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The significance of examples

Because of topological closure, the study of C∗-algebras does not
reduce to the study of simple components.

Simple algebras are still important, but the classification of
C∗-algebras is, by necessity, an examples-driven endeavour.

Techniques used in the study of C∗-algebras include
I the construction of large classes of examples which can be

studied using common tools.
I the development of invariants that allow you to readily(?!)

identify two examples as being isomorphic.

One way automorphisms of graphs can help

Suppose we have a graph with a countable number of vertices.

Each vertex can represent a basis vector.

A graph automorphism represents a linear map sending each
basis vector to the image of the corresponding vertex.

The edges between the vertices restrict the operators that can be
represented by automorphisms.
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2 Self-similar actions of groups

The alphabet X and the tree TX

Suppose X is a finite set, X k is the set of k -tuples inX , with
X 0 = {∗}, and define X ∗ :=

⊔
k≥0 X k = {finite words in X}.

T = TX is an infinite homogeneous
rooted tree with

I vertex set T 0
X = X ∗ = {µ ∈ X ∗}

I edge set T 1
X =

{{µ, µx} : µ ∈ X ∗ and x ∈ X}
I root the empty word, ∗

We label
I edges in TX with elements of X
I paths in TX with elements of X ∗.

T{x ,y}

∗

x y

xx xy yx yy

The boundary Xω of TX can be identified with semi-infinite words
in X starting at ∗, so Xω = {x1x2 . . . : xi ∈ X}.

Automorphisms of T = TX

From a traditional graph-theoretic perspective, an automorphism α
of T consists of a family of bijections αk : X k → X k for k ≥ 0 such
that for all µ, ν ∈ X ∗

{αk(µ), αk+1(ν)} ∈ T 1 ⇔ {µ, ν} ∈ T 1.

If β = {βk} is an automorphism, then each {βk(µ), βk+1(µx)} is
an edge in T , and hence βk+1(µx) ∈ βk(µ)X .
So an automorphism satisfies the, ostensibly weaker, property (??)

Lemma
Suppose α : T 0 → T 0 is a bijection satisfying

α(X k) = X k for all k , and α(µx) ∈ α(µ)X for all µ ∈ X k and x ∈ X.

Define αk := α|X k . Then {αk} is an automorphism α of T . The
inverse is also an automorphism of T , and also satisfies (??).



Action of a group on TX

A group G acts (by automorphisms) on TX if it preserves
adjacency (and hence depth).

Consider actions on X ∗ consistent with an action on TX .

In particular, the action of g ∈ G can not split a path apart, but its
action on an edge labelled x ∈ X may differ depending on the level.

So, in general, g · (vw) 6= (g · v)(g · w) for g ∈ G, v ,w ∈ X ∗.

T{x ,y}
∗

x y

xx xy yx yy

g
(
T{x ,y}

)
∗

g · y = x g · x = y

g · (yx) = xx g · (yy) = xy g · (xy) = yx g · (xx) = yy

Definition of a self-similar action

A self-similar action is a pair (G,X ) consisting of a group G and a
finite alphabet X with a faithful action of G on X ∗ satisfying
g ·∅ = ∅ and

for all (g, x) ∈ G × X , there exist (h, y) ∈ G × X such that

g · (xw) = y(h · w) for all w ∈ X ∗

It follows that

for all g ∈ G, v ∈ X ∗, there exists a unique h ∈ G such that

g · (vw) = (g · v)(h · w) for all w ∈ X ∗

Call this h ∈ G the restriction of g at v and write h = g|v .

An example - the odometer

Let G = Z = 〈a〉 and X = {0, 1}.

Define an action of Z on X ∗ recursively by

a · (0w) = 1w

a · (1w) = 0(a · w)

This corresponds to the diadic adding machine;
it coincides with the rule of adding one to a diadic integer
(with place value increasing towards the right).

