Sandwich semigroups in locally small categories

James East

Semigroups and Operator Algebras Univ Newcastle James O'Clock, 24 July 2017

Igor Dolinka ...

Ivana Đurđev ...

Kritsada Sangkhanan, Jintana Sanwong, Preeyanuch Honyam ...

and Worachead Sommanee

Based on:

- Variants of finite full transformation semigroups
 - Dolinka, East
 - IJAC (2015)
- Semigroups of matrices under a sandwich operation
 - Dolinka, East
 - Semigroup Forum (2017?)
- Sandwich semigroups in locally small categories
 - Dolinka, Đurđev, East, Honyam, Sangkhanan, Sanwong, Sommanee
 - Annals of Mathematics? (20XX?)

Based on:

- Variants of finite full transformation semigroups
 - Dolinka, East
 - IJAC (2015)
- Semigroups of matrices under a sandwich operation
 - Dolinka, East
 - Semigroup Forum (2017?)
- Sandwich semigroups in locally small categories
 - Dolinka, Đurđev, East, Honyam, Sangkhanan, Sanwong, Sommanee
 - Annals of Mathematics? (20XX?)
- Four pages per minute...

▶ Let S be a locally small category.

- Let S be a locally small category.
- ▶ We don't necessarily assume *S* has identity morphisms.

- Let S be a locally small category.
- ▶ We don't necessarily assume *S* has identity morphisms.
- ▶ For objects X, Y, write S_{XY} for the set of morphisms $X \to Y$.

- Let S be a locally small category.
- We don't necessarily assume S has identity morphisms.
- ▶ For objects X, Y, write S_{XY} for the set of morphisms $X \to Y$.
- The sets S_{XX} are (endomorphism) semigroups maybe monoids.

- Let S be a locally small category.
- We don't necessarily assume S has identity morphisms.
- For objects X, Y, write S_{XY} for the set of morphisms $X \to Y$.
- The sets S_{XX} are (endomorphism) semigroups maybe monoids.
- If $X \neq Y$, then elements of S_{XY} can't be composed.

- Let S be a locally small category.
- We don't necessarily assume S has identity morphisms.
- For objects X, Y, write S_{XY} for the set of morphisms $X \to Y$.
- The sets S_{XX} are (endomorphism) semigroups maybe monoids.
- If $X \neq Y$, then elements of S_{XY} can't be composed. But...

- Let S be a locally small category.
- We don't necessarily assume S has identity morphisms.
- For objects X, Y, write S_{XY} for the set of morphisms $X \to Y$.
- The sets S_{XX} are (endomorphism) semigroups maybe monoids.
- If $X \neq Y$, then elements of S_{XY} can't be composed. But...
- Fix a morphism $a: Y \to X$.

- Let S be a locally small category.
- We don't necessarily assume S has identity morphisms.
- For objects X, Y, write S_{XY} for the set of morphisms $X \to Y$.
- The sets S_{XX} are (endomorphism) semigroups maybe monoids.
- If $X \neq Y$, then elements of S_{XY} can't be composed. But...
- Fix a morphism a : Y → X.
 For f, g ∈ S_{XY}, define f *_a g = fag ∈ S_{XY}.

- Let S be a locally small category.
- We don't necessarily assume S has identity morphisms.
- For objects X, Y, write S_{XY} for the set of morphisms $X \to Y$.
- The sets S_{XX} are (endomorphism) semigroups maybe monoids.
- If $X \neq Y$, then elements of S_{XY} can't be composed. But...
- Fix a morphism a : Y → X.
 For f, g ∈ S_{XY}, define f ★_a g = fag ∈ S_{XY}.
- Then $S_{XY}^a = (S_{XY}, \star_a)$ is a sandwich semigroup.

- Let S be a locally small category.
- We don't necessarily assume S has identity morphisms.
- For objects X, Y, write S_{XY} for the set of morphisms $X \to Y$.
- The sets S_{XX} are (endomorphism) semigroups maybe monoids.
- If $X \neq Y$, then elements of S_{XY} can't be composed. But...

- Then $S_{XY}^a = (S_{XY}, \star_a)$ is a sandwich semigroup.
- Special case: if X = Y and $a = id_X$, then $S^a_{ii} = End(X)$.

► Any (locally small) category...

- Any (locally small) category...
- Sets and functions/partial functions/injective partial functions:
 - ► Lyapin (1960), Magill (1960s–1970s), Sullivan (1970s–2010s).

- Any (locally small) category...
- Sets and functions/partial functions/injective partial functions:
 - Lyapin (1960), Magill (1960s–1970s), Sullivan (1970s–2010s).
- Spaces and continuous maps:
 - Magill (1960s–1970s).

- Any (locally small) category...
- Sets and functions/partial functions/injective partial functions:
 - Lyapin (1960), Magill (1960s–1970s), Sullivan (1970s–2010s).
- Spaces and continuous maps:
 - Magill (1960s–1970s).
- Matrices over a field (vector spaces and linear maps):
 - Brown (1955), "generalized matrix algebras" (classical groups),
 - Munn (1955), "Munn rings" (semigroup representation theory).

- Any (locally small) category...
- Sets and functions/partial functions/injective partial functions:
 - Lyapin (1960), Magill (1960s–1970s), Sullivan (1970s–2010s).
- Spaces and continuous maps:
 - Magill (1960s–1970s).
- Matrices over a field (vector spaces and linear maps):
 - Brown (1955), "generalized matrix algebras" (classical groups),
 - Munn (1955), "Munn rings" (semigroup representation theory).
- "Semigroup variants" (one-object categories)
 - ▶ Hickey (1980s–2010s), Khan and Lawson (2001),

- Any (locally small) category...
- Sets and functions/partial functions/injective partial functions:
 - Lyapin (1960), Magill (1960s–1970s), Sullivan (1970s–2010s).
- Spaces and continuous maps:
 - Magill (1960s–1970s).
- Matrices over a field (vector spaces and linear maps):
 - Brown (1955), "generalized matrix algebras" (classical groups),
 - Munn (1955), "Munn rings" (semigroup representation theory).
- "Semigroup variants" (one-object categories)
 - ▶ Hickey (1980s–2010s), Khan and Lawson (2001),
 - ► General theory for one-object (small) categories...

Further developed theory of semigroup variants,

- Further developed theory of semigroup variants,
- extended this to sandwich semigroups in arbitrary (LS) categories,

- Further developed theory of semigroup variants,
- extended this to sandwich semigroups in arbitrary (LS) categories,
- applied that to categories of (linear/partial/etc) maps,

- Further developed theory of semigroup variants,
- extended this to sandwich semigroups in arbitrary (LS) categories,
- applied that to categories of (linear/partial/etc) maps,
- extended a lot of that to arbitrary categories,

- Further developed theory of semigroup variants,
- extended this to sandwich semigroups in arbitrary (LS) categories,
- applied that to categories of (linear/partial/etc) maps,
- extended a lot of that to arbitrary categories,
- mostly concentrating on structural/combinatorial questions.

James East

We'll focus on one-object categories today...

- ► We'll focus on one-object categories today...
- Let S be a semigroup

- ► We'll focus on one-object categories today...
- Let S be a semigroup
 - ▶ i.e., a set with an associative binary operation,

- ► We'll focus on one-object categories today...
- Let S be a semigroup
 - i.e., a set with an associative binary operation,

▶ i.e., a one-object (small) category, with/without an identity.

- ► We'll focus on one-object categories today...
- Let S be a semigroup
 - i.e., a set with an associative binary operation,

- ▶ i.e., a one-object (small) category, with/without an identity.
- Fix an element $a \in S$.
- ► We'll focus on one-object categories today...
- Let S be a semigroup
 - i.e., a set with an associative binary operation,

- ▶ i.e., a one-object (small) category, with/without an identity.
- Fix an element $a \in S$.
- Define an (associative) operation \star_a on S

- ► We'll focus on one-object categories today...
- Let S be a semigroup
 - i.e., a set with an associative binary operation,

- ▶ i.e., a one-object (small) category, with/without an identity.
- Fix an element $a \in S$.
- Define an (associative) operation \star_a on S by

$$x \star_a y = xay$$
 for $x, y \in S$.

- We'll focus on one-object categories today...
- Let S be a semigroup
 - i.e., a set with an associative binary operation,

- ▶ i.e., a one-object (small) category, with/without an identity.
- Fix an element $a \in S$.
- Define an (associative) operation \star_a on S by

$$x \star_a y = xay$$
 for $x, y \in S$.

• The semigroup $S^a = (S, \star_a)$ is a semigroup variant.

- We'll focus on one-object categories today...
- Let S be a semigroup
 - i.e., a set with an associative binary operation,

- ▶ i.e., a one-object (small) category, with/without an identity.
- Fix an element $a \in S$.
- Define an (associative) operation \star_a on S by

$$x \star_a y = xay$$
 for $x, y \in S$.

- The semigroup $S^a = (S, \star_a)$ is a semigroup variant.
- Exercise: All variants of a group are isomorphic to the group.

- We'll focus on one-object categories today...
- Let S be a semigroup
 - i.e., a set with an associative binary operation,

- ▶ i.e., a one-object (small) category, with/without an identity.
- Fix an element $a \in S$.
- Define an (associative) operation \star_a on S by

$$x \star_a y = xay$$
 for $x, y \in S$.

