \circ \widehat{\sigma^{\alpha_n}} \circ \widehat{\tau^{\beta_n}} \text{ - partial homeomorphism of } X.$

$$\mathcal{D}^{(0)} = \{ A(\zeta) \neq \emptyset : \zeta \in \mathcal{Z}(\Lambda) \};$$

closed under intersection: $A(\zeta) = A(\overline{\zeta}\zeta), A(\zeta) \cap A(\theta) = A(\overline{\zeta}\zeta\overline{\theta}\theta).$ $\mathcal{D} = \{E \setminus \bigcup_{i=1}^{n} F_i : E, F_i \in \mathcal{D}^{(0)}, \bigcup_{i=1}^{n} F_i \subsetneq E\}.$ $\mathscr{A} = \{\bigcup_{j=1}^{m} D_j : D_j \in \mathcal{D}\}.$

 $\Phi_{\zeta} = \widehat{\sigma^{\alpha_1}} \circ \widehat{\tau^{\beta_1}} \circ \cdots \circ \widehat{\sigma^{\alpha_n}} \circ \widehat{\tau^{\beta_n}} - \text{partial homeomorphism of } X.$

Define two groupoids with unit space X:

 $\begin{aligned} G_1(\Lambda) &= \text{groupoid of germs of } \{\Phi_{\zeta} : \zeta \in \mathcal{Z}(\Lambda)\} \\ &= \mathcal{Z}(\Lambda) * X / \sim_1, \\ \text{where } (\zeta, x) \sim_1 (\zeta', x') \text{ if } x = x' \text{ and } \Phi_{\zeta} = \Phi_{\zeta'} \text{ near } x. \\ G_2(\Lambda) &= \mathcal{Z}(\Lambda) * X / \sim_2, \\ \text{where } (\zeta, x) \sim_2 (\zeta', x') \text{ if } x = x' \text{ and } \varphi_{\zeta}|_E = \varphi_{\zeta'}|_E \text{ for some} \end{aligned}$

 $E \in \mathcal{U}_{\mathbf{x}}.$

Theorem. If Λ has no inverses then $\sim_1 = \sim_2$.

(There are other sufficient conditions.)

Example. If Λ is a group then $G_1(\Lambda) = \{pt\}$ and $G_2(\Lambda) = \Lambda$.

Definition. $\mathcal{T}(\Lambda) = C^*(G_2(\Lambda))$ (or $\mathcal{T}_i(\Lambda) = C^*(G_i(\Lambda))$, i = 1, 2) - the *Toeplitz algebra* of Λ .

The example shows that $G_2(\Lambda)$ is generally the more important one.

Theorem. If Λ has no inverses then $\sim_1 = \sim_2$.

(There are other sufficient conditions.)

Example. If Λ is a group then $G_1(\Lambda) = \{pt\}$ and $G_2(\Lambda) = \Lambda$.

Definition. $\mathcal{T}(\Lambda) = C^*(G_2(\Lambda))$ (or $\mathcal{T}_i(\Lambda) = C^*(G_i(\Lambda))$, i = 1, 2) - the *Toeplitz algebra* of Λ .

The example shows that $G_2(\Lambda)$ is generally the more important one.

Theorem. $\mathcal{T}_i(\Lambda)$ is universal for representations of Λ by partial isometries $\{T_{\alpha} : \alpha \in \Lambda\} \subseteq B(H)$ satisfying the following relations. Let $T_{\zeta} = T_{\alpha_1}^* T_{\beta_1} \cdots T_{\alpha_n}^* T_{\beta_n}$ (where $\zeta = (\alpha_1, \beta_1, \dots, \alpha_n, \beta_n)$). (i) $T_{\zeta_1} T_{\zeta_2} = T_{\zeta_1 \zeta_2}$ (ii) $T_{\overline{c}} = T_{c}^{*}$ (iii) if $A(\zeta) = \bigcup_{i=1}^n A(\zeta_i)$ then $T_{\zeta}^* T_{\zeta} = \bigvee_{i=1}^n T_{\zeta_i}^* T_{\zeta_i}$ (iv)₁ if $\Phi_{\zeta} = \operatorname{id}_{\widehat{A(\zeta)}}$ then $T_{\zeta} = T_{\zeta}^* T_{\zeta}$ or (iv)₂ if $\varphi_{\zeta} = id_{A(\zeta)}$ then $T_{\zeta} = T_{\zeta}^* T_{\zeta}$

23 / 52

(The relations again.)

