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The basic idea

I Let S be a locally small category.

I We don’t necessarily assume S has identity morphisms.

I For objects X ,Y , write SXY for the set of morphisms X → Y .

I The sets SXX are (endomorphism) semigroups — maybe monoids.

I If X 6= Y , then elements of SXY can’t be composed. But...

X Y

I Fix a morphism a : Y → X .

I For f , g ∈ SXY , define f ?a g = fag ∈ SXY .

I Then SaXY = (SXY , ?a) is a sandwich semigroup.

I Special case: if X = Y and a = idX , then Sa
ij = End(X ).
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Examples / state of play

I Any (locally small) category...

I Sets and functions/partial functions/injective partial functions:

I Lyapin (1960), Magill (1960s–1970s), Sullivan (1970s–2010s).

I Spaces and continuous maps:

I Magill (1960s–1970s).

I Matrices over a field (vector spaces and linear maps):

I Brown (1955), “generalized matrix algebras” (classical groups),

I Munn (1955), “Munn rings” (semigroup representation theory).

I “Semigroup variants” (one-object categories)

I Hickey (1980s–2010s), Khan and Lawson (2001),

I General theory for one-object (small) categories...
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What have we done?

I Further developed theory of semigroup variants,

I extended this to sandwich semigroups in arbitrary (LS) categories,

I applied that to categories of (linear/partial/etc) maps,

I extended a lot of that to arbitrary categories,

I mostly concentrating on structural/combinatorial questions.
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Semigroup variants

I We’ll focus on one-object categories today...

I Let S be a semigroup

I i.e., a set with an associative binary operation,

I i.e., a one-object (small) category, with/without an identity.

I Fix an element a ∈ S .

I Define an (associative) operation ?a on S by

x ?a y = xay for x , y ∈ S .

I The semigroup Sa = (S , ?a) is a semigroup variant.

I Exercise: All variants of a group are isomorphic to the group.

I Exercise: Find a semigroup with pairwise-nonisomorphic variants.
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Semigroup variants

I What would we like to know about a variant?

I What would we like to know about any semigroup?

I Green’s relations, ideals, stability, regularity, subgroups,
idempotents, idempotent-generation, (minimal) generating sets,
representations, etc...

I Each concept leads to interesting combinatorial questions.

I “Semigroup = groups + combinatorics” — Bob Gray.

I egg-boxes — see later...

I How do [facts about S ] relate to [facts about Sa]?

I If S belongs to an interesting family of semigroups, how does a
variant Sa relate to other members of this family?

James East Sandwich semigroups7



Semigroup variants

I What would we like to know about a variant?

I What would we like to know about any semigroup?

I Green’s relations, ideals, stability, regularity, subgroups,
idempotents, idempotent-generation, (minimal) generating sets,
representations, etc...

I Each concept leads to interesting combinatorial questions.

I “Semigroup = groups + combinatorics” — Bob Gray.

I egg-boxes — see later...

I How do [facts about S ] relate to [facts about Sa]?

I If S belongs to an interesting family of semigroups, how does a
variant Sa relate to other members of this family?

James East Sandwich semigroups7



Semigroup variants

I What would we like to know about a variant?

I What would we like to know about any semigroup?

I Green’s relations, ideals, stability, regularity, subgroups,
idempotents, idempotent-generation, (minimal) generating sets,
representations, etc...

I Each concept leads to interesting combinatorial questions.

I “Semigroup = groups + combinatorics” — Bob Gray.

I egg-boxes — see later...

I How do [facts about S ] relate to [facts about Sa]?

I If S belongs to an interesting family of semigroups, how does a
variant Sa relate to other members of this family?

James East Sandwich semigroups7



Semigroup variants

I What would we like to know about a variant?

I What would we like to know about any semigroup?

I Green’s relations, ideals, stability, regularity, subgroups,
idempotents, idempotent-generation, (minimal) generating sets,
representations, etc...

I Each concept leads to interesting combinatorial questions.

I “Semigroup = groups + combinatorics” — Bob Gray.