- The semigroup $S^a = (S, \star_a)$ is a semigroup variant.
- Exercise: All variants of a group are isomorphic to the group.
- Exercise: Find a semigroup with pairwise-nonisomorphic variants.

▶ What would we like to know about a variant?

- What would we like to know about a variant?
- ▶ What would we like to know about *any* semigroup?

- What would we like to know about a variant?
- What would we like to know about any semigroup?
- Green's relations, ideals, stability, regularity, subgroups, idempotents, idempotent-generation, (minimal) generating sets, representations, etc...

- What would we like to know about a variant?
- What would we like to know about any semigroup?
- Green's relations, ideals, stability, regularity, subgroups, idempotents, idempotent-generation, (minimal) generating sets, representations, etc...
- Each concept leads to interesting combinatorial questions.

- What would we like to know about a variant?
- What would we like to know about any semigroup?
- Green's relations, ideals, stability, regularity, subgroups, idempotents, idempotent-generation, (minimal) generating sets, representations, etc...
- Each concept leads to interesting combinatorial questions.
 - "Semigroup = groups + combinatorics" Bob Gray.

- What would we like to know about a variant?
- What would we like to know about any semigroup?
- Green's relations, ideals, stability, regularity, subgroups, idempotents, idempotent-generation, (minimal) generating sets, representations, etc...
- Each concept leads to interesting combinatorial questions.
 - "Semigroup = groups + combinatorics" Bob Gray.
 - egg-boxes see later...

- What would we like to know about a variant?
- What would we like to know about any semigroup?
- Green's relations, ideals, stability, regularity, subgroups, idempotents, idempotent-generation, (minimal) generating sets, representations, etc...
- Each concept leads to interesting combinatorial questions.
 - "Semigroup = groups + combinatorics" Bob Gray.
 - egg-boxes see later...
- ▶ How do [facts about S] relate to [facts about S^a]?

- What would we like to know about a variant?
- What would we like to know about any semigroup?
- Green's relations, ideals, stability, regularity, subgroups, idempotents, idempotent-generation, (minimal) generating sets, representations, etc...
- Each concept leads to interesting combinatorial questions.
 - "Semigroup = groups + combinatorics" Bob Gray.
 - egg-boxes see later...
- ▶ How do [facts about *S*] relate to [facts about *S*^{*a*}]?
- If S belongs to an interesting family of semigroups, how does a variant S^a relate to other members of this family?

•
$$x \mathscr{L} y$$
 iff $S^1 x = S^1 y$,

•
$$x \mathscr{L} y$$
 iff $S^1 x = S^1 y$,

•
$$x \mathscr{R} y$$
 iff $xS^1 = yS^1$,

•
$$x \mathscr{L} y$$
 iff $S^1 x = S^1 y$, • $x \mathscr{J} y$ iff $S^1 x S^1 = S^1 y S^1$,

•
$$x \mathscr{R} y$$
 iff $xS^1 = yS^1$,

•
$$x \mathscr{L} y$$
 iff $S^1 x = S^1 y$,

•
$$x \mathscr{R} y$$
 iff $xS^1 = yS^1$,

•
$$x \mathscr{J} y$$
 iff $S^1 x S^1 = S^1 y S^1$,

•
$$x \mathcal{H} y$$
 iff $x \mathcal{L} y$ and $x \mathcal{R} y$,

- Green's relations on a semigroup S are defined, for $x, y \in S$, by
 - $x \mathscr{L} y$ iff $S^1 x = S^1 y$, $x \mathscr{J} y$ iff $S^1 x S^1 = S^1 y S^1$,
 - ► $x \mathscr{R} y$ iff $xS^1 = yS^1$, ► $x \mathscr{H} y$ iff $x \mathscr{L} y$ and $x \mathscr{R} y$,
 - $x \mathscr{D} y$ iff $x \mathscr{L} z \mathscr{R} y$ for some $z \in S$.

• Green's relations on a semigroup S are defined, for $x, y \in S$, by

•
$$x \mathscr{L} y$$
 iff $S^1 x = S^1 y$, • $x \mathscr{J} y$ iff $S^1 x S^1 = S^1 y S^1$,

•
$$x \mathscr{R} y$$
 iff $xS^1 = yS^1$, • $x \mathscr{H} y$ iff $x \mathscr{L} y$ and $x \mathscr{R} y$,

•
$$x \mathcal{D} y$$
 iff $x \mathcal{L} z \mathcal{R} y$ for some $z \in S$.

• Within a \mathcal{D} -class D_x :

• Green's relations on a semigroup S are defined, for $x, y \in S$, by

$$\blacktriangleright x \mathscr{L} y \text{ iff } S^1 x = S^1 y, \qquad \qquad \blacktriangleright x \mathscr{J} y \text{ iff } S^1 x S^1 = S^1 y S^1,$$

• $x \mathscr{R} y$ iff $xS^1 = yS^1$, • $x \mathscr{H} y$ iff $x \mathscr{L} y$ and $x \mathscr{R} y$,

•
$$x \mathscr{D} y$$
 iff $x \mathscr{L} z \mathscr{R} y$ for some $z \in S$.

• Within a \mathcal{D} -class D_x :

• Green's relations on a semigroup S are defined, for $x, y \in S$, by

•
$$x \mathscr{L} y$$
 iff $S^1 x = S^1 y$,
• $x \mathscr{J} y$ iff $S^1 x S^1 = S^1 y S^1$,

$$x \mathscr{R} y \text{ iff } xS^1 = yS^1, \qquad \qquad \blacktriangleright x \mathscr{H} y \text{ iff } x \mathscr{L} y \text{ and } x \mathscr{R} y,$$

•
$$x \mathcal{D} y$$
 iff $x \mathcal{L} z \mathcal{R} y$ for some $z \in S$.

• Within a \mathcal{D} -class D_x :

• Green's relations on a semigroup S are defined, for $x, y \in S$, by

$$\begin{array}{ll} \bullet & x \ \mathscr{L} \ y & \text{iff} \quad S^1 x = S^1 y, \\ \bullet & x \ \mathscr{R} \ y & \text{iff} \quad S^1 x S^1 = S^1 y S^1, \\ \bullet & x \ \mathscr{R} \ y & \text{iff} \quad x S^1 = y S^1, \\ \end{array}$$

•
$$x \mathcal{D} y$$
 iff $x \mathcal{L} z \mathcal{R} y$ for some $z \in S$.

• Within a \mathcal{D} -class D_x :

• Green's relations on a semigroup S are defined, for $x, y \in S$, by

•
$$x \mathscr{L} y$$
 iff $S^1 x = S^1 y$,
• $x \mathscr{J} y$ iff $S^1 x S^1 = S^1 y S^1$,

$$x \mathscr{R} y \text{ iff } xS^1 = yS^1, \qquad \qquad \blacktriangleright x \mathscr{H} y \text{ iff } x \mathscr{L} y \text{ and } x \mathscr{R} y,$$

•
$$x \mathcal{D} y$$
 iff $x \mathcal{L} z \mathcal{R} y$ for some $z \in S$.

• Within a \mathcal{D} -class D_x :

• The \mathcal{J} -classes of a semigroup S are partially ordered:

• The \mathscr{J} -classes of a semigroup S are partially ordered:

•
$$J_x \leq J_y$$
 iff $x \in S^1 y S^1$.

• The \mathcal{J} -classes of a semigroup S are partially ordered:

• $J_x \leq J_y$ iff $x \in S^1 y S^1$.

James East

• The \mathcal{J} -classes of a semigroup S are partially ordered:

• $J_x \leq J_y$ iff $x \in S^1 y S^1$.

• Theorem: If S is finite, then $\mathcal{J} = \mathcal{D}$.

• The \mathcal{J} -classes of a semigroup S are partially ordered:

• $J_x \leq J_y$ iff $x \in S^1 y S^1$.

• Theorem: If S is finite, then $\mathcal{J} = \mathcal{D}$. So \mathcal{J} -classes are \mathcal{D} -classes.

												C	4		C4											
														1	[
															A4	A4	A4									
													A	4		A4										
												A	4		A4											
											A4	6	A	4												
										A4		A	4													
										A4	A4						A4									
										A4						A4	A4									
			\$3			\$3	\$3	\$3	S3	\$3				S 3							\$3				\$3	
			S3			S3		S 3		S 3								S 3		S3	S 3		S3		S 3	
	S3	S3	S3		S 3						S3	S3		S3		\$3							S3	S 3		S 3
													\$3			\$3		S 3	S 3	S 3			S 3			
\$3		S 3		S 3	\$3			\$3	S 3			S 3							\$3	S 3		\$3			S 3	
						1		1								1			1							

• If e is an idempotent $(e = e^2)$, then H_e is a group.

- If e is an idempotent $(e = e^2)$, then H_e is a group.
- Group \mathscr{H} -classes are shaded grey.

- If e is an idempotent $(e = e^2)$, then H_e is a group.
- ▶ Group *ℋ*-classes are shaded grey.
- ► Group *H*-classes in the same *D*-class are isomorphic.

- If e is an idempotent $(e = e^2)$, then H_e is a group.
- ▶ Group *ℋ*-classes are shaded grey.
- ► Group *H*-classes in the same *D*-class are isomorphic.
- Say $x \in S$ is regular if x = xyx for some $y \in S$.

