

The significance of examples

[Because of topological clo](#page-1-0)sure, the study of C^{*}-algebras does not [reduce to](#page-1-0) the study of simple components.

[Simple](#page-8-0) algebras are still important, but the classification of *C* ∗ [-algebras is](#page-12-0), by necessity, an examples-driven endeavour.

[Techniques used in the](#page-12-0) study of C^{*}-algebras include

- \blacktriangleright [the construction of large c](#page-12-0)lasses of examples which can be studied using common tools.
- \blacktriangleright the development of invariants that allow you to readily(?!) identify two examples as being isomorphic.

Overview

Background

Self-similar actions of groups

The actions The algebras The states

The bigger picture

A path space perspective The obstruction to generalisation

Self-similar actions of groupoids

Transformation groupoids Constructing self-similar groupoid actions The algebras The states

...

One way automorphisms of graphs can help

Suppose we have a graph with a countable number of vertices.

Each vertex can represent a basis vector.

A graph automorphism represents a linear map sending each basis vector to the image of the corresponding vertex.

The edges between the vertices restrict the operators that can be represented by automorphisms.

Basis of these talks

Volodymyr Nekrashevych, **Self-similar groups**, *AMS Mathematical Surveys and Monographs* 117 (2005).

Volodymyr Nekrashevych, *C* ∗ **-algebras and self-similar groups**, *J. reine andgew. Math.* 630 (2009) 59–123.

M. Laca, I. Raeburn, J. Ramagge, and M.F. Whittaker, **Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions**, *J. Funct. Anal.* 266 (2014) 6619–6661.

R. Exel, E. Pardo, **Self-similar graphs, a unified treatment of Katsura and Nekrashevych** *C* ∗ **-algebras**, *Adv. Math.* 306 (2017) 1046–1129.

M. Laca, I. Raeburn, J. Ramagge, and M.F. Whittaker, **Equilibrium states on operator algebras associated to self-similar actions of groupoids on graphs**, arXiv:1610.00343.

The alphabet *X* and the tree T_X

Suppose X is a finite set, X^k is the set of *k*-tuples in X , with $\mathcal{X}^{0} = \{*\}$, and define $\mathcal{X}^{*} := \bigsqcup_{k \geq 0} \mathcal{X}^{k} = \{\text{finite words in } \mathcal{X}\}.$

 $T = T_X$ is an infinite homogeneous rooted tree with

- ► vertex set $T_X^0 = X^* = \{ \mu \in X^* \}$
- \blacktriangleright [edge set](#page-1-0) $T^1_X =$ $\{\{\mu, \mu x\} : \mu \in X^* \text{ and } x \in X\}$
- \triangleright root the empty word, $*$

We label

- \blacktriangleright edges in T_X with elements of X
- **►** paths in T_X with elements of X^* .

The boundary X^ω of T_X can be identified with semi-infinite words X starting at $*,$ so $X^{\omega} = \{x_1x_2... : x_i \in X\}.$

$$
\begin{array}{|l|}\hline \textbf{1} & \textbf{1} &
$$

2 Self-similar actions of groups

Automorphisms of $T = T_X$

From a traditional graph-theoretic perspective, an automorphism α of $\mathcal T$ consists of a family of bijections $\alpha_{\pmb{k}}\colon \pmb{X}^{\pmb{k}} \to \pmb{X}^{\pmb{k}}$ for $\pmb{k} \geq \pmb{0}$ such that for all $\mu, \nu \in X^*$

$$
\{\alpha_k(\mu), \alpha_{k+1}(\nu)\}\in \mathcal{T}^1 \Leftrightarrow \{\mu, \nu\}\in \mathcal{T}^1.
$$

If $\beta = {\beta_k}$ is an automorphism, then each ${\beta_k(\mu), \beta_{k+1}(\mu x)}$ is an edge in *T*, and hence $\beta_{k+1}(\mu x) \in \beta_k(\mu)X$. So an automorphism satisfies the, ostensibly weaker, property (**??**)

Lemma

 $\pmb{Suppose} \ \alpha \colon \ \mathcal{T}^{\mathsf{0}} \to \ \mathcal{T}^{\mathsf{0}}$ is a bijection satisfying

 $\alpha(X^k) = X^k$ for all k, and $\alpha(\mu x) \in \alpha(\mu)X$ for all $\mu \in X^k$ and $x \in X.$

Define $\alpha_k := \alpha|_{X^k}$. Then $\{\alpha_k\}$ *is an automorphism* α *of* T. The *inverse is also an automorphism of T , and also satisfies* (**??**)*.*

Action of a group on *T^X*

A group *G* acts (by automorphisms) on T_X if it preserves adjacency (and hence depth).

Consider actions on X^* consistent with an action on T_X .

In particular, the action of $q \in G$ can not split a path apart, but its action on an edge labelled $x \in X$ may differ depending on the level.