(i) $T_{\zeta_1} T_{\zeta_2} = T_{\zeta_1 \zeta_2}$ (ii) $T_{\overline{\zeta}} = T_{\zeta}^*$ (iii) if $A(\zeta) = \bigcup_{i=1}^n A(\zeta_i)$ then $T_{\zeta}^* T_{\zeta} = \bigvee_{i=1}^n T_{\zeta_i}^* T_{\zeta_i}$ (iv)₁ if $\Phi_{\zeta} = \operatorname{id}_{\widehat{A(\zeta)}}$ then $T_{\zeta} = T_{\zeta}^* T_{\zeta}$ or (iv)₂ if $\varphi_{\zeta} = \operatorname{id}_{A(\zeta)}$ then $T_{\zeta} = T_{\zeta}^* T_{\zeta}$

The key aspect of these relations is the following

Theorem. Let $\{p_E : E \in \mathcal{D}^{(0)}\}$ be projections in a C^* -algebra B. There is a ring homomorphism $\mu : \mathscr{A} \to \mathcal{P}(B)$ with $\mu(E) = p_E$ for $E \in \mathcal{D}^{(0)}$ if and only if (iii) and $p_{E_1 \cap E_2} = p_{E_1} p_{E_2}$ (which follows from (i) and (ii)).

The Regular Representation

Lemma. $\pi_{\ell} : \Lambda \to B(\ell^2(\Lambda))$ extends to a representation (also called π_{ℓ}) of $\mathcal{T}(\Lambda) = C^*(G_2(\Lambda))$:

$$\begin{array}{c} \Lambda \xrightarrow{\pi_{\ell}} \mathsf{P.I.}(\ell^{2}(\Lambda)) \\ \uparrow & \uparrow \\ \mathcal{T}(\Lambda) \xrightarrow{\pi_{\ell}} B(\ell^{2}(\Lambda)) \end{array}$$

(The map $\Lambda \to \mathcal{T}(\Lambda)$ is given by $\alpha \mapsto \mathcal{T}_{\alpha}$.)

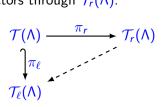
Definition 1. $\mathcal{T}_{\ell}(\Lambda) := \pi_{\ell}(\mathcal{T}(\Lambda))$ - the regular Toeplitz algebra.

For $x \in X$ there is an induced representation Ind_{X} of $C^{*}(G_{2}(\Lambda))$ on $\ell^{2}(G_{2}(\Lambda)x)$; $\pi_{r} = \bigoplus_{x \in X} \operatorname{Ind}_{X}$ is the *regular representation* of $C^{*}(G_{2}(\Lambda))$: $C_{r}^{*}(G_{2}(\Lambda)) = \pi_{r}(C^{*}(G_{2}(\Lambda)))$.

Definition 2. $\mathcal{T}_r(\Lambda) = C_r^*(G_2(\Lambda))$ - the reduced Toeplitz algebra.

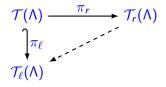
For $x \in X$ there is an induced representation Ind_{X} of $C^{*}(G_{2}(\Lambda))$ on $\ell^{2}(G_{2}(\Lambda)x)$; $\pi_{r} = \bigoplus_{x \in X} \operatorname{Ind}_{X}$ is the *regular representation* of $C^{*}(G_{2}(\Lambda))$: $C_{r}^{*}(G_{2}(\Lambda)) = \pi_{r}(C^{*}(G_{2}(\Lambda)))$.