- If e is an idempotent $(e = e^2)$, then H_e is a group.
- ▶ Group *ℋ*-classes are shaded grey.
- ► Group *H*-classes in the same *D*-class are isomorphic.
- Say $x \in S$ is regular if x = xyx for some $y \in S$.
- Theorem: If x is regular, then:
 - every element of D_x is regular,

- If e is an idempotent $(e = e^2)$, then H_e is a group.
- ▶ Group *ℋ*-classes are shaded grey.
- ► Group *H*-classes in the same *D*-class are isomorphic.
- Say $x \in S$ is regular if x = xyx for some $y \in S$.
- Theorem: If x is regular, then:
 - every element of D_x is regular,
 - every \mathscr{R} -class in D_x contains an idempotent,

- If e is an idempotent $(e = e^2)$, then H_e is a group.
- ▶ Group *ℋ*-classes are shaded grey.
- ► Group *H*-classes in the same *D*-class are isomorphic.
- Say $x \in S$ is regular if x = xyx for some $y \in S$.
- Theorem: If x is regular, then:
 - every element of D_x is regular,
 - every \mathscr{R} -class in D_x contains an idempotent,
 - every \mathscr{L} -class in D_x contains an idempotent.

- If e is an idempotent $(e = e^2)$, then H_e is a group.
- ▶ Group *ℋ*-classes are shaded grey.
- ► Group *H*-classes in the same *D*-class are isomorphic.
- Say $x \in S$ is regular if x = xyx for some $y \in S$.
- Theorem: If x is regular, then:
 - every element of D_x is regular,
 - every \mathscr{R} -class in D_x contains an idempotent,
 - every \mathscr{L} -class in D_x contains an idempotent.
- Egg-box diagrams tell us a lot about the structure of a semigroup.

- If e is an idempotent $(e = e^2)$, then H_e is a group.
- ▶ Group *ℋ*-classes are shaded grey.
- ► Group *H*-classes in the same *D*-class are isomorphic.
- Say $x \in S$ is regular if x = xyx for some $y \in S$.
- Theorem: If x is regular, then:
 - every element of D_x is regular,
 - every \mathscr{R} -class in D_x contains an idempotent,
 - every \mathscr{L} -class in D_x contains an idempotent.
- Egg-box diagrams tell us a lot about the structure of a semigroup. But not everything.

▶ Let X be a set.

- ► Let X be a set.
- Write $\mathcal{T}_X = \{ \text{functions } X \to X \}$

- Let X be a set.
- Write $\mathcal{T}_X = \{ \text{functions } X \to X \}$

- Let X be a set.
- Write $\mathcal{T}_X = \{ \text{functions } X \to X \}$

= full transformation semigroup over X.

• \mathcal{T}_X is a semigroup (under composition) of size $|X|^{|X|}$.

- Let X be a set.
- Write $\mathcal{T}_X = \{ \text{functions } X \to X \}$

- \mathcal{T}_X is a semigroup (under composition) of size $|X|^{|X|}$.
- Cayley's Theorem: Any semigroup S embeds in \mathcal{T}_{S^1} .

- Let X be a set.
- Write $\mathcal{T}_X = \{ \text{functions } X \to X \}$

- \mathcal{T}_X is a semigroup (under composition) of size $|X|^{|X|}$.
- Cayley's Theorem: Any semigroup S embeds in \mathcal{T}_{S^1} .
- Analogous to: Any group G embeds in S_G (symmetric group).

- Let X be a set.
- Write $\mathcal{T}_X = \{ \text{functions } X \to X \}$

- \mathcal{T}_X is a semigroup (under composition) of size $|X|^{|X|}$.
- Cayley's Theorem: Any semigroup S embeds in \mathcal{T}_{S^1} .
- Analogous to: Any group G embeds in S_G (symmetric group).
- ► T_X is an endomorphism monoid in the (locally small) category of sets and mappings.

- Let X be a set.
- Write $\mathcal{T}_X = \{ \text{functions } X \to X \}$

- \mathcal{T}_X is a semigroup (under composition) of size $|X|^{|X|}$.
- Cayley's Theorem: Any semigroup S embeds in \mathcal{T}_{S^1} .
- Analogous to: Any group G embeds in S_G (symmetric group).
- ► T_X is an endomorphism monoid in the (locally small) category of sets and mappings.
- \mathcal{T}_X is regular (i.e., every element is regular).

- Let X be a set.
- Write $\mathcal{T}_X = \{ \text{functions } X \to X \}$

- \mathcal{T}_X is a semigroup (under composition) of size $|X|^{|X|}$.
- Cayley's Theorem: Any semigroup S embeds in \mathcal{T}_{S^1} .
- Analogous to: Any group G embeds in S_G (symmetric group).
- ► T_X is an endomorphism monoid in the (locally small) category of sets and mappings.
- \mathcal{T}_X is regular (i.e., every element is regular).
- All egg-box diagrams before were from randomly-generated subsemigroups of T_n (n = 4, 5, 6, 7).

- Let X be a set.
- Write $\mathcal{T}_X = \{ \text{functions } X \to X \}$

- \mathcal{T}_X is a semigroup (under composition) of size $|X|^{|X|}$.
- Cayley's Theorem: Any semigroup S embeds in \mathcal{T}_{S^1} .
- Analogous to: Any group G embeds in S_G (symmetric group).
- ► T_X is an endomorphism monoid in the (locally small) category of sets and mappings.
- \mathcal{T}_X is regular (i.e., every element is regular).
- All egg-box diagrams before were from randomly-generated subsemigroups of T_n (n = 4, 5, 6, 7).

• There are \approx 132 million "different" subsemigroups of \mathcal{T}_4 .

- For $f \in \mathcal{T}_X$, define:
 - $\operatorname{im}(f) = \{xf : x \in X\}$, the image of f,

- For $f \in \mathcal{T}_X$, define:
 - $\operatorname{im}(f) = \{xf : x \in X\}$, the image of f,
 - ▶ $\operatorname{ker}(f) = \{(x, y) \in X \times X : xf = yf\},$ the kernel of f,

- For $f \in \mathcal{T}_X$, define:
 - $\operatorname{im}(f) = \{xf : x \in X\}$, the image of f,
 - ▶ $\operatorname{ker}(f) = \{(x, y) \in X \times X : xf = yf\},$ the kernel of f,
 - $\operatorname{rank}(f) = |\operatorname{im}(f)|$, the rank of f.

- For $f \in \mathcal{T}_X$, define:
 - $\operatorname{im}(f) = \{xf : x \in X\}$, the image of f,
 - ▶ $\operatorname{ker}(f) = \{(x, y) \in X \times X : xf = yf\},$ the kernel of f,
 - $\operatorname{rank}(f) = |\operatorname{im}(f)|$, the rank of f.
- ▶ For $f, g \in \mathcal{T}_X$,
 - $f \mathscr{L} g$ iff $\operatorname{im}(f) = \operatorname{im}(g)$,

- For $f \in \mathcal{T}_X$, define:
 - $\operatorname{im}(f) = \{xf : x \in X\}$, the image of f,
 - ▶ $\operatorname{ker}(f) = \{(x, y) \in X \times X : xf = yf\},$ the kernel of f,
 - $\operatorname{rank}(f) = |\operatorname{im}(f)|$, the rank of f.

- $f \mathscr{L} g$ iff $\operatorname{im}(f) = \operatorname{im}(g)$,
- $f \mathscr{R} g$ iff $\ker(f) = \ker(g)$,

- For $f \in \mathcal{T}_X$, define:
 - $\operatorname{im}(f) = \{xf : x \in X\}$, the image of f,
 - ▶ $\operatorname{ker}(f) = \{(x, y) \in X \times X : xf = yf\},$ the kernel of f,
 - $\operatorname{rank}(f) = |\operatorname{im}(f)|$, the rank of f.

- $f \mathscr{L} g$ iff $\operatorname{im}(f) = \operatorname{im}(g)$,
- $f \mathscr{R} g$ iff $\ker(f) = \ker(g)$,
- $f \mathscr{J} g$ iff $\operatorname{rank}(f) = \operatorname{rank}(g)$,

- For $f \in \mathcal{T}_X$, define:
 - $\operatorname{im}(f) = \{xf : x \in X\}$, the image of f,
 - ▶ $\operatorname{ker}(f) = \{(x, y) \in X \times X : xf = yf\},$ the kernel of f,
 - $\operatorname{rank}(f) = |\operatorname{im}(f)|$, the rank of f.

- $f \mathscr{L} g$ iff $\operatorname{im}(f) = \operatorname{im}(g)$,
- $f \mathscr{R} g$ iff $\ker(f) = \ker(g)$,
- $f \mathscr{J} g$ iff $\operatorname{rank}(f) = \operatorname{rank}(g)$,
- $\mathscr{D} = \mathscr{J}$, even if X is infinite,

- For $f \in \mathcal{T}_X$, define:
 - $\operatorname{im}(f) = \{xf : x \in X\}$, the image of f,
 - ▶ $\operatorname{ker}(f) = \{(x, y) \in X \times X : xf = yf\}, \text{ the kernel of } f,$
 - $\operatorname{rank}(f) = |\operatorname{im}(f)|$, the rank of f.

- $f \mathscr{L} g$ iff $\operatorname{im}(f) = \operatorname{im}(g)$,
- $f \mathscr{R} g$ iff $\ker(f) = \ker(g)$,
- $f \mathscr{J} g$ iff rank(f) = rank(g),
- $\mathscr{D} = \mathscr{J}$, even if X is infinite,
- $J_f \leq J_g$ iff rank $(f) \leq \operatorname{rank}(g)$.