So, in general, $g \cdot (vw) \neq (g \cdot v)(g \cdot w)$ for $g \in G$, $v, w \in X^*$.

Definition of a self-similar action

A self-similar action is a pair (*G*, *X*) consisting of a group *G* and a finite alphabet *X* with a faithful action of *G* on *X* ∗ satisfying $q \cdot \varnothing = \varnothing$ and

for all $(a, x) \in G \times X$, there exist $(h, v) \in G \times X$ such that

$$
g \cdot (xw) = y(h \cdot w) \quad \text{for all } w \in X^*
$$

It follows that

for all $g \in G$, $v \in X^*$, there exists a unique $h \in G$ such that

 $g \cdot (vw) = (g \cdot v)(h \cdot w)$ for all $w \in X^*$

Call this $h \in G$ the restriction of *g* at *v* and write $h = g|_v$.

An example - the odometer

Let $G = \mathbb{Z} = \langle a \rangle$ and $X = \{0, 1\}.$

Define an action of $\mathbb Z$ on X^* recursively by

$$
a \cdot (0w) = 1w
$$

$$
a \cdot (1w) = 0(a \cdot w)
$$

This corresponds to the diadic adding machine; it coincides with the rule of adding one to a diadic integer (with place value increasing towards the right).

Another example - the Basilica group

Let $X = \{0, 1\}$ and

 $G = \langle a, b : \sigma^n([a, a^b])$ for all $n \in \mathbb{N} \rangle$

where σ is the substitution $\sigma(b)=a$ and $\sigma(a)=b^2.$ Define an action of *G* on *X* ∗ recursively by

$$
a \cdot (0w) = 1(b \cdot w) \qquad b \cdot (0w) = 0(a \cdot w)
$$

$$
a \cdot (1w) = 0w \qquad b \cdot (1w) = 1w
$$

The Basilica group is an iterated monodromy group with many interesting properties, including being amenable.

Other interesting examples

- \blacktriangleright Iterated monodromy groups
- \blacktriangleright The Grigorchuk group
- \blacktriangleright Branch groups

The nucleus

A nucleus of a self-similar action (G, X) is a minimal set $N \subseteq G$ satisfying the property

for each $g \in G$, there exists $N \in \mathbb{N}$ such that $g|_{v} \in \mathcal{N}$ for all words $v \in \mathcal{X}^{n}$ with $n \geq N$.

A self-similar action is contracting if it has a finite nucleus.

For a contracting self-similar action (*G*, *X*), the nucleus is unique and equal to

$$
\mathcal{N} = \bigcup_{g \in G} \bigcap_{n \geq 0} \{g|_v : v \in X^*, |v| \geq n\}
$$

The bimodule

Given a self-similar action (*G*, *X*), let *C* ∗ (*G*) be the full group *C* ∗ -algebra of *G* and define

$$
M=M_{(G,X)}=\bigoplus_{x\in X}C^*(G).
$$

So

$$
M=\{(m_x)_{x\in X}\mid m_x\in C^*(G)\}.
$$

For each $y \in X$ we write e_y for the element of M satisfying

$$
(e_y)_x = \begin{cases} 1_{C^*(G)} & \text{if } x = y \\ 0 & \text{otherwise.} \end{cases}
$$

M is a free right Hilbert *C* ∗ (*G*)-module with

► right $C^*(G)$ -action

$$
(m_x)_{x\in X}\cdot a=(m_xa)_{x\in X}
$$

via componentwise multiplication within *C* ∗ (*G*)

► $C^*(G)$ -valued inner product

$$
\langle m,n\rangle=\sum_{x\in X}m_x^*n_x
$$

for $m = (m_x)_{x \in X}, n = (n_x)_{x \in X} \in M$

^I basis {*e^x* | *x* ∈ *X*} is a *C* ∗ (*G*)-basis for *M*, so

$$
M=\text{span}\{e_x\cdot a\mid x\in X, a\in C^*(G)\}.
$$

The representation of *G*

Let
$$
(G, X)
$$
 be a self-similar action and $M = \bigoplus_{x \in X} C^*(G)$.

Denote by $\delta_g\in C^*(G)$ the point mass at $g\in G.$

For each $g \in G$, define a linear operator U_g on M via

$$
U_g(e_x \cdot a) = e_{g \cdot x} \cdot (\delta_{g|x} a)
$$

for $x \in X$ and $a \in C^*(G)$.