I egg-boxes — see later...

I How do [facts about S ] relate to [facts about Sa]?

I If S belongs to an interesting family of semigroups, how does a
variant Sa relate to other members of this family?

James East Sandwich semigroups7



Semigroup variants

I What would we like to know about a variant?

I What would we like to know about any semigroup?

I Green’s relations, ideals, stability, regularity, subgroups,
idempotents, idempotent-generation, (minimal) generating sets,
representations, etc...

I Each concept leads to interesting combinatorial questions.

I “Semigroup = groups + combinatorics” — Bob Gray.

I egg-boxes — see later...

I How do [facts about S ] relate to [facts about Sa]?

I If S belongs to an interesting family of semigroups, how does a
variant Sa relate to other members of this family?

James East Sandwich semigroups7



Semigroup variants

I What would we like to know about a variant?

I What would we like to know about any semigroup?

I Green’s relations, ideals, stability, regularity, subgroups,
idempotents, idempotent-generation, (minimal) generating sets,
representations, etc...

I Each concept leads to interesting combinatorial questions.

I “Semigroup = groups + combinatorics” — Bob Gray.

I egg-boxes — see later...

I How do [facts about S ] relate to [facts about Sa]?

I If S belongs to an interesting family of semigroups, how does a
variant Sa relate to other members of this family?

James East Sandwich semigroups7



Semigroup variants

I What would we like to know about a variant?

I What would we like to know about any semigroup?

I Green’s relations, ideals, stability, regularity, subgroups,
idempotents, idempotent-generation, (minimal) generating sets,
representations, etc...

I Each concept leads to interesting combinatorial questions.

I “Semigroup = groups + combinatorics” — Bob Gray.

I egg-boxes — see later...

I How do [facts about S ] relate to [facts about Sa]?

I If S belongs to an interesting family of semigroups, how does a
variant Sa relate to other members of this family?

James East Sandwich semigroups7



Semigroup variants

I What would we like to know about a variant?

I What would we like to know about any semigroup?

I Green’s relations, ideals, stability, regularity, subgroups,
idempotents, idempotent-generation, (minimal) generating sets,
representations, etc...

I Each concept leads to interesting combinatorial questions.

I “Semigroup = groups + combinatorics” — Bob Gray.

I egg-boxes — see later...

I How do [facts about S ] relate to [facts about Sa]?

I If S belongs to an interesting family of semigroups, how does a
variant Sa relate to other members of this family?

James East Sandwich semigroups7



Semigroups — Green’s relations / egg-boxes

I Green’s relations on a semigroup S are defined, for x , y ∈ S , by

I x L y iff S1x = S1y ,

I x R y iff xS1 = yS1,

I x J y iff S1xS1 = S1yS1,

I x H y iff x L y and x R y ,

I x D y iff x L z R y for some z ∈ S .

I Within a D-class Dx :

the R-class Rx

the L -class Lx

the H -class Hx

x
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Semigroups — Green’s relations / egg-boxes

I The J -classes of a semigroup S are partially ordered:

I Jx ≤ Jy iff x ∈ S1yS1.

I Theorem: If S is finite, then J = D . So J -classes are D-classes.

James East Sandwich semigroups9



Semigroups — Green’s relations / egg-boxes

I The J -classes of a semigroup S are partially ordered:

I Jx ≤ Jy iff x ∈ S1yS1.

I Theorem: If S is finite, then J = D . So J -classes are D-classes.

James East Sandwich semigroups9



Semigroups — Green’s relations / egg-boxes

I The J -classes of a semigroup S are partially ordered:

I Jx ≤ Jy iff x ∈ S1yS1.

I Theorem: If S is finite, then J = D . So J -classes are D-classes.

James East Sandwich semigroups9



Semigroups — Green’s relations / egg-boxes

I The J -classes of a semigroup S are partially ordered:

I Jx ≤ Jy iff x ∈ S1yS1.

I Theorem: If S is finite, then J = D .

So J -classes are D-classes.