- For $f \in \mathcal{T}_X$, define:
 - $\operatorname{im}(f) = \{xf : x \in X\}$, the image of f,
 - ▶ $\operatorname{ker}(f) = \{(x, y) \in X \times X : xf = yf\},$ the kernel of f,
 - $\operatorname{rank}(f) = |\operatorname{im}(f)|$, the rank of f.

- $f \mathscr{L} g$ iff $\operatorname{im}(f) = \operatorname{im}(g)$,
- $f \mathscr{R} g$ iff $\ker(f) = \ker(g)$,
- $f \mathscr{J} g$ iff $\operatorname{rank}(f) = \operatorname{rank}(g)$,
- $\mathscr{D} = \mathscr{J}$, even if X is infinite,
- $J_f \leq J_g$ iff rank $(f) \leq \operatorname{rank}(g)$.
- Caution:
 - Green's relations on subsemigroups are not necessarily inherited.

• The
$$\mathscr{D} = \mathscr{J}$$
-classes of \mathcal{T}_X are the sets
 $J_\mu = D_\mu = \{f \in \mathcal{T}_X : \operatorname{rank}(f) = \mu\}$

for cardinals $1 \leq \mu \leq |X|$.

C2

1 \mathcal{T}_1
Full transformation semigroups — Green's relations

• The
$$\mathscr{D} = \mathscr{J}$$
-classes of \mathcal{T}_X are the sets

$$J_{\mu} = D_{\mu} = \{ f \in \mathcal{T}_X : \operatorname{rank}(f) = \mu \}$$

for cardinals $1 \le \mu \le |X|$.

They form a chain:

 $J_1 < J_2 < \cdots < J_{|X|}.$

C2

 \mathcal{T}_2

1

 \mathcal{T}_1

Full transformation semigroups — Green's relations

• The
$$\mathscr{D} = \mathscr{J}$$
-classes of \mathcal{T}_X are the sets

$$J_{\mu} = D_{\mu} = \{ f \in \mathcal{T}_X : \operatorname{rank}(f) = \mu \}$$

for cardinals $1 \le \mu \le |X|$.

They form a chain:

 $J_1 < J_2 < \cdots < J_{|X|}.$

• If $e \in J_{\mu}$ is an idempotent, then $H_e \cong S_{\mu}.$

 \mathcal{T}_2

 \mathcal{T}_1

C2

C2

C2

• What can we say about variants $\mathcal{T}_X^a = (\mathcal{T}_X, \star_a)$?

• A (regular) \mathscr{D} -class of \mathcal{T}_X yields:

• at most one regular \mathscr{D} -class of \mathcal{T}_X^a ,

• A (regular) \mathscr{D} -class of \mathcal{T}_X yields:

- at most one regular \mathscr{D} -class of \mathcal{T}_X^a ,
- ▶ some non-regular single-row and single-column \mathscr{D} -classes of \mathcal{T}_X^a ,

• A (regular) \mathscr{D} -class of \mathcal{T}_X yields:

- at most one regular \mathscr{D} -class of \mathcal{T}_X^a ,
- ▶ some non-regular single-row and single-column \mathscr{D} -classes of \mathcal{T}_X^a ,
- some non-regular singleton \mathscr{D} -classes of \mathcal{T}_X^a .

• To describe Green's relations in S^a , for arbitrary S and a...

- To describe Green's relations in S^a , for arbitrary S and a...
- Define sets
 - $P_1 = \{x \in S : x \mathscr{R} xa\}$

- To describe Green's relations in S^a , for arbitrary S and a...
- Define sets

▶
$$P_1 = \{x \in S : x \ \mathscr{R} \ xa\} = \{x \in S : x = xav \ (\exists v \in S)\},\$$

- To describe Green's relations in S^a , for arbitrary S and a...
- Define sets
 - ▶ $P_1 = \{x \in S : x \ \mathscr{R} \ xa\} = \{x \in S : x = xav \ (\exists v \in S)\},\$
 - $P_2 = \{x \in S : x \mathscr{L} ax\}$

- To describe Green's relations in S^a , for arbitrary S and a...
- Define sets
 - ▶ $P_1 = \{x \in S : x \mathscr{R} xa\} = \{x \in S : x = xav (\exists v \in S)\},\$
 - ► $P_2 = \{x \in S : x \mathscr{L} ax\} = \{x \in S : x = uax (\exists u \in S)\},\$

- ▶ To describe Green's relations in S^a, for arbitrary S and a...
- Define sets
 - ▶ $P_1 = \{x \in S : x \ \mathscr{R} \ xa\} = \{x \in S : x = xav \ (\exists v \in S)\},\$
 - ► $P_2 = \{x \in S : x \mathscr{L} ax\} = \{x \in S : x = uax (\exists u \in S)\},\$
 - $P_3 = \{x \in S : x \not J axa\}$

- ▶ To describe Green's relations in S^a, for arbitrary S and a...
- Define sets
 - ▶ $P_1 = \{x \in S : x \ \mathscr{R} \ xa\} = \{x \in S : x = xav \ (\exists v \in S)\},\$
 - ► $P_2 = \{x \in S : x \mathscr{L} ax\} = \{x \in S : x = uax (\exists u \in S)\},\$
 - ► $P_3 = \{x \in S : x \not J \text{ axa}\} = \{x \in S : x = uaxav (\exists u, v \in S)\},\$

- ▶ To describe Green's relations in S^a, for arbitrary S and a...
- Define sets
 - ▶ $P_1 = \{x \in S : x \ \mathscr{R} \ xa\} = \{x \in S : x = xav \ (\exists v \in S)\},\$
 - ► $P_2 = \{x \in S : x \mathscr{L} ax\} = \{x \in S : x = uax (\exists u \in S)\},\$
 - ► $P_3 = \{x \in S : x \not J \text{ axa}\} = \{x \in S : x = uaxav (\exists u, v \in S)\},\$
 - $\blacktriangleright P = P_1 \cap P_2.$

- ▶ To describe Green's relations in S^a, for arbitrary S and a...
- Define sets
 - ▶ $P_1 = \{x \in S : x \ \mathscr{R} \ xa\} = \{x \in S : x = xav \ (\exists v \in S)\},\$
 - ► $P_2 = \{x \in S : x \mathscr{L} ax\} = \{x \in S : x = uax (\exists u \in S)\},\$
 - ► $P_3 = \{x \in S : x \not J \text{ axa}\} = \{x \in S : x = uaxav (\exists u, v \in S)\},\$
 - $\blacktriangleright P = P_1 \cap P_2.$

• Write $\mathscr{R}^a, \mathscr{L}^a$ (etc.) for Green's relations on S^a .

• Write $\mathscr{R}^a, \mathscr{L}^a$ (etc.) for Green's relations on S^a .

▶ So $x \mathscr{R}^a y$ iff x = y or [x = yap and y = xaq for some $p, q \in S]$.

• Write $\mathscr{R}^a, \mathscr{L}^a$ (etc.) for Green's relations on S^a .

▶ So $x \mathscr{R}^a y$ iff x = y or [x = yap and y = xaq for some $p, q \in S]$.

For $x \in S$, write

• $R_x = \{y \in S : x \mathscr{R} y\}$ for the \mathscr{R} -class of x in S,

- Write $\mathscr{R}^a, \mathscr{L}^a$ (etc.) for Green's relations on S^a .
 - ▶ So $x \mathscr{R}^a y$ iff x = y or [x = yap and y = xaq for some $p, q \in S]$.
- For $x \in S$, write
 - $R_x = \{y \in S : x \mathscr{R} y\}$ for the \mathscr{R} -class of x in S,
 - ▶ $R_x^a = \{y \in S : x \mathscr{R}^a y\}$ for the \mathscr{R}^a -class of x in S^a , etc.

• Write $\mathscr{R}^a, \mathscr{L}^a$ (etc.) for Green's relations on S^a .

► So $x \mathscr{R}^a y$ iff x = y or [x = yap and y = xaq for some $p, q \in S]$.

For $x \in S$, write

• $R_x = \{y \in S : x \mathscr{R} y\}$ for the \mathscr{R} -class of x in S,

▶ $R_x^a = \{y \in S : x \mathscr{R}^a y\}$ for the \mathscr{R}^a -class of x in S^a , etc.