Lemma

The map U: $G \rightarrow \mathcal{UL}(M)$ *given by* $g \mapsto U_g$ *is a faithful nondegenerate unitary representation of G with* $(U_g)^* = U_{g^{-1}}$ *.*

The Toeplitz algebra of (*G*, *X*)

Theorem (Laca, R., Raeburn, Whittaker) Let (G,X) be a self-similar action and $M = \bigoplus C^*(G)$. *x*∈*X*

The Toeplitz algebra $\mathcal{T}(G, X) := \mathcal{T}(M)$ *is the universal* C^* *algebra generated by a unitary representation* $u: G \rightarrow \mathcal{UL}(M)$ *and a family of isometries* $\{s_x : x \in X\}$ *satisfying*

(SSR1) $s_x^* s_x = 1$ and $s_x^* s_y = 0$ if $x \neq y$.

$$
\textbf{(SSR2)}\ \ u_g s_{\scriptscriptstyle \! X}=s_{g\cdot {\scriptscriptstyle \! X}}\, u_{g|_{{\scriptscriptstyle \! X}}}
$$

for all $q \in G$ *and* $x \in X$.

 $$ where $s_{\mu} := s_{\mu_1} \dots s_{\mu_n}$ for $\mu = \mu_1 \dots \mu_n \in X^n$.

The Cuntz-Pimsner algebra of (*G*, *X*)

Theorem (Nekrashevych)

Let (G,X) be a self-similar action and $M = \bigoplus C^*(G).$ *x*∈*X The Cuntz-Pimsner algebra* $\mathcal{O}(G,X) := \mathcal{O}(M)$ *is the universal C* ∗ *-algebra generated by a unitary representation u* : *G* → UL(*M*) *and a family of isometries* $\{s_x : x \in X\}$ *satisfying* $(**CR**) \ \sum s_x s_x^* = 1$

x∈*X* **(SSR1)** *s* ∗ *x s^x* = 1 *and s*[∗] *x s^y* = 0 *if x* 6= *y.* **(SSR2)** *ugs^x* = *sg*·*^x ug*|*^x*

for all $g \in G$ *and* $x \in X$ *.*

If (G, X) *is contracting with nucleus* N *then* $\mathcal{O}(G, X)$ *is generated by* $\{u_q, s_x : q \in \mathcal{N}, x \in \mathcal{X}\}.$ *If* (G, X) *is contracting with nucleus* $\{e\}$ *then* $\mathcal{O}(G, X) = \mathcal{O}_{|X|}.$

The states

States are linear functionals on algebras that satisfy properties of significance in statistical mechanics. A state ϕ of a system (B, \mathbb{R}, α) is a KMS_β state if $\phi(ab) = \phi(b\alpha_{i\beta}(a))$ for all *a*, *b* in a family of analytic elements spanning a dense subspace of *B*.

Given $\mu = \mu_1 \dots \mu_n \in X^*$, define $\mathbf{s}_{\mu} := \mathbf{s}_{\mu_1} \cdots \mathbf{s}_{\mu_n} \in M$.

There is an action $\sigma : \mathbb{R} \to \text{Aut } \mathcal{T}(G,X)$ given by

 $\sigma_t(\bm{s}_\mu) = \bm{e}^{i t |\mu|} \bm{s}_\mu \qquad \qquad \sigma_t(\bm{u}_g) = \bm{u}_g$

for $\mu \in X^*$ and $g \in G$. A state $\phi : \mathcal{T}(G, X) \rightarrow \mathbb{C}$ is a KMS_β state iff

 $\phi((s_\mathsf{v}\mathit{u}_g s_\mathsf{w}^*)(s_\mathsf{y}\mathit{u}_h s_\mathsf{z}^*)) = \phi((s_\mathsf{y}\mathit{u}_h s_\mathsf{z}^*)\sigma_{i\beta}(s_\mathsf{v}\mathit{u}_g s_\mathsf{w}^*))$

$$
=e^{-\beta(|v|-|w|)}\phi((s_yu_ns_z^*)(s_vu_gs_w^*)).
$$

States on the Cuntz-Pimsner algebra

Lemma

Let (*G*, *X*) *be a self-similar action. If* ϕ *is a KMS*_β *state on* $\mathcal{O}(G, X)$ *, then* $\beta = \ln |X|$ *.*

Lemma

Let (G, X) *be a contracting self-similar action with nucleus* N *. For each* $q \in \mathcal{N} \setminus \{e\}$, let

$$
F_g^n = \{\mu \in X^n : g \cdot \mu = \mu \text{ and } g|_{\mu} = e\}.
$$

The sequence $\{|X|^{-n} |F_{g}^{n}|\}$ *is increasing and converges to a limit c_a satisfying* $0 \leq c_q < 1$ *and there is a unique KMS*_{$ln|X|$} *state* ϕ *for* O(*G*, *X*) *satisfying*

 $\phi(u_a) = c_a$.