Definition 2. $\mathcal{T}_r(\Lambda) = C_r^*(G_2(\Lambda))$ - the reduced Toeplitz algebra. **Proposition.** π_ℓ factors through $\mathcal{T}_r(\Lambda)$:



For $x \in X$ there is an induced representation Ind_{X} of $C^{*}(G_{2}(\Lambda))$ on $\ell^{2}(G_{2}(\Lambda)x)$; $\pi_{r} = \bigoplus_{x \in X} \operatorname{Ind}_{X}$ is the *regular representation* of $C^{*}(G_{2}(\Lambda))$: $C_{r}^{*}(G_{2}(\Lambda)) = \pi_{r}(C^{*}(G_{2}(\Lambda)))$.

Definition 2. $\mathcal{T}_r(\Lambda) = C_r^*(G_2(\Lambda))$ - the reduced Toeplitz algebra. **Proposition.** π_ℓ factors through $\mathcal{T}_r(\Lambda)$:



Which of T_{ℓ} and T_r is "the" reduced *C**-algebra of Λ ? Do we have to choose? Some conditions giving an isomorphism $\mathcal{T}_r \to \mathcal{T}_\ell$.

(1) Λ is *finitely aligned* if whenever $E \subseteq \Lambda$ finite, there exists $F \subseteq \Lambda$ finite such that

 $\bigcap_{\alpha \in \mathbf{E}} \alpha \Lambda = \bigcup_{\beta \in \mathbf{F}} \beta \Lambda.$

F is the set of *minimal common extensions* of *E* (well-defined up to right multiplication by invertibles). (Recall that \mathbb{F}_n^+ is *singly aligned*: |F| = 0 or 1.)

Theorem. If Λ is finitely aligned then $\mathcal{T}_r \to \mathcal{T}_\ell$ is an isomorphism.

(2) The groupoid $G_2(\Lambda)$ is not necessarily Hausdorff (but is always *ample*, i.e. étale with totally disconnected unit space).

Theorem. If $G_2(\Lambda)$ is Hausdorff then $\mathcal{T}_r \to \mathcal{T}_\ell$ is an isomorphism.

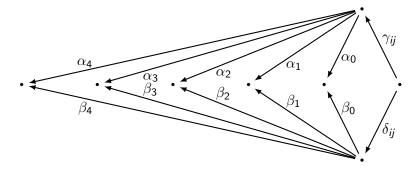
For example,

Theorem. If Λ is a subcategory of a groupoid then $G_2(\Lambda)$ is Hausdorff.

Corollary. If (G, P) is an ordered group (not necessarily pointed) then $\mathcal{T}_r \to \mathcal{T}_\ell$ is an isomorphism.

In general, $\mathcal{T}_r \to \mathcal{T}_\ell$ is not an isomorphism.

Example. Let p > 1 be odd. In the following, $i \in \mathbb{Z}$, $j \in \mathbb{Z}/p\mathbb{Z}$:



with relations

(i)
$$\alpha_0 \gamma_{ij} = \beta_0 \delta_{ij}$$
, for $i \in \mathbb{Z}$, $j \in \mathbb{Z}/p\mathbb{Z}$
(ii) $\alpha_1 \gamma_{ij} = \begin{cases} \beta_1 \delta_{i,j+1}, & \text{if } i \equiv 1 \pmod{3}, j \in \mathbb{Z}/p\mathbb{Z} \\ \beta_1 \delta_{ij}, & \text{if } i \not\equiv 1 \pmod{3}, j \in \mathbb{Z}/p\mathbb{Z} \end{cases}$
(iii) $\alpha_2 \gamma_{ij} = \begin{cases} \beta_2 \delta_{i,j+1}, & \text{if } i \equiv 2 \pmod{3}, j \in \mathbb{Z}/p\mathbb{Z} \\ \beta_2 \delta_{ij}, & \text{if } i \not\equiv 2 \pmod{3}, j \in \mathbb{Z}/p\mathbb{Z} \end{cases}$
(iv) $\alpha_3 \gamma_{ij} = \begin{cases} \beta_3 \delta_{i+3,j}, & \text{if } i \equiv 0 \pmod{3}, j \in \mathbb{Z}/p\mathbb{Z} \\ \beta_3 \delta_{ij}, & \text{if } i \not\equiv 0 \pmod{3}, j \in \mathbb{Z}/p\mathbb{Z} \end{cases}$
(v) $\alpha_4 \gamma_{ij} = \beta_4 \delta_{ij}, & \text{if } i \not\equiv 0 \pmod{3}, j \in \mathbb{Z}/p\mathbb{Z}.$