Theorem: For any $x \in S$,

$$\begin{array}{l} \blacktriangleright R_x^a = \begin{cases} R_x \cap P_1 & \text{if } x \in P_1 \\ \{x\} & \text{if } x \in S \setminus P_1, \end{cases} \\ \blacktriangleright L_x^a = \begin{cases} L_x \cap P_2 & \text{if } x \in P_2 \\ \{x\} & \text{if } x \in S \setminus P_2, \end{cases} \\ \blacktriangleright R_x^a & \text{if } x \in P_1 \setminus P_2 \\ \{x\} & \text{if } x \in S \setminus P_2, \end{cases} \\ \blacktriangleright R_x^a & \text{if } x \in P_1 \setminus P_2 \\ \{x\} & \text{if } x \in S \setminus P_2, \end{cases} \\ \blacktriangleright R_x^a & \text{if } x \in P_1 \setminus P_2 \\ \{x\} & \text{if } x \in S \setminus P_2, \end{cases} \\ \begin{array}{l} \blacktriangleright R_x^a & \text{if } x \in P_1 \setminus P_2 \\ \{x\} & \text{if } x \in S \setminus P_2, \end{cases} \\ \blacktriangleright R_x^a & \text{if } x \in S \setminus P_2, \end{cases} \\ \begin{array}{l} \blacktriangleright R_x^a & \text{if } x \in P_1 \setminus P_2 \\ \{x\} & \text{if } x \in S \setminus P_2, \end{cases} \\ \begin{array}{l} \vdash R_x^a & \text{if } x \in P_1 \setminus P_2 \\ \{x\} & \text{if } x \in S \setminus P_2, \end{cases} \\ \begin{array}{l} \vdash R_x^a & \text{if } x \in P_1 \setminus P_2 \\ \{x\} & \text{if } x \in S \setminus P_2, \end{cases} \\ \begin{array}{l} \vdash R_x^a & \text{if } x \in S \setminus P_2, \\ \{x\} & \text{if } x \in S \setminus P_3, \end{cases} \\ \begin{array}{l} \vdash R_x^a & \text{if } x \in S \setminus P_3, \\ \hline R_x^a & \text{if } x \in S \setminus P_3, \\ \end{array} \\ \end{array}$$

• Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).

• Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).

• Write $\operatorname{Reg}(S)$ for the set of regular elements of S.

- Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).
 - Write $\operatorname{Reg}(S)$ for the set of regular elements of S.
 - $\operatorname{Reg}(S)$ is not always a subsemigroup of S.

- Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).
 - Write $\operatorname{Reg}(S)$ for the set of regular elements of S.
 - $\operatorname{Reg}(S)$ is not always a subsemigroup of S.
- Note that $x \in S$ is regular in S^a if $x = x \star_a y \star_a x$

- Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).
 - Write $\operatorname{Reg}(S)$ for the set of regular elements of S.
 - $\operatorname{Reg}(S)$ is not always a subsemigroup of S.
- ▶ Note that $x \in S$ is regular in S^a if $x = x \star_a y \star_a x = xayax (\exists y)$.

- Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).
 - Write $\operatorname{Reg}(S)$ for the set of regular elements of S.
 - $\operatorname{Reg}(S)$ is not always a subsemigroup of S.
- ▶ Note that $x \in S$ is regular in S^a if $x = x \star_a y \star_a x = xayax (\exists y)$.
 - Write $\text{Reg}(S^a)$ for the set of regular elements of S^a .

- Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).
 - Write $\operatorname{Reg}(S)$ for the set of regular elements of S.
 - $\operatorname{Reg}(S)$ is not always a subsemigroup of S.
- ▶ Note that $x \in S$ is regular in S^a if $x = x \star_a y \star_a x = xayax (\exists y)$.
 - Write $\text{Reg}(S^a)$ for the set of regular elements of S^a .
- Note that $\operatorname{Reg}(S^a) \subseteq \operatorname{Reg}(S) \cap P$.
- Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).
 - Write $\operatorname{Reg}(S)$ for the set of regular elements of S.
 - $\operatorname{Reg}(S)$ is not always a subsemigroup of S.
- ▶ Note that $x \in S$ is regular in S^a if $x = x \star_a y \star_a x = xayax (\exists y)$.
 - Write $\text{Reg}(S^a)$ for the set of regular elements of S^a .
- Note that $\operatorname{Reg}(S^a) \subseteq \operatorname{Reg}(S) \cap P$.
 - Consider x = xayax

- Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).
 - Write $\operatorname{Reg}(S)$ for the set of regular elements of S.
 - $\operatorname{Reg}(S)$ is not always a subsemigroup of S.
- ▶ Note that $x \in S$ is regular in S^a if $x = x \star_a y \star_a x = xayax (\exists y)$.
 - Write $\text{Reg}(S^a)$ for the set of regular elements of S^a .
- Note that $\operatorname{Reg}(S^a) \subseteq \operatorname{Reg}(S) \cap P$.

- Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).
 - Write $\operatorname{Reg}(S)$ for the set of regular elements of S.
 - $\operatorname{Reg}(S)$ is not always a subsemigroup of S.
- ▶ Note that $x \in S$ is regular in S^a if $x = x \star_a y \star_a x = xayax (\exists y)$.
 - Write $\text{Reg}(S^a)$ for the set of regular elements of S^a .
- Note that $\operatorname{Reg}(S^a) \subseteq \operatorname{Reg}(S) \cap P$.
 - Consider x = xayax = xa(yax) = (xay)ax.

- Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).
 - Write $\operatorname{Reg}(S)$ for the set of regular elements of S.
 - $\operatorname{Reg}(S)$ is not always a subsemigroup of S.
- ▶ Note that $x \in S$ is regular in S^a if $x = x \star_a y \star_a x = xayax (\exists y)$.
 - Write $\text{Reg}(S^a)$ for the set of regular elements of S^a .
- Note that $\operatorname{Reg}(S^a) \subseteq \operatorname{Reg}(S) \cap P$.
 - Consider x = xayax = xa(yax) = (xay)ax.

Theorem

•
$$\operatorname{Reg}(S^a) = \operatorname{Reg}(S) \cap P$$
.

- Recall that $x \in S$ is regular if x = xyx ($\exists y \in S$).
 - Write $\operatorname{Reg}(S)$ for the set of regular elements of S.
 - $\operatorname{Reg}(S)$ is not always a subsemigroup of S.
- ▶ Note that $x \in S$ is regular in S^a if $x = x \star_a y \star_a x = xayax (\exists y)$.
 - Write $\text{Reg}(S^a)$ for the set of regular elements of S^a .
- Note that $\operatorname{Reg}(S^a) \subseteq \operatorname{Reg}(S) \cap P$.
 - Consider x = xayax = xa(yax) = (xay)ax.

Theorem

- $\operatorname{Reg}(S^a) = \operatorname{Reg}(S) \cap P$.
- If S is regular, then $\text{Reg}(S^a) = P$ is a subsemigroup of S^a .

	C2	(22		C2		
	C2	(C2 C2		C2		
	C2	(C2		
	C2	(C2		C2		
						-	
	1	1	1		1		
Re	$\operatorname{Reg}(\mathcal{T}_{4}^{b}), \ b = [1, 2, 2, 2]$						

C2	C2	C2	C2			
C2	C2	C2	C2			
C2	C2	C2	C2			
C2	C2	C2	C2			
1	1	1	1			
$\text{Reg}(\mathcal{T}_{4}^{c}), c = [1, 1, 2, 2]$						

 $\operatorname{Reg}(\mathcal{T}_4^a)$, $\operatorname{rank}(a) = 3$

 $\operatorname{Reg}(\mathcal{T}_5^a)$, $\operatorname{rank}(a) = 3$

 $\operatorname{Reg}(\mathcal{T}_5^a)$, $\operatorname{rank}(a) = 3$

$\mathsf{Reg}(\mathcal{T}_4^a)$, $\mathsf{rank}(a) = 2$

 \mathcal{T}_2

 $\mathsf{Reg}(\mathcal{T}_4^a)$, $\mathsf{rank}(a) = 2$

C2	C2	C2	C2
C2	C2	C2	C2
C2	C2	C2	C2
C2	C2	C2	C2

$\mathsf{Reg}(\mathcal{T}_5^a)$, $\mathsf{rank}(a) = 2$

C2	C2	2	(22	C2	
C2	C2		C2		C2	
C2	C2		C2		C2	
C2	C2		C2		C2	
C2	C2		(22	C2	
C2	C2 C2		C2		C2	
C2	C2		C2		C2	
C2	C2		C2		C2	
1 1		1	1 1		1	

 $\mathsf{Reg}(\mathcal{T}_5^a)$, $\mathsf{rank}(a) = 2$

C2	C2	C2	C2	C2	C2
C2	C2	C2	C2	C2	C2
C2	C2	C2	C2	C2	C2
C2	C2	C2	C2	C2	C2
C2	C2	C2	C2	C2	C2
C2	C2	C2	C2	C2	C2
C2	C2	C2	C2	C2	C2
C2	C2	C2	C2	C2	C2

 \mathcal{T}_2

C2

 $\operatorname{Reg}(\mathcal{T}_5^a)$, $\operatorname{rank}(a) = 4$

 $\operatorname{Reg}(\mathcal{T}_5^a)$, $\operatorname{rank}(a) = 4$

 \mathcal{T}_4

• $\operatorname{Reg}(\mathcal{T}_X^a)$ looks like an "inflated" \mathcal{T}_r , where $r = \operatorname{rank}(a)$.

- A description of this inflation phenomenon was a big part of our first article:
 - ▶ Variants of finite full transformation semigroups (Dolinka, E, 2015)

- A description of this inflation phenomenon was a big part of our first article:
 - ▶ Variants of finite full transformation semigroups (Dolinka, E, 2015)
- $\operatorname{Reg}(\mathcal{T}_X^a)$ is an "inflation" of \mathcal{T}_r , where $r = \operatorname{rank}(a)$.

- A description of this inflation phenomenon was a big part of our first article:
 - ▶ Variants of finite full transformation semigroups (Dolinka, E, 2015)
- $\operatorname{Reg}(\mathcal{T}_X^a)$ is an "inflation" of \mathcal{T}_r , where $r = \operatorname{rank}(a)$.
 - Each \mathscr{G} -class in \mathcal{T}_r inflates to numerous \mathscr{G}^a -classes in $\operatorname{Reg}(\mathcal{T}_X^a)$.