Another example - the Basilica group

Let X = {0, 1} and

G = 〈a, b : σn([a, ab]) for all n ∈ N〉

where σ is the substitution σ(b) = a and σ(a) = b2.

Define an action of G on X ∗ recursively by

a · (0w) = 1(b · w) b · (0w) = 0(a · w)
a · (1w) = 0w b · (1w) = 1w

The Basilica group is an iterated monodromy group with many
interesting properties, including being amenable.



Other interesting examples

I Iterated monodromy groups

I The Grigorchuk group

I Branch groups

The nucleus

A nucleus of a self-similar action (G,X ) is a minimal set N ⊆ G
satisfying the property

for each g ∈ G, there exists N ∈ N such that
g|v ∈ N for all words v ∈ X n with n ≥ N.

A self-similar action is contracting if it has a finite nucleus.

For a contracting self-similar action (G,X ), the nucleus is unique
and equal to

N =
⋃
g∈G

⋂
n≥0

{g|v : v ∈ X ∗, |v | ≥ n}

The bimodule

Given a self-similar action (G,X ), let C∗(G) be the full group
C∗-algebra of G and define

M = M(G,X) =
⊕
x∈X

C∗(G).

So
M = {(mx)x∈X | mx ∈ C∗(G)}.

For each y ∈ X we write ey for the element of M satisfying

(ey)x =

{
1C∗(G) if x = y

0 otherwise.

M is a free right Hilbert C∗(G)-module with

I right C∗(G)-action

(mx)x∈X · a = (mxa)x∈X

via componentwise multiplication within C∗(G)

I C∗(G)-valued inner product

〈m, n〉 =
∑
x∈X

m∗xnx

for m = (mx)x∈X , n = (nx)x∈X ∈ M

I basis {ex | x ∈ X} is a C∗(G)-basis for M, so

M = span{ex · a | x ∈ X , a ∈ C∗(G)}.



The representation of G

Let (G,X ) be a self-similar action and M =
⊕
x∈X

C∗(G).

Denote by δg ∈ C∗(G) the point mass at g ∈ G.

For each g ∈ G, define a linear operator Ug on M via

Ug(ex · a) = eg·x · (δg|x a)

for x ∈ X and a ∈ C∗(G).

Lemma
The map U : G→ UL(M) given by g 7→ Ug is a faithful
nondegenerate unitary representation of G with (Ug)

∗ = Ug−1 .

The Cuntz-Pimsner algebra of (G,X )

Theorem (Nekrashevych)
Let (G,X ) be a self-similar action and M =

⊕
x∈X

C∗(G).

The Cuntz-Pimsner algebra O(G,X ) := O(M) is the universal
C∗-algebra generated by a unitary representation u : G→ UL(M)
and a family of isometries {sx : x ∈ X} satisfying

(CR)
∑
x∈X

sxs∗x = 1

(SSR1) s∗xsx = 1 and s∗x sy = 0 if x 6= y.

(SSR2) ugsx = sg·x ug|x

for all g ∈ G and x ∈ X.

If (G,X ) is contracting with nucleus N then O(G,X ) is generated
by {ug, sx : g ∈ N , x ∈ X}.
If (G,X ) is contracting with nucleus {e} then O(G,X ) = O|X |.

The Toeplitz algebra of (G,X )

Theorem (Laca, R., Raeburn, Whittaker)
Let (G,X ) be a self-similar action and M =

⊕
x∈X

C∗(G).

The Toeplitz algebra T (G,X ) := T (M) is the universal C∗ algebra
generated by a unitary representation u : G→ UL(M) and a family
of isometries {sx : x ∈ X} satisfying

(SSR1) s∗xsx = 1 and s∗x sy = 0 if x 6= y.

(SSR2) ugsx = sg·x ug|x

for all g ∈ G and x ∈ X.

Moreover, T (G,X ) = span{sµugs∗ν : µ, ν ∈ X ∗, g ∈ G}
where sµ := sµ1 . . . sµn for µ = µ1 · · ·µn ∈ X n.