$$\begin{aligned} \theta_1 &= \sigma^{\alpha_0} \tau^{\beta_0} \sigma^{\beta_1} \tau^{\alpha_1} & \theta_1(\gamma_{ij}) = \begin{cases} \gamma_{i,j+1} & \text{if } i \equiv 1 \pmod{3} \\ \gamma_{ij} & \text{if } i \not\equiv 1 \pmod{3} , \end{cases} \\ \theta_2 &= \sigma^{\alpha_0} \tau^{\beta_0} \sigma^{\beta_2} \tau^{\alpha_2} & \theta_2(\gamma_{ij}) = \begin{cases} \gamma_{i,j+1} & \text{if } i \equiv 2 \pmod{3} , \\ \gamma_{ij} & \text{if } i \not\equiv 2 \pmod{3} , \end{cases} \\ \theta_3 &= \sigma^{\alpha_0} \tau^{\beta_0} \sigma^{\beta_3} \tau^{\alpha_3} & \theta_3(\gamma_{ij}) = \begin{cases} \gamma_{i+3,j} & \text{if } i \equiv 0 \pmod{3} , \\ \gamma_{ij} & \text{if } i \not\equiv 0 \pmod{3} , \end{cases} \\ \theta_4 &= \sigma^{\alpha_0} \tau^{\beta_0} \sigma^{\beta_4} \tau^{\alpha_4} & \theta_4(\gamma_{ij}) = \gamma_{ij} \text{ if } i \not\equiv 0 \pmod{3} . \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

33 / 52

Let $A := \operatorname{dom} \theta_1 = \operatorname{dom} \theta_2 = \operatorname{dom} \theta_3 = \{\gamma_{ij} : \text{ all } i, j\}$ $B := \operatorname{dom} \theta_4 = \{\gamma_{ij} : i \neq 0 \pmod{3}\}.$ On $A \setminus B$:

 $\theta_1 = \theta_2 = \mathsf{id},$

 θ_3 has no fixed points.

On B:

 θ_1 and θ_2 have only fixed points and orbits of length p, $\theta_1(\mu) = \mu$ iff $\theta_2(\mu) \neq \mu$, $\theta_3 = \text{id.}$

On $\ell^2(\Lambda)$: there exists c > 0 with (*) $|\langle \pi_\ell(T_{\theta_1})\xi,\xi\rangle| + |\langle \pi_\ell(T_{\theta_2})\xi,\xi\rangle| + 1 - \operatorname{Re}\langle \pi_\ell(T_{\theta_3})\xi,\xi\rangle \ge c ||\xi||^2$, for all $\xi \in \ell^2(\Lambda)$. (In fact, $c = \frac{1}{2}(1 - \cos\frac{\pi}{p})$.) Moreover *B* defines $x \in X$ such that if π_ℓ is replaced by Ind_x then the lefthand side of (*) equals 0. It follows that Ind_x is not weakly contained in π_ℓ , and hence $\mathcal{T}_r \to \mathcal{T}_\ell$ is not an isomorphism. The C^* -algebra in this example is (very) type I (and Λ is nearly a 2-graph). One can identify the vertices of Λ to obtain a monoid with the same properties (and a more complicated *C*-algebra). (However, this monoid cannot be embedded in a group.)

35 / 52

The C^* -algebra in this example is (very) type I (and Λ is nearly a 2-graph). One can identify the vertices of Λ to obtain a monoid with the same properties (and a more complicated *C*-algebra). (However, this monoid cannot be embedded in a group.)

In general it is not clear how to describe $\mathcal{T}_{\ell}(\Lambda)$ by generators and relations.