States on the Toeplitz algebra: $ψβ$ _{τε}

Suppose that (G, X) is a self-similar action and $\beta > \ln |X|$. Suppose τ_e is the trace on $C*(G)$ satisfying

$$
\tau_e(\delta_g) = \begin{cases} 1 & \text{if } g = e \\ 0 & \text{otherwise.} \end{cases}
$$

For $q \in G$ and $k \geq 0$, we set

$$
\mathsf{F}_g^k := \{ \mu \in \mathsf{X}^k : g \cdot \mu = \mu \text{ and } g|_{\mathsf{v}} = e \}.
$$

Then there is a KMS_β state ψ_{β,τ_e} on $(\mathbb{T}(G,X),\sigma)$ such that

$$
\psi_{\beta,\tau_e}(s_v u_g s_w^*) = \begin{cases} e^{-\beta |v|} (1-|X|e^{-\beta}) \sum_{k=0}^{\infty} e^{-\beta k} |F_g^k| & \text{if } v = w \\ 0 & \text{otherwise.} \end{cases}
$$

States on the Toeplitz algebra

Theorem

Let (G,X) be a self-similar action, $M = \bigoplus C^*(G)$ and *x*∈*X* $\sigma: \mathbb{R} \to \text{Aut }\mathcal{T}(G,X)$ *satisfy* $\sigma_t(s_\mathsf{v} u_g s^*_\mathsf{w}) = e^{it(|\mathsf{v}|-|\mathsf{w}|)} s_\mathsf{v} u_g s^*_\mathsf{w}$ for $\mathsf{v}, \mathsf{w} \in X^*$ and $g \in G.$ **1.** *For* β < ln $|X|$ *, there are no KMS* $_{\beta}$ *states.*

2. *For* $\beta = \ln |X|$ *, every KMS*_{$ln |X|$} *state satisfies* $\phi_{\mathsf{In}\, |X|}(\mathsf{u}_g\mathsf{u}_h)=\phi_{\mathsf{In}\, |X|}(\mathsf{u}_h\mathsf{u}_g)$ for all $g,h\in G,$

$$
\phi_{\ln |X|}(s_v u_g s_w^*) = \begin{cases} e^{-(\ln |X|)|v|} \phi_{\ln |X|}(u_g) & \text{if } v = w \\ 0 & \text{otherwise,} \end{cases}
$$

and factors through O(*G*, *X*)*.*

3. *For* β > ln |*X*|*,* the simplex of KMS_{β}-states of $\mathcal{T}(M)$ is *homeomorphic to the simplex of normalized traces on C*[∗] (*G*) *via an explicit construction* $\tau \mapsto \psi_{\beta,\tau}$ *.*

States on the Toeplitz algebra: $ψ_{β,τ}$

Suppose that (G, X) is a self-similar action and $\beta > \ln |X|$. Suppose $\tau_1: \bar{C}^*(G) \to \mathbb{C}$ is the integrated form of the trivial representation sending $q \mapsto 1$ for all $q \in G$. For $g \in G$ and $k > 0$, we set

$$
G_g^k := \{ \mu \in X^k : g \cdot \mu = \mu \}.
$$

Then there is a KMS $_\beta$ state ψ_{β,τ_1} on $(\mathbb{T}(G,X),\sigma)$ such that

$$
\psi_{\beta,\tau_1}(s_v u_g s_w^*) = \begin{cases} e^{-\beta |v|} (1-|X|e^{-\beta}) \sum_{k=0}^{\infty} e^{-\beta k} |G_g^k| & \text{if } v = w \\ 0 & \text{otherwise.} \end{cases}
$$

Computing F^k_g and G^k_g : the Moore diagram

Suppose (*G*, *X*) is a self-similar action.

A Moore diagram is a directed graph whose vertices are elements of *G* and edges are labelled by pairs of elements of *X*.

In a Moore diagram the arrow

 $g \xrightarrow{(x,y)} h$

means that $g \cdot x = y$ and $g|_x = h$.

We can draw a Moore diagram for any subset *S* of *G* that is closed under restriction.

The Moore diagram of the nucleus helps us calculate F^k_g and $\mathsf{G}^k_g;$ we look for labels of the form (*x*, *x*), called stationary paths.

Example: basilica group

Recall the basilica group

$$
G = \langle a, b \colon \sigma^n([a, a^b]) \text{ for all } n \in \mathbb{N} \rangle,
$$

where σ is the substitution $\sigma(\pmb{b})=\pmb{a}$ and $\sigma(\pmb{a})=\pmb{b}^{\pmb{2}},$ with a self-similar action (G, X) where $X = \{0, 1\}$ satisfying

Proposition

The basilica group action (*G*, *X*) *is contracting, with nucleus*

$$
\mathcal{N} = \{e, a, b, a^{-1}, b^{-1}, ab^{-1}, ba^{-1}\};
$$

the Moore diagram of N *is*

Computing the nucleus

Proposition

Suppose (*G*, *X*) *is a self-similar action and S is a subset of G that is closed under restriction. Every vertex in the Moore diagram of S that can be reached from a cycle belongs to the nucleus.*

Proof.