The states

States are linear functionals on algebras that satisfy properties of
significance in statistical mechanics. A state φ of a system
(B,R, α) is a KMSβ state if φ(ab) = φ(bαiβ(a)) for all a, b in a
family of analytic elements spanning a dense subspace of B.

Given µ = µ1 . . . µn ∈ X ∗, define sµ := sµ1 · · · sµn ∈ M.

There is an action σ : R→ Aut T (G,X ) given by

σt(sµ) = eit|µ|sµ σt(ug) = ug

for µ ∈ X ∗ and g ∈ G. A state φ : T (G,X )→ C is a KMSβ state iff

φ((sv ugs∗w)(sy uhs∗z)) = φ((sy uhs∗z)σiβ(sv ugs∗w))

= e−β(|v |−|w |)φ((sy uhs∗z)(sv ugs∗w)).



States on the Cuntz-Pimsner algebra

Lemma
Let (G,X ) be a self-similar action.
If φ is a KMSβ state on O(G,X ), then β = ln |X |.

Lemma
Let (G,X ) be a contracting self-similar action with nucleus N . For
each g ∈ N \ {e}, let

F n
g = {µ ∈ X n : g · µ = µ and g|µ = e}.

The sequence {|X |−n|F n
g |} is increasing and converges to a limit

cg satisfying 0 ≤ cg < 1 and there is a unique KMSln |X | state φ for
O(G,X ) satisfying

φ(ug) = cg.

States on the Toeplitz algebra

Theorem
Let (G,X ) be a self-similar action, M =

⊕
x∈X

C∗(G) and

σ : R→ Aut T (G,X ) satisfy
σt(sv ugs∗w) = eit(|v |−|w |)sv ugs∗w for v ,w ∈ X ∗ and g ∈ G.

1. For β < ln |X |, there are no KMSβ states.

2. For β = ln |X |, every KMSln |X | state satisfies
φln |X |(uguh) = φln |X |(uhug) for all g, h ∈ G,

φln |X |(sv ugs∗w) =

{
e−(ln |X |)|v |φln |X |(ug) if v = w

0 otherwise,

and factors through O(G,X ).

3. For β > ln |X |, the simplex of KMSβ-states of T (M) is
homeomorphic to the simplex of normalized traces on C∗(G)
via an explicit construction τ 7→ ψβ,τ .

States on the Toeplitz algebra: ψβ,τe

Suppose that (G,X ) is a self-similar action and β > ln |X |.
Suppose τe is the trace on C ∗ (G) satisfying

τe(δg) =

{
1 if g = e

0 otherwise.

For g ∈ G and k ≥ 0, we set

F k
g := {µ ∈ X k : g · µ = µ and g|v = e}.

Then there is a KMSβ state ψβ,τe on (T(G,X ), σ) such that

ψβ,τe(sv ugs∗w) =

e−β|v |(1− |X |e−β)
∞∑

k=0

e−βk |F k
g | if v = w

0 otherwise.

States on the Toeplitz algebra: ψβ,τ1

Suppose that (G,X ) is a self-similar action and β > ln |X |.
Suppose τ1 : C∗(G)→ C is the integrated form of the trivial
representation sending g 7→ 1 for all g ∈ G.
For g ∈ G and k ≥ 0, we set

Gk
g := {µ ∈ X k : g · µ = µ}.

Then there is a KMSβ state ψβ,τ1 on (T(G,X ), σ) such that

ψβ,τ1(sv ugs∗w) =

e−β|v |(1− |X |e−β)
∞∑

k=0

e−βk |Gk
g | if v = w

0 otherwise.



Computing F k
g and Gk

g: the Moore diagram

Suppose (G,X ) is a self-similar action.

A Moore diagram is a directed graph whose vertices are elements
of G and edges are labelled by pairs of elements of X .