Some remarks on amenability.

1. If $G_2(\Lambda)$ is amenable (in the sense of Anantharaman-Delaroche and Renault) then $\mathcal{T}(\Lambda) = \mathcal{T}_r(\Lambda)$, but it need not be the case that $\mathcal{T}_r(\Lambda) \to \mathcal{T}_{\ell}(\Lambda)$ is an isomorphism.

2. If (G, P) is a quasi-lattice ordered group, Nica defines *amenable* to mean that $C^*(P) \to \pi_{\ell}(C^*(P))$ is an isomorphism. In this case $\mathcal{T}_r(\Lambda) = \mathcal{T}_{\ell}(\Lambda)$, so this is equivalent to $\mathcal{T}(\Lambda) = \mathcal{T}_r(\Lambda)$ - an ostensibly weaker condition than groupoid amenability.

3. In the quasi-lattice ordered case Nica showed that an equivalent condition is that the conditional expectation $C^*(P) \to \overline{\text{span}}\{T_{\alpha}T_{\alpha}^* : \alpha \in P\} \text{ be faithful. For general } \Lambda, \text{ one}$ ought to use $\overline{\text{span}}\{T_{\zeta}^*T_{\zeta} : \zeta \in \mathcal{Z}(\Lambda)\}$ (i.e. $C_0(X)$). Then this is equivalent to the condition that $\mathcal{T}(\Lambda) = \mathcal{T}_r(\Lambda)$.

4. Amenability of Λ is a much stronger condition. (Related to *independence*, *right reversibility*, ...)

Wiener-Hopf algebras

(G, P) - ordered group $J: \ell^2(P) \hookrightarrow \ell^2(G)$ $L: G \to \mathcal{U}(\ell^2(G))$ - left regular representation For $t \in G$, $W_t := J^* L_t J \in B(\ell^2(P))$ - Wiener-Hopf operator (compression of L_t to $\ell^2(P)$) $W_t \neq 0$ iff $t \in PP^{-1}$ $\mathcal{W} := C^*(\{W_t : t \in G\}), \mathcal{W}_0 := C^*(\{W_\alpha : \alpha \in P\})$ **Theorem** (Nica): If (G, P) is guasi-lattice ordered (and $P \cap P^{-1} = \{e\}$ then $\mathcal{W} = \mathcal{W}_0$. (Recall: (G, P) is glo if for $t \in G$, $(tP \cap P \neq \emptyset) \Longrightarrow (\exists \alpha \in P \text{ s.t. } tP \cap P = \alpha P).)$

More generally. . .

Y - countable groupoid

 $\Lambda \subseteq Y \text{ - subcategory with } \Lambda^0 = Y^0$ ((Y, \Lambda) is an ordered groupoid) $J : \ell^2(\Lambda) \hookrightarrow \ell^2(Y)$ $L : Y \to \text{P.I.}(\ell^2(Y)) \text{ - left regular representation}$ For $t \in Y$, $W_t := J^*L_t J \in B(\ell^2(\Lambda))$ - Wiener-Hopf operator $W_t \neq 0 \text{ iff } t \in \Lambda\Lambda^{-1}$ $W := C^*(\{W_t : t \in Y\}), W_0 := C^*(\{W_\alpha : \alpha \in \Lambda\})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More generally. . .

Y - countable groupoid

$$\begin{split} &\Lambda \subseteq Y \text{ - subcategory with } \Lambda^0 = Y^0 \\ &((Y,\Lambda) \text{ is an ordered groupoid}) \\ &J: \ell^2(\Lambda) \hookrightarrow \ell^2(Y) \\ &L: Y \to \mathsf{P.I.}(\ell^2(Y)) \text{ - left regular representation} \\ &\text{For } t \in Y, \ &W_t := J^* L_t J \in B(\ell^2(\Lambda)) \text{ - Wiener-Hopf operator} \\ &W_t \neq 0 \text{ iff } t \in \Lambda\Lambda^{-1} \\ &\mathcal{W} := C^*(\{W_t : t \in Y\}), \ &\mathcal{W}_0 := C^*(\{W_\alpha : \alpha \in \Lambda\}) \end{split}$$

イロト 不得 とくき とくき とうき

40/52

 $\mathcal{W} = \mathcal{W}_0$?