Suppose $q \in G$ is a vertex in the Moore diagram of S, and there is a cycle of length $n \geq 1$ consisting of edges labelled $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$ with $s(x_1, y_1) = q$, $r(x_i, y_i) = s(x_{i+1}, y_{i+1})$, and $r(x_n, y_n) = g$. By definition of the Moore diagram we have $g \cdot (x_1 \cdots x_n) = y_1 \cdots y_n$ and $g|_{x_1 \cdots x_n} = g$. Thus $g = g|_{(x_1 \cdots x_n)^m}$ for all $m \in \mathbb{N}$ and

$$
g\in \bigcap_{n\geq 0}\{g|_v:v\in X^*,|v|\geq n\}\implies g\in \mathcal{N}.
$$

A similar argument shows that if *g* can be reached from a cycle, then there are arbitrarily long paths ending at *g*. \Box

Example: basilica group

The critical value for KMS_β states is $\beta_c = \ln |X| = \ln 2$.

Proposition

The system $(\mathcal{O}(G, X), \sigma)$ *has a unique KMS*_{n} *state, which is* g iven on the nucleus $\mathcal{N} = \{$ e, $a,b,a^{-1},b^{-1},ab^{-1},ba^{-1}\}$ by

$$
\phi(u_g) = \begin{cases} 1 & \text{for } g = e \\ \frac{1}{2} & \text{for } g = b, b^{-1} \\ 0 & \text{for } g = a, a^{-1}, ab^{-1}, ba^{-1}. \end{cases}
$$

The proof relies on the fact that there are no stationary paths from $g \in \{a, a^{-1}, ab^{-1}, ba^{-1}\}$ to e , so for such g we have $F_g^k = \varnothing$ for all *k* and $\phi(u_a) = c_a = 0$. For $g \in \{b, b^{-1}\}$, the only stationary paths go straight from g to e,

and there are 2^{k-1} of them; thus $|X|^{-k} |F_g^k| = 2^{-k} 2^{k-1} = \frac{1}{2}$, and $\phi(u_g)=c_g=\frac{1}{2}.$

Path space interpretation

The tree $T_{\{x,y\}}$ alongside represents the path space of the graph ∗ *x y T*{*x*,*y*} ∗ *x y xx xy yx yy*

 T_X represents the path space of a bouquet of $|X|$ loops.

More general path spaces: from trees to forests

The path space of a finite directed graph E is a forest T_F of rooted trees.

Problems arise:

- \blacktriangleright the trees in the forest are not necessarily homogeneous;
- \blacktriangleright restrictions need not be uniquely determined;
- ightharpoontal automorphisms of T_E need not be graph automorphisms of E .

In particular, the source map may not be equivariant:

 $s(g \cdot e) \neq g \cdot s(e)$ in general. This distinguishes our work.

Small changes make big differences

4 Self-similar actions of groupoids

Path spaces of finite directed graphs, *E*

Generalise: replace *X* by edges *E* 1 in a finite directed graph *E*.

Suppose $E = (E^0, E^1, r, s)$ is a directed graph with vertex set E^0 , edge set E^1 , and range and source maps $r,s\colon E^1\to E^0.$ Write

 $E^k = {\mu = \mu_1 \cdots \mu_k : \mu_i \in E^1, s(\mu_i) = r(\mu_{i+1})}$

for the set of paths of length k in $E,$ E^0 for the set of vertices, and define $E^*:=\bigsqcup_{k\geq 0} E^k.$

We recover the previous work by taking *E* to be the graph $({*}, X, r, s)$ in which $r(x) = r(y) = s(x) = s(y) = *$ for all $x, y \in X = E^1$ and $E^* = X^*$.

Path space T_F of finite directed graph E

The analogue of the tree T_X is the (undirected) graph T_F with vertex set $\mathcal{T}^{0}=\mathcal{E}^{\ast}$ and edge set

 $\mathcal{T}^1 = \{ \{\mu, \mu \mathbf{e}\} : \mu \in \mathbf{E}^*, \mathbf{e} \in \mathbf{E}^1, \text{ and } \mathbf{s}(\mu) = r(\mathbf{e}) \}$.

The subgraph $vE^* = \{ \mu \in E^* \colon r(\mu) = v \}$ is a rooted tree with root $v \in E^0$ [, and](#page-8-0) $\mathcal{T}_E = \bigsqcup_{v \in E^0} vE^*$ is a disjoint union of trees, or *forest*.

Partial isomorphisms

Restrictions become problematic in this context; knowing an action on one tree in the forest doesn't constrain the action on other trees.

Suppose $E=(E^0,E^1,r,s)$ is a directed graph.