22

- A description of this inflation phenomenon was a big part of our first article:
 - ▶ Variants of finite full transformation semigroups (Dolinka, E, 2015)
- $\operatorname{Reg}(\mathcal{T}_X^a)$ is an "inflation" of \mathcal{T}_r , where $r = \operatorname{rank}(a)$.
 - Each \mathscr{G} -class in \mathcal{T}_r inflates to numerous \mathscr{G}^a -classes in $\operatorname{Reg}(\mathcal{T}_X^a)$.
 - We know how many of each.

- A description of this inflation phenomenon was a big part of our first article:
 - ▶ Variants of finite full transformation semigroups (Dolinka, E, 2015)
- $\operatorname{Reg}(\mathcal{T}_X^a)$ is an "inflation" of \mathcal{T}_r , where $r = \operatorname{rank}(a)$.
 - Each \mathscr{G} -class in \mathcal{T}_r inflates to numerous \mathscr{G}^a -classes in $\operatorname{Reg}(\mathcal{T}_X^a)$.
 - We know how many of each.
 - ► Group/non-group *ℋ*/*ℋ*^a classes are preserved.

- A description of this inflation phenomenon was a big part of our first article:
 - ▶ Variants of finite full transformation semigroups (Dolinka, E, 2015)
- $\operatorname{Reg}(\mathcal{T}_X^a)$ is an "inflation" of \mathcal{T}_r , where $r = \operatorname{rank}(a)$.
 - Each \mathscr{G} -class in \mathcal{T}_r inflates to numerous \mathscr{G}^a -classes in $\operatorname{Reg}(\mathcal{T}_X^a)$.
 - We know how many of each.
 - Group/non-group $\mathcal{H}/\mathcal{H}^a$ classes are preserved.
 - Groups in \mathcal{T}_r are inflated into "rectangular groups" in $\text{Reg}(\mathcal{T}_X^a)$.

- A description of this inflation phenomenon was a big part of our first article:
 - ▶ Variants of finite full transformation semigroups (Dolinka, E, 2015)
- $\operatorname{Reg}(\mathcal{T}_X^a)$ is an "inflation" of \mathcal{T}_r , where $r = \operatorname{rank}(a)$.
 - Each \mathscr{G} -class in \mathcal{T}_r inflates to numerous \mathscr{G}^a -classes in $\operatorname{Reg}(\mathcal{T}^a_X)$.
 - We know how many of each.
 - Group/non-group $\mathcal{H}/\mathcal{H}^a$ classes are preserved.
 - Groups in \mathcal{T}_r are inflated into "rectangular groups" in $\text{Reg}(\mathcal{T}_X^a)$.
- We now know an "inflation" result holds in general.

- A description of this inflation phenomenon was a big part of our first article:
 - ▶ Variants of finite full transformation semigroups (Dolinka, E, 2015)
- $\operatorname{Reg}(\mathcal{T}_X^a)$ is an "inflation" of \mathcal{T}_r , where $r = \operatorname{rank}(a)$.
 - Each \mathscr{G} -class in \mathcal{T}_r inflates to numerous \mathscr{G}^a -classes in $\operatorname{Reg}(\mathcal{T}_X^a)$.
 - We know how many of each.
 - Group/non-group $\mathcal{H}/\mathcal{H}^a$ classes are preserved.
 - Groups in \mathcal{T}_r are inflated into "rectangular groups" in $\text{Reg}(\mathcal{T}_X^a)$.
- We now know an "inflation" result holds in general.
- ▶ If S is regular, then Reg(S^a) is an "inflation" of... what?

- A description of this inflation phenomenon was a big part of our first article:
 - ▶ Variants of finite full transformation semigroups (Dolinka, E, 2015)
- $\operatorname{Reg}(\mathcal{T}_X^a)$ is an "inflation" of \mathcal{T}_r , where $r = \operatorname{rank}(a)$.
 - Each \mathscr{G} -class in \mathcal{T}_r inflates to numerous \mathscr{G}^a -classes in $\operatorname{Reg}(\mathcal{T}_X^a)$.
 - We know how many of each.
 - Group/non-group $\mathcal{H}/\mathcal{H}^a$ classes are preserved.
 - Groups in \mathcal{T}_r are inflated into "rectangular groups" in $\text{Reg}(\mathcal{T}_X^a)$.
- We now know an "inflation" result holds in general.
- If S is regular, then $\text{Reg}(S^a)$ is an "inflation" of... what?
 - Something weaker than regularity is sufficient, but we'll KIS(S).

Structure of $\operatorname{Reg}(S^a)$

Structure of $\text{Reg}(S^a)$

• Let S be a regular semigroup, and let $a \in S$.

Structure of $\text{Reg}(S^a)$

- Let S be a regular semigroup, and let $a \in S$.
- Let $b \in S$ be such that a = aba and b = bab.
- Let S be a regular semigroup, and let $a \in S$.
- Let $b \in S$ be such that a = aba and b = bab.
- ▶ Our description of Reg(S^a) involves:
 - the left ideal $Sa = \{xa : x \in S\}$,

- Let S be a regular semigroup, and let $a \in S$.
- Let $b \in S$ be such that a = aba and b = bab.
- ▶ Our description of Reg(S^a) involves:
 - the left ideal $Sa = \{xa : x \in S\}$,
 - the right ideal $aS = \{ax : x \in S\}$,

- Let S be a regular semigroup, and let $a \in S$.
- Let $b \in S$ be such that a = aba and b = bab.
- ▶ Our description of Reg(S^a) involves:
 - the left ideal $Sa = \{xa : x \in S\}$,
 - the right ideal $aS = \{ax : x \in S\}$,
 - and a second variant, $S^b = (S, \star_b)!$

- Let S be a regular semigroup, and let $a \in S$.
- Let $b \in S$ be such that a = aba and b = bab.
- ▶ Our description of Reg(S^a) involves:
 - the left ideal $Sa = \{xa : x \in S\}$,
 - the right ideal $aS = \{ax : x \in S\}$,
 - and a second variant, $S^b = (S, \star_b)!$
- ▶ Note that *Sa* and *aS* are both subsemigroups of *S*.

- Let S be a regular semigroup, and let $a \in S$.
- Let $b \in S$ be such that a = aba and b = bab.
- ▶ Our description of Reg(S^a) involves:
 - the left ideal $Sa = \{xa : x \in S\}$,
 - the right ideal $aS = \{ax : x \in S\}$,
 - and a second variant, $S^b = (S, \star_b)!$
- ▶ Note that *Sa* and *aS* are both subsemigroups of *S*.
- So too is $aSa = \{axa : x \in S\}.$

- Let S be a regular semigroup, and let $a \in S$.
- Let $b \in S$ be such that a = aba and b = bab.
- ▶ Our description of Reg(S^a) involves:
 - the left ideal $Sa = \{xa : x \in S\}$,
 - the right ideal $aS = \{ax : x \in S\}$,
 - and a second variant, $S^b = (S, \star_b)!$
- ▶ Note that *Sa* and *aS* are both subsemigroups of *S*.
- So too is $aSa = \{axa : x \in S\}$.
- But aSa is also a subsemigroup of S^b:

- Let S be a regular semigroup, and let $a \in S$.
- Let $b \in S$ be such that a = aba and b = bab.
- ▶ Our description of Reg(S^a) involves:
 - the left ideal $Sa = \{xa : x \in S\}$,
 - the right ideal $aS = \{ax : x \in S\}$,
 - and a second variant, $S^b = (S, \star_b)!$
- ▶ Note that *Sa* and *aS* are both subsemigroups of *S*.
- So too is $aSa = \{axa : x \in S\}.$
- But aSa is also a subsemigroup of S^b:
 - ► axa ★_b aya

- Let S be a regular semigroup, and let $a \in S$.
- Let $b \in S$ be such that a = aba and b = bab.
- ▶ Our description of Reg(S^a) involves:
 - the left ideal $Sa = \{xa : x \in S\}$,
 - the right ideal $aS = \{ax : x \in S\}$,
 - and a second variant, $S^b = (S, \star_b)!$
- ▶ Note that *Sa* and *aS* are both subsemigroups of *S*.
- So too is $aSa = \{axa : x \in S\}.$
- But aSa is also a subsemigroup of S^b:
 - $axa \star_b aya = (axa)b(aya)$

- Let S be a regular semigroup, and let $a \in S$.
- Let $b \in S$ be such that a = aba and b = bab.
- ▶ Our description of Reg(S^a) involves:
 - the left ideal $Sa = \{xa : x \in S\}$,
 - the right ideal $aS = \{ax : x \in S\}$,
 - and a second variant, $S^b = (S, \star_b)!$
- ▶ Note that *Sa* and *aS* are both subsemigroups of *S*.
- So too is $aSa = \{axa : x \in S\}.$
- But aSa is also a subsemigroup of S^b:

•
$$axa \star_b aya = (axa)b(aya) = a(xay)a$$
.