In a Moore diagram the arrow

g h
(x ,y)

means that g · x = y and g|x = h.

We can draw a Moore diagram for any subset S of G that is closed
under restriction.

The Moore diagram of the nucleus helps us calculate F k
g and Gk

g ;
we look for labels of the form (x , x), called stationary paths.

Computing the nucleus
Proposition
Suppose (G,X ) is a self-similar action and S is a subset of G that
is closed under restriction. Every vertex in the Moore diagram of S
that can be reached from a cycle belongs to the nucleus.

Proof.
Suppose g ∈ G is a vertex in the Moore diagram of S, and there is
a cycle of length n ≥ 1 consisting of edges labelled
(x1, y1), (x2, y2), · · · , (xn, yn) with s(x1, y1) = g,
r(xi , yi) = s(xi+1, yi+1), and r(xn, yn) = g. By definition of the
Moore diagram we have g · (x1 · · · xn) = y1 · · · yn and g|x1···xn = g.
Thus g = g|(x1···xn)m for all m ∈ N and

g ∈
⋂
n≥0

{g|v : v ∈ X ∗, |v | ≥ n} =⇒ g ∈ N .

A similar argument shows that if g can be reached from a cycle,
then there are arbitrarily long paths ending at g.

Example: basilica group
Recall the basilica group

G = 〈a, b : σn([a, ab]) for all n ∈ N〉,

where σ is the substitution σ(b) = a and σ(a) = b2, with a
self-similar action (G,X ) where X = {0, 1} satisfying

a · (0w) = 1(b · w) b · (0w) = 0(a · w)
a · (1w) = 0w b · (1w) = 1w

Proposition
The basilica group action
(G,X ) is contracting, with
nucleus

N = {e, a, b, a−1, b−1, ab−1, ba−1};

the Moore diagram of N is

e

(y ,y)(x ,x)

b (y ,y)

a

(y ,x)

(x ,y)

(x ,x)

b−1
(y ,y)

a−1

(x ,y)

(y ,x)

(x ,x)

ab−1

(y ,x)

ba−1

(x ,y)(y ,x)

(x ,y)

Example: basilica group
The critical value for KMSβ states is βc = ln |X | = ln 2.

Proposition
The system (O(G,X ), σ) has a unique KMSln 2 state, which is
given on the nucleus N = {e, a, b, a−1, b−1, ab−1, ba−1} by

φ(ug) =


1 for g = e
1
2 for g = b, b−1

0 for g = a, a−1, ab−1, ba−1.

The proof relies on the fact that there are no stationary paths from
g ∈ {a, a−1, ab−1, ba−1} to e, so for such g we have F k

g = ∅ for all
k and φ(ug) = cg = 0.
For g ∈ {b, b−1}, the only stationary paths go straight from g to e,
and there are 2k−1 of them; thus |X |−k |F k

g | = 2−k 2k−1 = 1
2 , and

φ(ug) = cg = 1
2 .
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3 The bigger picture

Path space interpretation

The tree T{x ,y} alongside
represents the path space of
the graph

∗

x

y

T{x ,y}

∗

x y

xx xy yx yy

TX represents the path space of a bouquet of |X | loops.

More general path spaces: from trees to forests
The path space of a finite directed graph E is a forest TE of rooted
trees.

E

wv
3

4

1

2

TE

v

1 2

11 12 23 24

w

3 4

31 32 41 42

Problems arise:
I the trees in the forest are not necessarily homogeneous;
I restrictions need not be uniquely determined;
I automorphisms of TE need not be graph automorphisms of E .

In particular, the source map may not be equivariant:
s(g · e) 6= g · s(e) in general. This distinguishes our work.

Small changes make big differences

E

wv
3

4

1

2

TE

v

1 2

11 12 23 24

w

3 4

31 32 41 42

F

wv
e3

e2

e1

e4

TF

v

e1 e2 e3

e1e1 e1e2 e1e3 e2e4 e3e4

w

e4

e4e1 e4e2 e4e3
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4 Self-similar actions of groupoids

Path spaces of finite directed graphs, E

Generalise: replace X by edges E1 in a finite directed graph E .