A partial isomorphism of \mathcal{T}_E consists of two vertices $\mathsf{v},\mathsf{w}\in E^0$ and a bijection $g: \nu E^* \to \nu E^*$ such that

> $g|_{\mathsf{vE}^k}$ is a bijection onto wE^k for $k\in\mathbb{N},\,$ and $g(\mu e) \in g(\mu)E^1$ for all $\mu e \in \nu E^*.$

For $v \in E^0$, we write id_v : $vE^* \to vE^*$ for the partial isomorphism given by $\mathsf{id}_\mathsf{v}(\mu) = \mu$ for all $\mu \in \mathsf{v}E^*.$

Denote the set of all partial isomorphisms of T_E by $PIso(E^*)$.

Define domain and codomain maps d, c : PIso $(E^*) \to E^0$ so that $g : d(g)E^* \to c(g)E^*.$

Groupoids

Working with partial isomorphisms means working with groupoids.

A groupoid differs from a group in two main ways:

- \blacktriangleright the product in a groupoid is only partially defined, and
- \blacktriangleright a groupoid typically has more than one unit.

A groupoid is a small category with inverses.

Groupoids

So a groupoid consists of

- \triangleright a set G^0 of objects (the unit space of the groupoid),
- \blacktriangleright a set *G* of morphisms,
- \blacktriangleright two functions $c,d:G\to G^0,$ and
- **Ex** a partially defined product $(g, h) \mapsto gh$ from

 $G^2:=\{(g,h):d(g)=c(h)\}$ to G

such that (G,G^0,c,d) is a category and such that each $g\in G$ has an inverse $g^{-1}.$

We write G to denote the groupoid. If $|G^0|=1,$ then G is a group.

(PIso(*E* ∗), *E* 0 , *c*, *d*) **is a groupoid**

Proposition

 $Suppose$ that $E = (E^0, E^1, r, s)$ *is a directed graph with associated forest* T_F *.*

Then (PIso(E^*), E^0 , *c*, *d*) *is a groupoid in which:*

- ► *the product is given by composition of functions,*
- ^I *the identity isomorphism at v* ∈ *E* 0 *is* id*^v* : *vE*[∗] → *vE*[∗] *, and*
- ► the inverse of $g \in \mathsf{PIso}(E^*)$ is the inverse of the function $g : d(g)E^* \to c(g)E^*.$

Groupoid action

Suppose that *E* is a directed graph and *G* is a groupoid with unit space *E* 0 .

An action of *G* on the path space *E* ∗ is a (unit-preserving) groupoid homomorphism $\phi : G \to \mathsf{PIso}(E^*)$.

The action is faithful if ϕ is one-to-one.

If the homomorphism is fixed, we usually write $g \cdot \mu$ for $\phi_g(\mu)$. This applies in particular when *G* arises as a subgroupoid of $PIso(E^*)$.

Self-similar groupoid action (*G*, *E*)

Definition

Suppose $\boldsymbol{E} = (\boldsymbol{E}^0, \boldsymbol{E}^1, \boldsymbol{r}, \boldsymbol{s})$ is a directed graph and \boldsymbol{G} is a groupoid with unit space *E* ⁰ which acts faithfully on *TE*.

The action is $\mathsf{self\text{-}similar}$ if for every $g \in G$ and $e \in d(g)E^1,$ there exists $h \in G$ such that

$$
g \cdot (e\mu) = (g \cdot e)(h \cdot \mu) \text{ for all } \mu \in s(e)E^*.
$$
 (1)

Since the action is faithful, there is then exactly one such $h \in G$, and we write $g|_{e} := h$. Say (G, E) is a self-similar groupoid action.

Action on paths

We want to be able to deal with paths rather than just edges.

Proposition

 $Suppose E = (E⁰, E¹, r, s)$ *is a directed graph and G is a groupoid with unit space* E^0 *acting self-similarly on* T_F *.*

Then for all g, h \in *G,* $\mu \in d(g)E^*$, and $\nu \in s(\mu)E^*$ we have:

.

1.
$$
g|_{\mu\nu} = (g|_{\mu})|_{\nu}
$$
,
2. $id_{r(\mu)}|_{\mu} = id_{s(\mu)}$

2.
$$
id_{r(\mu)}|_{\mu} = id_{s(\mu)},
$$

3.
$$
(hg)|_{\mu} = h|_{g \cdot \mu} g|_{\mu}
$$
, and

$$
4. \, g^{-1}|_{\mu} = (g|_{g^{-1} \cdot \mu})^{-1}
$$

Consequences of self-similar groupoid definition

Lemma

Suppose E = (*E* 0 , *E* 1 , *r*, *s*) *is a directed graph and G is a groupoid with unit space* E^0 *acting self-similarly on* T_F *.*

Then for g, h \in *G* with $d(h) = c(g)$ and $e \in d(g)E¹$, we have

- \blacktriangleright $d(q|_e) = s(e)$ and $c(q|_e) = s(q \cdot e)$,
- \blacktriangleright $r(g \cdot e) = g \cdot r(e)$ and $s(g \cdot e) = g|_e \cdot s(e)$,
- \blacktriangleright if $g = \text{id}_{r(e)}$, then $g|_e = \text{id}_{s(e)}$, and
- \blacktriangleright $(hg)|_e = (h|_{g \cdot e})(g|_e).$

Note that in general $s(g \cdot e) \neq g \cdot s(e)$, ie the source map is not *G*-equivariant.