James East Sandwich semigroups9



Semigroups — Green’s relations / egg-boxes

I The J -classes of a semigroup S are partially ordered:

I Jx ≤ Jy iff x ∈ S1yS1.

I Theorem: If S is finite, then J = D . So J -classes are D-classes.
James East Sandwich semigroups9



Semigroups — egg-boxes (GAP) — thanks, JDM + AE-N

1

C2

1

1

1

1

James East Sandwich semigroups10



Semigroups — egg-boxes (GAP) — thanks, JDM + AE-N

1

1

1

1

1

C2

C2

C2

C2

James East Sandwich semigroups10



Semigroups — egg-boxes (GAP) — thanks, JDM + AE-N

C3

C3

C2

C2

C2 C2

C2

C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2

C2 C2 C2

C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

1

1

1

1

1

James East Sandwich semigroups10



Semigroups — egg-boxes (GAP) — thanks, JDM + AE-N

S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3

S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3

S3 S3 S3

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C3

C3
C2

1

1

1

1

1

James East Sandwich semigroups10



Semigroups — egg-boxes (GAP) — thanks, JDM + AE-N

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

C4

A4 A4 A4

A4 A4

A4 A4

A4 A4

A4 A4

A4 A4 A4

A4 A4 A4

C4

1

1

1

1

1

1

James East Sandwich semigroups10



Semigroups — egg-boxes (GAP) — thanks, JDM + AE-N

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

C4

A4 A4 A4

A4 A4

A4 A4

A4 A4

A4 A4

A4 A4 A4

A4 A4 A4

C4

1

1

1

1

1

1

James East Sandwich semigroups10



Semigroups — egg-boxes (GAP) — thanks, JDM + AE-N

S3 S3 S3 S3

S3 S3 S3 S3 S3

S3 S3 S3

S3 S3 S3 S3 S3 S3 S3

S3 S3 S3

C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2

1

1

1

1

1

1

James East Sandwich semigroups10



Semigroups — egg-boxes (GAP) — thanks, JDM + AE-N

S3 S3

S3

S3 S3 S3

C2 C2 C2 C2 C2

C2 C2 C2 C2 C2

C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

C2 C2 C2 C2

C2 C2 C2 C2 C2

C2 C2 C2 C2 C2

C2 C2 C2 C2 C2

C2 C2 C2 C2 C2

1

1

1

1

1

1

James East Sandwich semigroups10



Semigroups — egg-boxes (GAP) — thanks, JDM + AE-N

C3 C3

S3 S3

S3 S3 S3 S3 S3 S3

S3 S3 S3 S3

S3 S3 S3 S3 S3 S3

C3

C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

1

1

1

1

1

1

James East Sandwich semigroups10



Semigroups — egg-boxes (GAP) — thanks, JDM + AE-N

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3

C4

C5

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2

1

1

1

1

1

1

1

S4 S4 S4 S4

S4 S4

S4 S4 S4

S4 S4 S4 S4 S4 S4

S4 S4 S4 S4

S4 S4 S4 S4

S4 S4

S4 S4

S4 S4 S4

S4 S4

S4 S4 S4 S4 S4

James East Sandwich semigroups10



Semigroups — egg-boxes

C3

C3

C2

C2

C2 C2

C2

C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2

C2 C2 C2

C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2 C2

C2 C2 C2 C2 C2 C2

1

1

1

1

1

I If e is an idempotent (e = e2), then He is a group.

I Group H -classes are shaded grey.

I Group H -classes in the same D-class are
isomorphic.

I Say x ∈ S is regular if x = xyx for some y ∈ S .

I Theorem: If x is regular, then:

I every element of Dx is regular,

I every R-class in Dx contains an idempotent,

I every L -class in Dx contains an idempotent.

I Egg-box diagrams tell us a lot about the struc-
ture of a semigroup. But not everything.
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Full transformation semigroups — a case study

I Let X be a set.

I Write TX = {functions X → X}
Write = full transformation semigroup over X .

I TX is a semigroup (under composition) of size |X ||X |.
I Cayley’s Theorem: Any semigroup S embeds in TS1 .