Definition. (Y, Λ) is *finitely aligned* if for $t \in Y$, $(t\Lambda \cap \Lambda \neq \emptyset) \Longrightarrow (\exists F \subseteq \Lambda \text{ finite s.t. } t\Lambda \cap \Lambda = \bigcup_{\alpha \in F} \alpha \Lambda).$ Note that if (Y, Λ) is finitely aligned then Λ is finitely aligned (as LCSC).

Theorem. Let (Y, Λ) be an ordered groupoid. Suppose that Λ is a finitely aligned LCSC. Then $\mathcal{W} = \mathcal{W}_0$ iff (Y, Λ) is finitely aligned.

Key point: If Λ is finitely aligned, then for all ζ , $A(\zeta) = \bigcup_{i=1}^{n} \alpha_i \Lambda$ (i.e. every constructible right ideal is a finite union of principal right ideals).

In the general (nonfinitely aligned) case,

Proposition. Let $t \in Y$. Then $W_t \in W_0$ iff there is a finite set $F \subseteq \mathcal{Z}(\Lambda)$ such that

(i) for $\zeta \in F$, $\varphi_{\zeta} = t|_{A(\zeta)}$ (i.e. $\alpha_1^{-1}\beta_1 \cdots \alpha_n^{-1}\beta_n = t$) (ii) $\Lambda \cap t^{-1}\Lambda = \bigcup_{\zeta \in F} A(\zeta)$.

Corollaries.

1. Let $t \in \Lambda \Lambda^{-1}$. If $t \in \Lambda^{-1} \Lambda$ then $W_t \in W_0$.

2. If Y is abelian then $\mathcal{W} = \mathcal{W}_0$.

Definition. Λ is *right reversible* if $\Lambda \alpha \cap \Lambda \beta \neq \emptyset$, for all α , $\beta \in \Lambda$.

Lemma. Let (Y, Λ) be an ordered groupoid. Then Λ is right reversible iff $\Lambda \Lambda^{-1} \subseteq \Lambda^{-1} \Lambda$.

3. If Λ is right reversible then $\mathcal{W} = \mathcal{W}_0$.

In the general (nonfinitely aligned) case,

Proposition. Let $t \in Y$. Then $W_t \in W_0$ iff there is a finite set $F \subseteq \mathcal{Z}(\Lambda)$ such that

(i) for $\zeta \in F$, $\varphi_{\zeta} = t|_{A(\zeta)}$ (i.e. $\alpha_1^{-1}\beta_1 \cdots \alpha_n^{-1}\beta_n = t$) (ii) $\Lambda \cap t^{-1}\Lambda = \bigcup_{\zeta \in F} A(\zeta)$.

Corollaries.

1. Let $t \in \Lambda \Lambda^{-1}$. If $t \in \Lambda^{-1} \Lambda$ then $W_t \in W_0$.

2. If Y is abelian then $\mathcal{W} = \mathcal{W}_0$.

Definition. Λ is *right reversible* if $\Lambda \alpha \cap \Lambda \beta \neq \emptyset$, for all α , $\beta \in \Lambda$.

Lemma. Let (Y, Λ) be an ordered groupoid. Then Λ is right reversible iff $\Lambda \Lambda^{-1} \subseteq \Lambda^{-1} \Lambda$.

3. If Λ is right reversible then $\mathcal{W} = \mathcal{W}_0$.

Proposition. There exist examples of ordered groupoids (Y, Λ) with Λ not finitely aligned, both such that $\mathcal{W} = \mathcal{W}_0$, and such that $\mathcal{W} \neq \mathcal{W}_0$.

Comparison with other semigroup algebras — joint with E. Bedos, S. Kaliszewski, J. Quigg

X. Li (JFA 2012) described five C^* -algebras associated to a left cancellative monoid. We adapt to the case of a left cancellative small category Λ .