Indeed, *g* · *s*(*e*) will often not make sense: *g* maps *d*(*g*)*E* [∗] onto $c(g)E^*$, and $s(e)$ is not in $d(g)E^*$ unless $s(e) = d(g)$.

Constructing self-similar groupoid actions

We use automata to construct self-similar groupoid actions.

An automaton over $E=(E^0,E^1,r_E,s_E)$ is

- \blacktriangleright a finite set *A* containing E^0 , with
- ▶ functions r_A , s_A : A → E^0 such that $r_A(v) = v = s_A(v)$ if *v* ∈ *E* ⁰ ⊂ *A*, and
- \blacktriangleright a function
- $A_{s_A} \times_{r_E} E^1 \rightarrow E^1_{s_E} \times_{r_A} A$ $(a, e) \longrightarrow (a \cdot e, a|_e)$

such that:

- **(A1)** for every $a \in A$, $e \mapsto a \cdot e$ is a bijection $s_A(a)E^1 \rightarrow r_A(a)E^1$;
- (A2) $s_A(a|_e) = s_E(e)$ for all $(a,e) \in A_{s_A} \times_{r_E} E^1$;
- **(A3)** $r_E(e) \cdot e = e$ and $r_E(e)|_e = s_E(e)$ for all $e \in E^1$.

Constructing self-similar groupoid actions

Since $s_E(v) = r_E(v) = s_A(v) = r_A(v) = v$ for all $v \in E^0$, the range and source maps are consistent whenever they both make sense.

We can extend restriction to paths by defining

 $\bm{\mathcal{a}}|_{\mu} = (\cdots ((\bm{\mathcal{a}}|_{\mu_1})|_{\mu_2})|_{\mu_3} \cdots)|_{\mu_k}.$

The point is that $s_{\mathcal{A}}(a|_{\mu_1}) = s_{\mathcal{E}}(\mu_1) = r_{\mathcal{E}}(\mu_2),$ for example, and hence $(a|_{\mu_1})|_{\mu_2}$ makes sense.

We use automata over *E* to construct subgroupoids of PIso(*E* ∗).

Constructing self-similar groupoid actions

Proposition

Suppose that E is a directed graph and A is an automaton over E. We recursively define maps

 $f_{a,k}: s(a)E^k \rightarrow r(a)E^k$

for $a \in A$ *and* $k \in \mathbb{N}$ *by* $f_{a,1}(e) = a \cdot e$ *and*

$$
f_{a,k+1}(e\mu)=(a\cdot e)f_{a|_e,k}(\mu)\quad\text{for }e\mu\in s_A(a)E^{k+1}.
$$

Then for every a \in *A, f_a* $=$ {*f_{ak}*} *is a partial isomorphism of* $s(a)E^*$ *onto* $r(a)E^*$ *so that* $d(f_a) = s(a)$ *and* $c(f_a) = r(a)$ *.*

For a = $v \in A \cap E^0$, we have $f_a = id_v : vE^* \to vE^*.$

Constructing self-similar groupoid actions

Theorem

Suppose that E is a directed graph and A is an automaton over E.

For a \in *A, let f_a be the partial isomorphism of* T_F *just described.*

Let G_A be the subgroupoid of $PIso(E^*)$ generated by $\{f_a : a \in A\}$. *By convention this includes the identity morphisms* $\{ \mathsf{id}_\mathsf{v} : \mathsf{v} \in E^0 \}.$

Then G^A acts faithfully on the path space E[∗] *, and this action is self-similar.*

The action of *G^A* is faithful because *G^A* is constructed as a subgroupoid of PIso(*E* ∗).

It should be possible to construct unfaithful actions from some automata.

Toeplitz algebra of a self-similar groupoid action

Suppose that *G* is a (discrete) groupoid.

The groupoid elements $g \in G$ give point masses i_q in $C_c(G)$, and $C_c(G) = \text{span}\{i_q : g \in G\}.$

For $g, h \in G$, the involution and product are determined by

$$
i_g^* = i_{g^{-1}} \quad \text{and} \quad i_g * i_h = \begin{cases} i_{gh} & \text{if } d(g) = c(h) \\ 0 & \text{otherwise.} \end{cases}
$$

Toeplitz algebra of a self-similar groupoid action

A function $U: G \to B(H)$ is a unitary representation of G if

- ► for $v \in G^0$, U_v is the orthogonal projection on a closed subspace of *H*,
- \triangleright for each *g* ∈ *G*, *U_{<i>g*} is a partial isometry with initial projection $U_{d(g)}$ and final projection $U_{c(g)}$, and
- $▶$ for *g*, *h* ∈ *G*, we have

$$
U_g U_h = \begin{cases} U_{gh} & \text{if } d(g) = c(h) \\ 0 & \text{otherwise.} \end{cases}
$$

Note that each U_q is a unitary isomorphism $U_{q(q)}H \to U_{q(q)}H$.