Suppose E = (E0,E1, r , s) is a directed graph with vertex set E0,
edge set E1, and range and source maps r , s : E1 → E0. Write

Ek = {µ = µ1 · · ·µk : µi ∈ E1, s(µi) = r(µi+1)}

for the set of paths of length k in E , E0 for the set of vertices, and
define E∗ :=

⊔
k≥0 Ek .

We recover the previous work by taking E to be the graph
({∗},X , r , s) in which r(x) = r(y) = s(x) = s(y) = ∗ for all
x , y ∈ X = E1 and E∗ = X ∗.

Path space TE of finite directed graph E

The analogue of the tree TX is the (undirected) graph TE with
vertex set T 0 = E∗ and edge set

T 1 =
{
{µ, µe} : µ ∈ E∗, e ∈ E1, and s(µ) = r(e)

}
.

The subgraph vE∗ = {µ ∈ E∗ : r(µ) = v} is a rooted tree with root
v ∈ E0, and TE =

⊔
v∈E0 vE∗ is a disjoint union of trees, or forest.

E

wv
3

4

1

2

TE

v

1 2

11 12 23 24

w

3 4

31 32 41 42

Partial isomorphisms

Restrictions become problematic in this context; knowing an action
on one tree in the forest doesn’t constrain the action on other trees.

Suppose E = (E0,E1, r , s) is a directed graph.

A partial isomorphism of TE consists of two vertices v ,w ∈ E0 and
a bijection g : vE∗ → wE∗ such that

g|vEk is a bijection onto wEk for k ∈ N, and
g(µe) ∈ g(µ)E1 for all µe ∈ vE∗.

For v ∈ E0, we write idv : vE∗ → vE∗ for the partial isomorphism
given by idv (µ) = µ for all µ ∈ vE∗.

Denote the set of all partial isomorphisms of TE by PIso(E∗).

Define domain and codomain maps d , c : PIso(E∗)→ E0 so that
g : d(g)E∗ → c(g)E∗.



Groupoids

Working with partial isomorphisms means working with groupoids.

A groupoid differs from a group in two main ways:
I the product in a groupoid is only partially defined, and
I a groupoid typically has more than one unit.

A groupoid is a small category with inverses.

Groupoids

So a groupoid consists of
I a set G0 of objects (the unit space of the groupoid),
I a set G of morphisms,
I two functions c, d : G→ G0, and
I a partially defined product (g, h) 7→ gh from

G2 := {(g, h) : d(g) = c(h)} to G

such that (G,G0, c, d) is a category and such that each g ∈ G has
an inverse g−1.

We write G to denote the groupoid. If |G0| = 1, then G is a group.

(PIso(E∗),E0, c, d) is a groupoid

Proposition
Suppose that E = (E0,E1, r , s) is a directed graph with associated
forest TE .

Then (PIso(E∗),E0, c, d) is a groupoid in which:
I the product is given by composition of functions,
I the identity isomorphism at v ∈ E0 is idv : vE∗ → vE∗, and
I the inverse of g ∈ PIso(E∗) is the inverse of the function

g : d(g)E∗ → c(g)E∗.

Groupoid action

Suppose that E is a directed graph and G is a groupoid with unit
space E0.

An action of G on the path space E∗ is a (unit-preserving) groupoid
homomorphism φ : G→ PIso(E∗).

The action is faithful if φ is one-to-one.

If the homomorphism is fixed, we usually write g · µ for φg(µ).

This applies in particular when G arises as a subgroupoid of
PIso(E∗).



Self-similar groupoid action (G,E)

Definition
Suppose E = (E0,E1, r , s) is a directed graph and G is a groupoid
with unit space E0 which acts faithfully on TE .