Definition. Consider the universal C*-algebra generated by partial isometries $\{v_{\alpha} : \alpha \in \Lambda\}$ and projections $\{p_E : E \in \mathcal{D}^{(0)} \cup \{\emptyset\}\}$ with some relations.

Relations. (1) $v_{\alpha}^* v_{\alpha} = p_{s(\alpha)\Lambda}$ (2) $v_{\alpha}v_{\beta} = v_{\alpha\beta}$ if $s(\alpha) = s(\beta)$, (and = 0 otherwise) (3) $p_{\emptyset} = 0$ (4) $p_E p_F = p_{E\cap F}$ (5) $v_{\alpha}p_E v_{\alpha}^* = p_{\tau^{\alpha}(E)}$. 1. $C^*(\Lambda)$: use (1) - (5).

1.
$$C^*(\Lambda)$$
: use (1) - (5).
Let $\widetilde{\mathcal{D}^{(0)}} = \{ \bigcup_{i=1}^n E_i : E_i \in \mathcal{D}^{(0)} \cup \{\emptyset\} \}$.
(4)^{(\cup}), (5)^{(\cup}) - same as (4), (5) but using $\widetilde{\mathcal{D}^{(0)}}$
(6) $p_{E\cup F} = p_E \lor p_F$, $E, F \in \widetilde{\mathcal{D}^{(0)}}$
2. $C^*({}^{\cup})(\Lambda)$: use (1) - (3), (4)^(\cup), (5)^(\cup), (6).

1.
$$C^*(\Lambda)$$
: use (1) - (5).
Let $\widetilde{\mathcal{D}^{(0)}} = \{ \bigcup_{i=1}^n E_i : E_i \in \mathcal{D}^{(0)} \cup \{\emptyset\} \}$.
(4)^(\cup), (5)^(\cup) - same as (4), (5) but using $\widetilde{\mathcal{D}^{(0)}}$
(6) $p_{E\cup F} = p_E \lor p_F$, $E, F \in \widetilde{\mathcal{D}^{(0)}}$
2. $C^*({}^{(\cup)}(\Lambda)$: use (1) - (3), (4)^(\cup), (5)^(\cup), (6).
(7) If $\varphi_{\zeta} = id_{A(\zeta)}$ then $v_{\alpha_1}^* v_{\beta_1} \cdots v_{\alpha_n}^* v_{\beta_n} = p_{A(\zeta)}$ (where $\zeta = (\alpha_1, \beta_1, \dots, \alpha_n, \beta_n)$)
3. $C^*_s(\Lambda)$: use (1) - (3), (7).

1.
$$C^{*}(\Lambda)$$
: use (1) - (5).
Let $\widetilde{\mathcal{D}^{(0)}} = \{ \bigcup_{i=1}^{n} E_{i} : E_{i} \in \mathcal{D}^{(0)} \cup \{\emptyset\} \}$.
(4)^(\cup), (5)^(\cup) - same as (4), (5) but using $\widetilde{\mathcal{D}^{(0)}}$
(6) $p_{E\cup F} = p_{E} \lor p_{F}, E, F \in \widetilde{\mathcal{D}^{(0)}}$
2. $C^{*}({}^{(\cup)}(\Lambda)$: use (1) - (3), (4)^(\cup), (5)^(\cup), (6).
(7) If $\varphi_{\zeta} = \operatorname{id}_{A(\zeta)}$ then $v_{\alpha_{1}}^{*}v_{\beta_{1}}\cdots v_{\alpha_{n}}^{*}v_{\beta_{n}} = p_{A(\zeta)}$ (where $\zeta = (\alpha_{1}, \beta_{1}, \dots, \alpha_{n}, \beta_{n})$)
3. $C_{s}^{*}(\Lambda)$: use (1) - (3), (7).
4. $C_{s}^{*}({}^{(\cup)}(\Lambda)$: use (1) - (3), (6), (7).