I Analogous to: Any group G embeds in SG (symmetric group).

I TX is an endomorphism monoid in the (locally small) category of
sets and mappings.

I TX is regular (i.e., every element is regular).

I All egg-box diagrams before were from randomly-generated
subsemigroups of Tn (n = 4, 5, 6, 7).

I There are ≈ 132 million “different” subsemigroups of T4.
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Full transformation semigroups — Green’s relations

I For f ∈ TX , define:
I im(f ) = {xf : x ∈ X}, the image of f ,

I ker(f ) = {(x , y) ∈ X × X : xf = yf }, the kernel of f ,

I rank(f ) = |im(f )|, the rank of f .

I For f , g ∈ TX ,
I f L g iff im(f ) = im(g),

I f R g iff ker(f ) = ker(g),

I f J g iff rank(f ) = rank(g),

I D = J , even if X is infinite,

I Jf ≤ Jg iff rank(f ) ≤ rank(g).

I Caution:

I Green’s relations on subsemigroups are not necessarily inherited.
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Full transformation semigroups — Green’s relations

1 1 1

C2

1 1 1

C2 C2

C2 C2

C2 C2

S3

1 1 1 1

C2 C2 C2

C2 C2 C2

C2 C2 C2 C2

C2 C2 C2

C2 C2 C2 C2

C2 C2 C2 C2

C2 C2 C2

S3 S3

S3 S3

S3 S3

S3 S3

S3 S3

S3 S3

S4

T1 T2 T3 T4

I The D = J -classes of TX are the sets

Jµ = Dµ = {f ∈ TX : rank(f ) = µ}

for cardinals 1 ≤ µ ≤ |X |.

I They form a chain:

J1 < J2 < · · · < J|X |.

I If e ∈ Jµ is an idempotent, then

He
∼= Sµ.
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Variants of full transformation semigroups

I What can we say about variants T a
X = (TX , ?a)? Let’s ask GAP...
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T a
4 , a = [1, 2, 3, 3]
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“High energy semigroup theory” — Attila Egri-Nagy

D-class of TX D-classes of T a
X

I A (regular) D-class of TX yields:
I at most one regular D-class of T a

X ,

I some non-regular single-row and single-column D-classes of T a
X ,

I some non-regular singleton D-classes of T a
X .
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Green’s relations in Sa

I To describe Green’s relations in Sa, for arbitrary S and a...

I Define sets

I P1 = {x ∈ S : x R xa} = {x ∈ S : x = xav (∃v ∈ S)},
I P2 = {x ∈ S : x L ax} = {x ∈ S : x = uax (∃u ∈ S)},
I P3 = {x ∈ S : x J axa} = {x ∈ S : x = uaxav (∃u, v ∈ S)},
I P = P1 ∩ P2.

The next result explains the relationships that hold between these sets; the various inclusions are pictured
in Figure 2.

P

P1 P2

P3

R

P a
1 P a

2

P a = P a
3

Figure 1: Venn diagrams illustrating the various relationships between the sets P a
1 , P a

2 , P a
3 , P a = P a

1 \ P a
2

and Reg(Sa
ij) in the general case (left) and the stable case (right); for clarity, we have written R = Reg(Sa

ij).
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Figure 2: Venn diagrams illustrating the various relationships between the sets P a
1 , P a

2 , P a
3 , P a = P a

1 \ P a
2

and Reg(Sa
ij) in the general case (left) and the stable case (right); for clarity, we have written R = Reg(Sa

ij).

Proposition 2.11. Let (S, ·, I,�, ⇢) be a partial semigroup, and fix i, j 2 I and a 2 Sji. Then

(i) Reg(Sa
ij) ✓ P a ✓ P a

3 , (ii) P a = P a
3 if S is stable.

Proof. If x 2 Reg(Sa
ij), then x = xayax for some y 2 Sij , giving xRxa and xL ax, so that x 2 P a

1 \P a
2 = P a.