The action is self-similar if for every g ∈ G and e ∈ d(g)E1, there
exists h ∈ G such that

g · (eµ) = (g · e)(h · µ) for all µ ∈ s(e)E∗. (1)

Since the action is faithful, there is then exactly one such h ∈ G,
and we write g|e := h. Say (G,E) is a self-similar groupoid action.

F

wv
e3

e2

e1

e4

TF

v

e1 e2 e3

e1e1 e1e2 e1e3 e2e4 e3e4

w

e4

e4e1 e4e2 e4e3

Consequences of self-similar groupoid definition

Lemma
Suppose E = (E0,E1, r , s) is a directed graph and G is a groupoid
with unit space E0 acting self-similarly on TE .

Then for g, h ∈ G with d(h) = c(g) and e ∈ d(g)E1, we have
I d(g|e) = s(e) and c(g|e) = s(g · e),
I r(g · e) = g · r(e) and s(g · e) = g|e · s(e),
I if g = idr(e), then g|e = ids(e), and
I (hg)|e = (h|g·e)(g|e).

Note that in general s(g · e) 6= g · s(e), ie the source map is not
G-equivariant.
Indeed, g · s(e) will often not make sense: g maps d(g)E∗ onto
c(g)E∗, and s(e) is not in d(g)E∗ unless s(e) = d(g).

Action on paths

We want to be able to deal with paths rather than just edges.

Proposition
Suppose E = (E0,E1, r , s) is a directed graph and G is a groupoid
with unit space E0 acting self-similarly on TE .

Then for all g, h ∈ G, µ ∈ d(g)E∗, and ν ∈ s(µ)E∗ we have:

1. g|µν = (g|µ)|ν ,

2. idr(µ) |µ = ids(µ),

3. (hg)|µ = h|g·µg|µ, and

4. g−1|µ = (g|g−1·µ)
−1.

Constructing self-similar groupoid actions

We use automata to construct self-similar groupoid actions.

An automaton over E = (E0,E1, rE , sE) is
I a finite set A containing E0, with
I functions rA, sA : A→ E0 such that rA(v) = v = sA(v) if

v ∈ E0 ⊂ A, and
I a function

A ×sA rE
E1 → E1 ×sE rA

A
(a, e) 7→ (a · e, a|e)

such that:
(A1) for every a ∈ A, e 7→ a · e is a bijection sA(a)E1 → rA(a)E1;
(A2) sA(a|e) = sE(e) for all (a, e) ∈ A ×sA rE

E1;
(A3) rE(e) · e = e and rE(e)|e = sE(e) for all e ∈ E1.



Constructing self-similar groupoid actions

Since sE(v) = rE(v) = sA(v) = rA(v) = v for all v ∈ E0, the range
and source maps are consistent whenever they both make sense.

We can extend restriction to paths by defining

a|µ = (· · · ((a|µ1)|µ2)|µ3 · · · )|µk .

The point is that sA(a|µ1) = sE(µ1) = rE(µ2), for example, and
hence (a|µ1)|µ2 makes sense.

We use automata over E to construct subgroupoids of PIso(E∗).

Constructing self-similar groupoid actions

Proposition
Suppose that E is a directed graph and A is an automaton over E.
We recursively define maps

fa,k : s(a)Ek → r(a)Ek

for a ∈ A and k ∈ N by fa,1(e) = a · e and

fa,k+1(eµ) = (a · e)fa|e,k(µ) for eµ ∈ sA(a)Ek+1.

Then for every a ∈ A, fa = {fa,k} is a partial isomorphism of
s(a)E∗ onto r(a)E∗ so that d(fa) = s(a) and c(fa) = r(a).

For a = v ∈ A ∩ E0, we have fa = idv : vE∗ → vE∗.

Constructing self-similar groupoid actions

Theorem
Suppose that E is a directed graph and A is an automaton over E.