There's a similar notion of unitary representation with values in a C^* -algebra, and then the map *i* : $g \mapsto i_g$ is a unitary representation of *G* in $C_c(G) \subset C^*(G)$.

The pair (*C* ∗ (*G*), *i*) is universal for unitary representations of *G*.

Gauge action on $\mathcal{T}(G, E)$

Suppose that *E* is a finite graph with no sources and that (*G*, *E*) is a self-similar groupoid action over *E*.

There is a strongly continuous gauge action

$$
\gamma:\mathbb{T}\to\operatorname{\mathsf{Aut}}\mathcal{T}(G,E)
$$

such that

$$
\gamma_Z(i_{C^*(G)}(a))=i_{C^*(G)}(a)
$$

and $\gamma_Z(i_M(m)) = zi_M(m)$ for $a \in C^*(G)$ and $m \in M$.

The gauge action gives rise to a periodic action σ of the real line (a dynamics) by the formula $\sigma_t = \gamma_{\bm{e}^{\it{\text{it}}}}.$ This dynamics satisfies

$$
\sigma_t(s_\mu u_g s_\nu^*) = e^{it(|\mu| - |\nu|)} s_\mu u_g s_\nu^*.
$$
 (2)

Toeplitz algebra of a self-similar groupoid action

We construct a Hilbert bimodule over $C^*(G)$, M, and define the Toeplitz algebra of (G, E) to be $\mathcal{T}(G, E) := \mathcal{T}(M)$.

If *E* is a finite graph without sources, we show that $\mathcal{T}(G, E)$ is generated by $\{u_g\colon g\in G\}\cup\{\rho_{\sf v}\colon {\sf v}\in E^0\}\cup\{\bm{s}_{\sf e}\colon {\sf e}\in E^1\}$ where

- ► *u* is a unitary representation of *G* with $u_v = p_v$ for $v \in E^0$;
- \blacktriangleright (p,s) is a Toeplitz-Cuntz-Krieger family in $\mathcal{T}(G,E)$, and $\sum_{\mathsf{v}\in E^0}\rho_\mathsf{v}$ is an identity for $\mathcal{T}(G,E);$
- ► for $g \in G$ and $e \in E^1$,

$$
u_g s_e = \begin{cases} s_{g \cdot e} u_{g|_e} & \text{if } d(g) = r(e) \\ 0 & \text{otherwise}; \end{cases}
$$

• for
$$
g \in G
$$
 and $v \in E^0$,

$$
u_g \rho_v = \begin{cases} \rho_{g \cdot v} u_g & \text{if } d(g) = v \\ 0 & \text{otherwise.} \end{cases}
$$

$$
\mathcal{T}(G,E) = \overline{\text{span}}\{s_{\mu}u_g s_{\nu}^* : \mu, \nu \in E^*, g \in G \text{ and } s(\mu) = g \cdot s(\nu)\}.
$$

KMS $_B$ -states on $T(G, E)$

Proposition

Let E be a finite graph with no sources and vertex matrix B, and let ρ(*B*) *be the spectral radius of B.*

Suppose that (*G*, *E*) *is a self-similar groupoid action.*

 \mathcal{L} *et* $\sigma : \mathbb{R} \to \mathsf{Aut}\,\mathcal{T}(G,E), \quad \sigma_t(\mathbf{s}_{\mu}\mathbf{\mathit{u}}_g\mathbf{s}_{\nu}^*) = e^{it(|\mu|-|\nu|)}\mathbf{s}_{\mu}\mathbf{\mathit{u}}_g\mathbf{s}_{\nu}^*.$

- **For** β < ln ρ (B), there are no KMS_β-states for σ .
- **For** β > ln ρ (B), a state ϕ *is a KMS*_{β}-state for σ *if and only if* φ ◦ *iC*∗(*G*) *is a trace on C*[∗] (*G*) *and*

 $\phi(\bm{s}_{\mu}\bm{u_{g}}\bm{s}_{\nu}^{*})=\delta_{\mu,\nu}\delta_{\bm{s}(\mu),\bm{c}(\bm{g})}\delta_{\bm{s}(\nu),\bm{d}(\bm{g})}\bm{e}^{-\beta|\mu|}\phi(\bm{u_{g}})$

for $g \in S$ and $\mu, \nu \in E^*$.