Next, suppose x 2 P a = P a
1 \ P a

2 , so x = xav = uax for some u, v 2 S(1). It follows that x = uaxav, so
xJ axa and x 2 P a

3 . This completes the proof of (i).

Now suppose S is stable, and let x 2 P a
3 . So x = uaxav for some u, v 2 S(1). It then follows that xJ xa

and xJ ax. By stability, it follows that xRxa and xL ax, so that x 2 P a
1 \ P a

2 = P a, completing the proof
of (ii). 2

Remark 2.12. The assumption of regularity (resp., stability) could be greatly weakened in Proposition 2.10
(resp., Proposition 2.11(ii)). However, because the linear partial semigroup M is regular and stable (see
Lemmas 3.1 and 3.2), we will not pursue this thought any further.

We now show how the sets P a
1 , P a

2 , P a
3 and P a = P a

1 \ P a
2 may be used to relate Green’s relations on the

sandwich semigroups Sa
ij to the corresponding relations on S. To avoid confusion, if K is one of R, L , J ,

D , H , we write K a for the Green’s K -relation on Sa
ij . So, for example, if x, y 2 Sij , then

7
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Green’s relations in Sa

I Write Ra,L a (etc.) for Green’s relations on Sa.

I So x Ra y iff x = y or [x = yap and y = xaq for some p, q ∈ S ].

I For x ∈ S , write

I Rx = {y ∈ S : x R y} for the R-class of x in S ,

I Ra
x = {y ∈ S : x Ra y} for the Ra-class of x in Sa, etc.

Theorem: For any x ∈ S ,

I Ra
x =

{
Rx ∩ P1 if x ∈ P1

{x} if x ∈ S \ P1,

I Lax =

{
Lx ∩ P2 if x ∈ P2

{x} if x ∈ S \ P2,

I Ha
x =

{
Hx if x ∈ P

{x} if x ∈ S \ P,

I Da
x =


Dx ∩ P if x ∈ P

Lax if x ∈ P2 \ P1

Ra
x if x ∈ P1 \ P2

{x} if x ∈ S \ (P1 ∪ P2),

I Jax =

{
Jx ∩ P3 if x ∈ P3

Da
x if x ∈ S \ P3.
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Regularity in Sa — another use for the P-sets

I Recall that x ∈ S is regular if x = xyx (∃y ∈ S).

I Write Reg(S) for the set of regular elements of S .

I Reg(S) is not always a subsemigroup of S .

I Note that x ∈ S is regular in Sa if x = x ?a y ?a x = xayax (∃y).

I Write Reg(Sa) for the set of regular elements of Sa.

I Note that Reg(Sa) ⊆ Reg(S) ∩ P .

I Consider x = xayax = xa(yax) = (xay)ax .

Theorem
I Reg(Sa) = Reg(S) ∩ P.

I If S is regular, then Reg(Sa) = P is a subsemigroup of Sa.
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Regularity in T a
X

I Since TX is regular, the theorem says that Reg(T a
X ) ≤ T a

X .
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I Reg(T a
X ) looks like an “inflated” Tr , where r = rank(a).
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Inflation

I A description of this inflation phenomenon was a big part of our
first article:

I Variants of finite full transformation semigroups (Dolinka, E, 2015)

I Reg(T a
X ) is an “inflation” of Tr , where r = rank(a).

I Each G -class in Tr inflates to numerous G a-classes in Reg(T a
X ).

I We know how many of each.

I Group/non-group H /H a classes are preserved.

I Groups in Tr are inflated into “rectangular groups” in Reg(T a
X ).

I We now know an “inflation” result holds in general.

I If S is regular, then Reg(Sa) is an “inflation” of... what?

I Something weaker than regularity is sufficient, but we’ll KIS(S).
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Structure of Reg(Sa)

I Let S be a regular semigroup, and let a ∈ S .

I Let b ∈ S be such that a = aba and b = bab.

I Our description of Reg(Sa) involves:

I the left ideal Sa = {xa : x ∈ S},
I the right ideal aS = {ax : x ∈ S},
I and a second variant, Sb = (S , ?b)!