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ● ● ●

48 / 52

1.
$$C^*(\Lambda)$$
: use (1) - (5).
Let $\widetilde{\mathcal{D}^{(0)}} = \{ \bigcup_{i=1}^n E_i : E_i \in \mathcal{D}^{(0)} \cup \{\emptyset\} \}$.
(4)^{(\bigcup}), (5)^{(\bigcup}) - same as (4), (5) but using $\widetilde{\mathcal{D}^{(0)}}$
(6) $p_{E\cup F} = p_E \lor p_F$, $E, F \in \widetilde{\mathcal{D}^{(0)}}$
2. $C^*({}^{(\bigcup)}(\Lambda)$: use (1) - (3), (4)^{(\bigcup}), (5)^{(\bigcup}), (6).
(7) If $\varphi_{\zeta} = id_{A(\zeta)}$ then $v^*_{\alpha_1}v_{\beta_1}\cdots v^*_{\alpha_n}v_{\beta_n} = p_{A(\zeta)}$ (where $\zeta = (\alpha_1, \beta_1, \dots, \alpha_n, \beta_n)$)
3. $C^*_s(\Lambda)$: use (1) - (3), (7).
4. $C^*_s({}^{(\bigcup)}(\Lambda)$: use (1) - (3), (6), (7).
5. $\mathcal{T}_{\ell} \quad (\subseteq B(\ell^2(\Lambda)))$

There is a commutative diagram:

$$C^{*}(\Lambda) \xrightarrow{\pi_{s}} C^{*}_{s}(\Lambda)$$

$$\pi^{(\cup)} \downarrow \qquad \rho^{(\cup)} \downarrow$$

$$C^{*}^{(\cup)}(\Lambda) \xrightarrow{\rho_{s}} C^{*}_{s}^{(\cup)}(\Lambda) \xrightarrow{\pi_{\ell}} \mathcal{T}_{\ell}(\Lambda)$$

There is a commutative diagram:

$$C^{*}(\Lambda) \xrightarrow{\pi_{s}} C^{*}_{s}(\Lambda)$$

$$\pi^{(\cup)} \downarrow \qquad \rho^{(\cup)} \downarrow$$

$$C^{*}^{(\cup)}(\Lambda) \xrightarrow{\rho_{s}} C^{*}_{s}^{(\cup)}(\Lambda) \xrightarrow{\pi_{\ell}} \mathcal{T}_{\ell}(\Lambda)$$

We will expand this diagram to include the Toeplitz algebras discussed earlier. First, one more algebra . . .

Definition. Let $ZM(\Lambda) := \{\varphi_{\zeta} : \zeta \in \mathcal{Z}(\Lambda)\} \cup \{id_{\emptyset}\}$ (the set of all zigzag maps).

 $ZM(\Lambda)$ is an inverse semigroup. We let $C^*(ZM(\Lambda))$ denote its universal C^* -algebra.

Theorem. There is a commutative diagram

$$C^{*}(\Lambda) \xrightarrow{\pi_{s}} C^{*}_{s}(\Lambda) \xrightarrow{g} C^{*}(ZM(\Lambda)) \qquad B(\ell^{2}(\Lambda))$$

$$\pi^{(\cup)} \qquad \rho^{(\cup)} \qquad q \qquad \uparrow$$

$$C^{*}^{(\cup)}(\Lambda) \xrightarrow{\rho_{s}} C^{*}_{s}^{(\cup)}(\Lambda) \xrightarrow{\mu} \mathcal{T}(\Lambda) \xrightarrow{\pi_{r}} \mathcal{T}_{r}(\Lambda) \xrightarrow{\pi_{\ell}} \mathcal{T}_{\ell}(\Lambda)$$

1. μ and g are isomorphisms.

2. π_s , ρ_s , $\pi^{(\cup)}$, $\rho^{(\cup)}$, q, π_r , π_ℓ are surjective.

3. ρ_s is an isomorphism if Λ is finitely aligned, but not in general (even if Λ is a submonoid of a group).

4. π_s , $\pi^{(\cup)}$, $\rho^{(\cup)}$, q are not isomorphisms in general (even if Λ is a finitely aligned submonoid of a group).