For a ∈ A, let fa be the partial isomorphism of TE just described.

Let GA be the subgroupoid of PIso(E∗) generated by {fa : a ∈ A}.
By convention this includes the identity morphisms {idv : v ∈ E0}.

Then GA acts faithfully on the path space E∗, and this action is
self-similar.

The action of GA is faithful because GA is constructed as a
subgroupoid of PIso(E∗).

It should be possible to construct unfaithful actions from some
automata.

Toeplitz algebra of a self-similar groupoid action

Suppose that G is a (discrete) groupoid.

The groupoid elements g ∈ G give point masses ig in Cc(G), and
Cc(G) = span{ig : g ∈ G}.

For g, h ∈ G, the involution and product are determined by

i∗g = ig−1 and ig ∗ ih =

{
igh if d(g) = c(h)

0 otherwise.



Toeplitz algebra of a self-similar groupoid action
A function U : G→ B(H) is a unitary representation of G if

I for v ∈ G0, Uv is the orthogonal projection on a closed
subspace of H,

I for each g ∈ G, Ug is a partial isometry with initial projection
Ud(g) and final projection Uc(g), and

I for g, h ∈ G, we have

UgUh =

{
Ugh if d(g) = c(h)

0 otherwise.

Note that each Ug is a unitary isomorphism Ud(g)H → Uc(g)H.

There’s a similar notion of unitary representation with values in a
C∗-algebra, and then the map i : g 7→ ig is a unitary representation
of G in Cc(G) ⊂ C∗(G).

The pair (C∗(G), i) is universal for unitary representations of G.

Toeplitz algebra of a self-similar groupoid action
We construct a Hilbert bimodule over C∗(G), M, and define the
Toeplitz algebra of (G,E) to be T (G,E) := T (M).

If E is a finite graph without sources, we show that T (G,E) is
generated by {ug : g ∈ G} ∪ {pv : v ∈ E0} ∪ {se : e ∈ E1} where

I u is a unitary representation of G with uv = pv for v ∈ E0;
I (p, s) is a Toeplitz-Cuntz-Krieger family in T (G,E), and∑

v∈E0 pv is an identity for T (G,E);
I for g ∈ G and e ∈ E1,

ugse =

{
sg·eug|e if d(g) = r(e)

0 otherwise;

I for g ∈ G and v ∈ E0,

ugpv =

{
pg·v ug if d(g) = v

0 otherwise.

T (G,E) = span{sµugs∗ν : µ, ν ∈ E∗, g ∈ G and s(µ) = g · s(ν)}.

Gauge action on T (G,E)

Suppose that E is a finite graph with no sources and that (G,E) is
a self-similar groupoid action over E .

There is a strongly continuous gauge action

γ : T→ Aut T (G,E)

such that
γz(iC∗(G)(a)) = iC∗(G)(a)

and γz(iM(m)) = ziM(m) for a ∈ C∗(G) and m ∈ M.

The gauge action gives rise to a periodic action σ of the real line (a
dynamics) by the formula σt = γeit . This dynamics satisfies

σt(sµugs∗ν) = eit(|µ|−|ν|)sµugs∗ν . (2)

KMSβ-states on T (G,E)

Proposition
Let E be a finite graph with no sources and vertex matrix B, and let
ρ(B) be the spectral radius of B.

Suppose that (G,E) is a self-similar groupoid action.

Let σ : R→ Aut T (G,E), σt(sµugs∗ν) = eit(|µ|−|ν|)sµugs∗ν .
I For β < ln ρ(B), there are no KMSβ-states for σ.
I For β ≥ ln ρ(B), a state φ is a KMSβ-state for σ if and only if
φ ◦ iC∗(G) is a trace on C∗(G) and

φ(sµugs∗ν) = δµ,νδs(µ),c(g)δs(ν),d(g)e
−β|µ|φ(ug)

for g ∈ S and µ, ν ∈ E∗.
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