I Note that Sa and aS are both subsemigroups of S .

I So too is aSa = {axa : x ∈ S}.
I But aSa is also a subsemigroup of Sb:

I axa ?b aya = (axa)b(aya) = a(xay)a.

I Now a is the bread, instead of the filling!
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Structure of Reg(Sa)

I In fact, (aSa, ?b) is a regular monoid, with identity a.

I (axa) ?b a = axa = a ?b (axa),

I axa = (axa)y(axa) = (axaba)y(abaxa) = (axa) ?b (aya) ?b (axa).

I So Sa, aS ≤ S and (aSa, ?b) ≤ Sb.

I The following diagram commutes, with all maps epimorphisms:

(S , ?a)

(Sa, ·) (aS , ·)

(aSa, ?b)

Ψ1:x 7→xa Ψ2:x 7→ax

Φ1:y 7→ay Φ2:y 7→ya

I Key fact: The above extends to the regular subsemigroups...
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Structure of Reg(Sa)

Theorem

The following diagram commutes, with all sets semigroups, and all
maps epimorphisms:

Reg(Sa)

Reg(Sa) Reg(aS)

(aSa, ?b)

ψ1:x 7→xa ψ2:x 7→ax

φ1:y 7→ay φ2:y 7→ya

I ψ : Reg(Sa)→ Reg(Sa)× Reg(aS) : x 7→ (xa, ax) is injective.

I im(ψ) = {(g , h) : ag = ha} = {(g , h) : gφ1 = hφ2}.
I i.e., Reg(Sa) is a pull-back product of Reg(Sa) and Reg(aS).
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Reg(Sa) Reg(aS)

(aSa, ?b)

ψ1:x 7→xa ψ2:x 7→ax

φ

φ1:y 7→ay φ2:y 7→ya

I ψ : Reg(Sa)→ Reg(Sa)× Reg(aS) : x 7→ (xa, ax) is injective.

I im(ψ) = {(g , h) : ag = ha} = {(g , h) : gφ1 = hφ2}.
I i.e., Reg(Sa) is a pull-back product of Reg(Sa) and Reg(aS).

I We also get an epimorphism φ : Reg(Sa)→ (aSa, ?b) : x 7→ axa...
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Structure of Reg(Sa) — inflation
φ : x 7→ axa

1 1 1 1

C2 C2 C2 C2

C2 C2 C2 C2

C2 C2 C2

C2 C2 C2

C2 C2 C2

C2 C2 C2

S3 S3

S3 S3

S3 S3

Reg(Sa)

1 1 1

C2 C2

C2 C2

C2 C2

S3

(aSa, ?b)

Theorem

Reg(Sa) is like an “inflated” (aSa, ?b).

I D and J are preserved,

I R,L ,H are “blown up”,

I group H -classes are “blown
up” into rectangular groups.
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Structure of Reg(Sa) — inflation
I The inflation phenomenon allows us to solve many more problems:

I E (Sa) = E (aSa, ?b)φ−1,

I “Let’s blow up the idempotents”

— John Meakin to Stuart Margolis at the airport!

I E(Sa) = E(aSa, ?b)φ−1,

I products of idempotents...

I aφ−1 = V (a) = {b ∈ S : a = aba, b = bab} = {mid-identities of Sa},

I variants of variants...

I If every idempotent of Sa is “below” a mid-identity, then ranks and
idempotent ranks of Reg(Sa) and E(Sa) may be calculated.

I combinatorial invariant theory...

I This is true of ((injective) partial) functions...
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Applications to category T

I For finite sets X ,Y , write TXY = {functions X → Y }.
I Fix some a ∈ TYX , and form the sandwich semigroup T a

XY .

I Write a =
(Ai
ai

)
i∈I

. i.e.,

I im(a) = {ai : i ∈ I}, I Aia = ai for all i ∈ I .

I (aTXY a, ?b) ∼= TA, where A = im(a).

I Also write

I λi = |Ai | for i ∈ I ,

I ΛJ =
∏

j∈J λj for J ⊆ I ,

I α = |I | = rank(a) = |im(a)|,
I β = |X \ im(a)|.