- Let S be a regular semigroup, and let $a \in S$.
- Let $b \in S$ be such that a = aba and b = bab.
- ▶ Our description of Reg(S^a) involves:
 - the left ideal $Sa = \{xa : x \in S\}$,
 - the right ideal $aS = \{ax : x \in S\}$,
 - and a second variant, $S^b = (S, \star_b)!$
- ▶ Note that *Sa* and *aS* are both subsemigroups of *S*.
- So too is $aSa = \{axa : x \in S\}.$
- But aSa is also a subsemigroup of S^b:

•
$$axa \star_b aya = (axa)b(aya) = a(xay)a$$
.

Now a is the bread, instead of the filling!

•
$$(axa) \star_b a = axa$$

•
$$(axa) \star_b a = axa = a \star_b (axa),$$

▶ In fact, (aSa, \star_b) is a regular monoid, with identity *a*.

$$\bullet (axa) \star_b a = axa = a \star_b (axa),$$

► axa = (axa)y(axa)

•
$$(axa) \star_b a = axa = a \star_b (axa),$$

$$(axa) \star_b a = axa = a \star_b (axa),$$

•
$$axa = (axa)y(axa) = (axaba)y(abaxa) = (axa) \star_b (aya) \star_b (axa)$$
.

▶ In fact, (aSa, \star_b) is a regular monoid, with identity *a*.

•
$$(axa) \star_b a = axa = a \star_b (axa),$$

•
$$axa = (axa)y(axa) = (axaba)y(abaxa) = (axa) \star_b (aya) \star_b (axa).$$

• So $Sa, aS \leq S$ and $(aSa, \star_b) \leq S^b$.

▶ In fact, (aSa, \star_b) is a regular monoid, with identity *a*.

•
$$(axa) \star_b a = axa = a \star_b (axa),$$

► $axa = (axa)y(axa) = (axaba)y(abaxa) = (axa) \star_b (aya) \star_b (axa).$

• So
$$Sa, aS \leq S$$
 and $(aSa, \star_b) \leq S^b$.

► The following diagram commutes, with all maps epimorphisms:

▶ In fact, (aSa, \star_b) is a regular monoid, with identity *a*.

$$(axa) \star_b a = axa = a \star_b (axa),$$

• $axa = (axa)y(axa) = (axaba)y(abaxa) = (axa) \star_b (aya) \star_b (axa)$.

• So
$$Sa, aS \leq S$$
 and $(aSa, \star_b) \leq S^b$.

► The following diagram commutes, with all maps epimorphisms:

Key fact: The above extends to the regular subsemigroups...

Theorem

The following diagram commutes, with all sets semigroups, and all maps epimorphisms:

Theorem

The following diagram commutes, with all sets semigroups, and all maps epimorphisms:

▶ ψ : Reg(S^a) → Reg(Sa) × Reg(aS) : $x \mapsto (xa, ax)$ is injective.

Theorem

The following diagram commutes, with all sets semigroups, and all maps epimorphisms:

▶ ψ : Reg(S^a) → Reg(Sa) × Reg(aS) : $x \mapsto (xa, ax)$ is injective.

•
$$im(\psi) = \{(g, h) : ag = ha\}$$

Theorem

The following diagram commutes, with all sets semigroups, and all maps epimorphisms:

▶ ψ : Reg(S^a) → Reg(Sa) × Reg(aS) : $x \mapsto (xa, ax)$ is injective.

•
$$\operatorname{im}(\psi) = \{(g, h) : ag = ha\} = \{(g, h) : g\phi_1 = h\phi_2\}.$$

Theorem

The following diagram commutes, with all sets semigroups, and all maps epimorphisms:

- ▶ $\psi : \operatorname{Reg}(S^a) \to \operatorname{Reg}(Sa) \times \operatorname{Reg}(aS) : x \mapsto (xa, ax)$ is injective.
- $\operatorname{im}(\psi) = \{(g, h) : ag = ha\} = \{(g, h) : g\phi_1 = h\phi_2\}.$
- i.e., $\operatorname{Reg}(S^a)$ is a pull-back product of $\operatorname{Reg}(Sa)$ and $\operatorname{Reg}(aS)$.

Theorem

The following diagram commutes, with all sets semigroups, and all maps epimorphisms:

- ▶ $\psi : \operatorname{Reg}(S^a) \to \operatorname{Reg}(Sa) \times \operatorname{Reg}(aS) : x \mapsto (xa, ax)$ is injective.
- $\operatorname{im}(\psi) = \{(g, h) : ag = ha\} = \{(g, h) : g\phi_1 = h\phi_2\}.$
- i.e., $\operatorname{Reg}(S^a)$ is a pull-back product of $\operatorname{Reg}(Sa)$ and $\operatorname{Reg}(aS)$.

• We also get an epimorphism $\phi : \operatorname{Reg}(S^a) \to (aSa, \star_b) : x \mapsto axa...$

 $\operatorname{Reg}(S^{a})$ is like an "inflated" (aSa, \star_{b}).

 $\operatorname{Reg}(S^{a})$ is like an "inflated" (aSa, \star_{b}) .

► D and J are preserved,

 $\operatorname{Reg}(S^{a})$ is like an "inflated" (aSa, \star_{b}) .

- \mathscr{D} and \mathscr{J} are preserved,
- $\mathcal{R}, \mathcal{L}, \mathcal{H}$ are "blown up",

 $\operatorname{Reg}(S^{a})$ is like an "inflated" (aSa, \star_{b}) .

- \mathscr{D} and \mathscr{J} are preserved,
- $\mathcal{R}, \mathcal{L}, \mathcal{H}$ are "blown up",

 group *H*-classes are "blown up" into rectangular groups.

> The inflation phenomenon allows us to solve many more problems:

> The inflation phenomenon allows us to solve many more problems:

•
$$E(S^a) = E(aSa, \star_b)\phi^{-1}$$
,

> The inflation phenomenon allows us to solve many more problems:

•
$$E(S^a) = E(aSa, \star_b)\phi^{-1}$$
,

- "Let's blow up the idempotents"
 - John Meakin to Stuart Margolis at the airport!

> The inflation phenomenon allows us to solve many more problems:

•
$$E(S^a) = E(aSa, \star_b)\phi^{-1}$$
,

"Let's blow up the idempotents"

- John Meakin to Stuart Margolis at the airport!

•
$$\mathbb{E}(S^a) = \mathbb{E}(aSa, \star_b)\phi^{-1}$$
,

products of idempotents...

> The inflation phenomenon allows us to solve many more problems:

•
$$E(S^a) = E(aSa, \star_b)\phi^{-1}$$
,

"Let's blow up the idempotents"

- John Meakin to Stuart Margolis at the airport!

•
$$\mathbb{E}(S^a) = \mathbb{E}(aSa, \star_b)\phi^{-1}$$
,

products of idempotents...

•
$$a\phi^{-1} = V(a) = \{b \in S : a = aba, b = bab\}$$

> The inflation phenomenon allows us to solve many more problems:

•
$$E(S^a) = E(aSa, \star_b)\phi^{-1}$$
,

"Let's blow up the idempotents"

- John Meakin to Stuart Margolis at the airport!

•
$$\mathbb{E}(S^a) = \mathbb{E}(aSa, \star_b)\phi^{-1}$$
,

products of idempotents...

•
$$a\phi^{-1} = V(a) = \{b \in S : a = aba, b = bab\} = \{\text{mid-identities of } S^a\},\$$
Structure of $\operatorname{Reg}(S^a)$ — inflation

> The inflation phenomenon allows us to solve many more problems:

•
$$E(S^a) = E(aSa, \star_b)\phi^{-1}$$
,

"Let's blow up the idempotents"

- John Meakin to Stuart Margolis at the airport!

•
$$\mathbb{E}(S^a) = \mathbb{E}(aSa, \star_b)\phi^{-1}$$
,

products of idempotents...

•
$$a\phi^{-1} = V(a) = \{b \in S : a = aba, b = bab\} = \{\text{mid-identities of } S^a\},\$$

variants of variants...

Structure of $\operatorname{Reg}(S^a)$ — inflation

> The inflation phenomenon allows us to solve many more problems:

•
$$E(S^a) = E(aSa, \star_b)\phi^{-1}$$
,

"Let's blow up the idempotents"

- John Meakin to Stuart Margolis at the airport!

•
$$\mathbb{E}(S^a) = \mathbb{E}(aSa, \star_b)\phi^{-1}$$
,

products of idempotents...

•
$$a\phi^{-1} = V(a) = \{b \in S : a = aba, b = bab\} = \{\text{mid-identities of } S^a\},\$$

- variants of variants...
- If every idempotent of S^a is "below" a mid-identity, then ranks and idempotent ranks of Reg(S^a) and E(S^a) may be calculated.
 - combinatorial invariant theory...

Structure of $\operatorname{Reg}(S^a)$ — inflation

> The inflation phenomenon allows us to solve many more problems:

•
$$E(S^a) = E(aSa, \star_b)\phi^{-1}$$
,

"Let's blow up the idempotents"

- John Meakin to Stuart Margolis at the airport!

•
$$\mathbb{E}(S^a) = \mathbb{E}(aSa, \star_b)\phi^{-1}$$
,

products of idempotents...

•
$$a\phi^{-1} = V(a) = \{b \in S : a = aba, b = bab\} = \{\text{mid-identities of } S^a\},\$$

- variants of variants...
- If every idempotent of S^a is "below" a mid-identity, then ranks and idempotent ranks of Reg(S^a) and E(S^a) may be calculated.
 - combinatorial invariant theory...
 - This is true of ((injective) partial) functions...