I Theorem: |Reg(T a
XY )| =

α∑
µ=1

µ!µβS(α, µ)
∑
J⊆I
|J|=µ

ΛJ .
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Applications to category T
I For finite sets X ,Y , write TXY = {functions X → Y }.
I Fix some a ∈ TYX , and form the sandwich semigroup T a

XY .

I Write a =
(Ai
ai

)
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Applications to category T
I For finite sets X ,Y , write TXY = {functions X → Y }.
I Fix some a ∈ TYX , and form the sandwich semigroup T a

XY .

I Write a =
(Ai
ai

)
i∈I

. i.e.,

I im(a) = {ai : i ∈ I}, I Aia = ai for all i ∈ I .

I (aTXY a, ?b) ∼= TA, where A = im(a).

I Also write

I λi = |Ai | for i ∈ I ,

I ΛJ =
∏

j∈J λj for J ⊆ I ,

I α = |I | = rank(a),

I β = |X \ im(a)|.

I Theorem: rank(Reg(T a
XY )) = 1 + max(αβ,ΛI ).
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Applications to category T
I For finite sets X ,Y , write TXY = {functions X → Y }.
I Fix some a ∈ TYX , and form the sandwich semigroup T a

XY .

I Write a =
(Ai
ai

)
i∈I

. i.e.,

I im(a) = {ai : i ∈ I}, I Aia = ai for all i ∈ I .

I (aTXY a, ?b) ∼= TA, where A = im(a).

I Also write

I λi = |Ai | for i ∈ I ,

I ΛJ =
∏

j∈J λj for J ⊆ I ,

I α = |I | = rank(a),

I β = |X \ im(a)|.

I Theorem: rank(E(T a
XY )) = idrank(E(T a

XY )) =
(
α
2

)
+ max(αβ,ΛI ).
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Applications to category T
I For finite sets X ,Y , write TXY = {functions X → Y }.
I Fix some a ∈ TYX , and form the sandwich semigroup T a

XY .

I Write a =
(Ai
ai

)
i∈I

. i.e.,

I im(a) = {ai : i ∈ I}, I Aia = ai for all i ∈ I .

I (aTXY a, ?b) ∼= TA, where A = im(a).

I Also write

I λi = |Ai | for i ∈ I ,

I ΛJ =
∏

j∈J λj for J ⊆ I ,

I α = |I | = rank(a),

I β = |X \ im(a)|.

I Theorem: rank(T a
XY ) =

∑
µ≥α+1

µ!
(|Y |
µ

)
S(|X |, µ)

if a neither injective nor surjective.
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Applications to category T
I For finite sets X ,Y , write TXY = {functions X → Y }.
I Fix some a ∈ TYX , and form the sandwich semigroup T a

XY .

I Write a =
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. i.e.,

I im(a) = {ai : i ∈ I}, I Aia = ai for all i ∈ I .

I (aTXY a, ?b) ∼= TA, where A = im(a).

I Also write

I λi = |Ai | for i ∈ I ,

I ΛJ =
∏

j∈J λj for J ⊆ I ,

I α = |I | = rank(a),

I β = |X \ im(a)|.

I Theorem: rank(T a
XY ) =

(|Y |
α

)
if a is surjective but not injective.
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Other applications

I When a is injective or surjective (but not both), the sandwich
semigroup T a

XY is isomorphic to a certain well-studied semigroup:

I T (X ,A) = {f ∈ TX : im(f ) ⊆ A}, where A = im(a), or

I T (Y , σ) = {f ∈ TY : ker(f ) ⊇ σ}, where σ = ker(a).

I These have structures not captured by variants:

I We obtain new (and known) results on these as corollaries.
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Thanks for having me in Newcastle!

I Variants of finite full transformation semigroups — IJAC, 2015

I Semigroups of matrices under a sandwich operation — SF, 2017?

I Sandwich semigroups in locally small categories — coming soon!

Sandwich semigroups in locally small categories — coming soon!
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