▶ For finite sets *X*, *Y*, write $\mathcal{T}_{XY} = \{$ functions *X* → *Y* $\}$.

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- ▶ Fix some $a \in T_{YX}$, and form the sandwich semigroup T_{XY}^a .

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

• Write $a = \begin{pmatrix} A_i \\ a_i \end{pmatrix}_{i \in I}$.

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

• Write
$$a = \begin{pmatrix} A_i \\ a_i \end{pmatrix}_{i \in I}$$
. i.e.,

•
$$im(a) = \{a_i : i \in I\},\$$

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

•
$$(a\mathcal{T}_{XY}a, \star_b) \cong \mathcal{T}_A$$
, where $A = \operatorname{im}(a)$.

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

► Write
$$a = \begin{pmatrix} A_i \\ a_i \end{pmatrix}_{i \in I}$$
. i.e.,
• im(a) = $\{a_i : i \in I\}$,
► $A_i a = a_i$ for all $i \in I$.

•
$$(a\mathcal{T}_{XY}a, \star_b) \cong \mathcal{T}_A$$
, where $A = \operatorname{im}(a)$.

Also write

•
$$\lambda_i = |A_i|$$
 for $i \in I$,

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

•
$$(a\mathcal{T}_{XY}a, \star_b) \cong \mathcal{T}_A$$
, where $A = \operatorname{im}(a)$.

Also write

- $\lambda_i = |A_i|$ for $i \in I$,
- $\Lambda_J = \prod_{j \in J} \lambda_j$ for $J \subseteq I$,

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

▶ Write a =
$$\binom{A_i}{a_i}_{i \in I}$$
. i.e.,
▶ im(a) = {a_i : i \in I},
▶ A_ia = a_i for all i \in I.

•
$$(a\mathcal{T}_{XY}a, \star_b) \cong \mathcal{T}_A$$
, where $A = \operatorname{im}(a)$.

Also write

 $\lambda_i = |A_i| \text{ for } i \in I,$ $\lambda_J = \prod_{i \in J} \lambda_i \text{ for } J \subseteq I,$

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- ▶ Fix some $a \in T_{YX}$, and form the sandwich semigroup T_{XY}^a .

•
$$(a\mathcal{T}_{XY}a, \star_b) \cong \mathcal{T}_A$$
, where $A = im(a)$.

Also write

- ► $\lambda_i = |A_i|$ for $i \in I$, ► $\alpha = |I| = \operatorname{rank}(a) = |\operatorname{im}(a)|$,
- $\Lambda_J = \prod_{j \in J} \lambda_j$ for $J \subseteq I$, $\beta = |X \setminus im(a)|$.

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

•
$$(a\mathcal{T}_{XY}a, \star_b) \cong \mathcal{T}_A$$
, where $A = im(a)$.

Also write

$$\lambda_i = |A_i| \text{ for } i \in I,$$

$$\lambda_J = \prod_{j \in J} \lambda_j \text{ for } J \subseteq I,$$

$$\lambda_J = |I| = \operatorname{rank}(a) = |\operatorname{im}(a)|,$$

$$\beta = |X \setminus \operatorname{im}(a)|.$$

► Theorem:
$$|\operatorname{Reg}(\mathcal{T}_{XY}^{a})| = \sum_{\mu=1}^{\alpha} \mu! \mu^{\beta} S(\alpha, \mu) \sum_{J \subseteq I \ |J|=\mu} \Lambda_{J}.$$

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

•
$$(a\mathcal{T}_{XY}a, \star_b) \cong \mathcal{T}_A$$
, where $A = im(a)$.

Also write

 $\lambda_i = |A_i| \text{ for } i \in I, \qquad \qquad \flat \ \alpha = |I| = \operatorname{rank}(a), \\ \lambda_J = \prod_{j \in J} \lambda_j \text{ for } J \subseteq I, \qquad \qquad \flat \ \beta = |X \setminus \operatorname{im}(a)|.$

• Theorem: rank(Reg(\mathcal{T}_{XY}^a)) = 1 + max($\alpha^{\beta}, \Lambda_I$).

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

•
$$(a\mathcal{T}_{XY}a, \star_b) \cong \mathcal{T}_A$$
, where $A = im(a)$.

Also write

 $\lambda_i = |A_i| \text{ for } i \in I, \qquad \qquad \flat \ \alpha = |I| = \operatorname{rank}(a), \\ \lambda_J = \prod_{j \in J} \lambda_j \text{ for } J \subseteq I, \qquad \qquad \flat \ \beta = |X \setminus \operatorname{im}(a)|.$

• Theorem: rank($\mathbb{E}(\mathcal{T}_{XY}^a)$) = idrank($\mathbb{E}(\mathcal{T}_{XY}^a)$) = $\binom{\alpha}{2}$ + max($\alpha^{\beta}, \Lambda_I$).

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

•
$$(a\mathcal{T}_{XY}a, \star_b) \cong \mathcal{T}_A$$
, where $A = im(a)$.

Also write

 $\begin{array}{l} \flat \ \lambda_i = |A_i| \ \text{for} \ i \in I, \\ \flat \ \Lambda_J = \prod_{j \in J} \lambda_j \ \text{for} \ J \subseteq I, \\ \end{array} \qquad \begin{array}{l} \flat \ \alpha = |I| = \operatorname{rank}(a), \\ \flat \ \beta = |X \setminus \operatorname{im}(a)|. \end{array}$

• Theorem: rank
$$(\mathcal{T}_{XY}^a) = \sum_{\mu \ge \alpha+1} \mu! {|Y| \choose \mu} S(|X|, \mu)$$

if a neither injective nor surjective.

- ▶ For finite sets X, Y, write $\mathcal{T}_{XY} = \{$ functions $X \to Y \}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

•
$$(a\mathcal{T}_{XY}a, \star_b) \cong \mathcal{T}_A$$
, where $A = im(a)$.

Also write

- $\lambda_i = |A_i| \text{ for } i \in I, \qquad \qquad \flat \ \alpha = |I| = \operatorname{rank}(a), \\ \flat \ \Lambda_J = \prod_{i \in J} \lambda_i \text{ for } J \subseteq I, \qquad \qquad \flat \ \beta = |X \setminus \operatorname{im}(a)|.$
- Theorem: rank(*T*^a_{XY}) = S(|X|, α) if a is injective but not surjective.

- ▶ For finite sets *X*, *Y*, write $\mathcal{T}_{XY} = \{$ functions *X* → *Y* $\}$.
- Fix some $a \in \mathcal{T}_{YX}$, and form the sandwich semigroup \mathcal{T}_{XY}^a .

•
$$(a\mathcal{T}_{XY}a, \star_b) \cong \mathcal{T}_A$$
, where $A = im(a)$.

Also write

• $\lambda_i = |A_i|$ for $i \in I$,

•
$$\Lambda_J = \prod_{j \in J} \lambda_j$$
 for $J \subseteq I$,

•
$$\alpha = |I| = \operatorname{rank}(a)$$
,

$$\flat \ \beta = |X \setminus \mathsf{im}(a)|.$$

• Theorem: rank $(\mathcal{T}_{XY}^a) = \begin{pmatrix} |Y| \\ \alpha \end{pmatrix}$

if a is surjective but not injective.

When a is injective or surjective (but not both), the sandwich semigroup T^a_{XY} is isomorphic to a certain well-studied semigroup:

When a is injective or surjective (but not both), the sandwich semigroup T^a_{XY} is isomorphic to a certain well-studied semigroup:

•
$$\mathcal{T}(X,A) = \{ f \in \mathcal{T}_X : \operatorname{im}(f) \subseteq A \}$$
, where $A = \operatorname{im}(a)$,

When a is injective or surjective (but not both), the sandwich semigroup T^a_{XY} is isomorphic to a certain well-studied semigroup:

•
$$\mathcal{T}(X, A) = \{ f \in \mathcal{T}_X : im(f) \subseteq A \}$$
, where $A = im(a)$, or

► $\mathcal{T}(Y, \sigma) = \{ f \in \mathcal{T}_Y : \ker(f) \supseteq \sigma \}$, where $\sigma = \ker(a)$.

When a is injective or surjective (but not both), the sandwich semigroup T^a_{XY} is isomorphic to a certain well-studied semigroup:

•
$$\mathcal{T}(X, A) = \{ f \in \mathcal{T}_X : im(f) \subseteq A \}$$
, where $A = im(a)$, or

►
$$\mathcal{T}(Y, \sigma) = \{ f \in \mathcal{T}_Y : \ker(f) \supseteq \sigma \}$$
, where $\sigma = \ker(a)$.

These have structures not captured by variants:

When a is injective or surjective (but not both), the sandwich semigroup T^a_{XY} is isomorphic to a certain well-studied semigroup:

•
$$\mathcal{T}(X, A) = \{ f \in \mathcal{T}_X : im(f) \subseteq A \}$$
, where $A = im(a)$, or

►
$$\mathcal{T}(Y, \sigma) = \{ f \in \mathcal{T}_Y : \ker(f) \supseteq \sigma \}$$
, where $\sigma = \ker(a)$.

These have structures not captured by variants:

▶ We obtain new (and known) results on these as corollaries.

Thanks for having me in Newcastle!

- Variants of finite full transformation semigroups IJAC, 2015
- Semigroups of matrices under a sandwich operation SF, 2017?
- Sandwich semigroups in locally small categories coming soon!

James East