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Introduction

E Directed graph

GE Graph groupoid

C∗(E ) Graph C∗-algebra

L(E ) Leavitt path algebra

XE ,X E One- and two-sided edge shifts
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Groupoids

A groupoid is a nonempty set G satisfying the following properties.

G1. There is a distinguished subset G (0) ⊆ G , called the unit
space. Elements of G(0) are called units.

G2. There are maps r , s : G → G(0) satisfying r(u) = s(u) = u for
all u ∈ G (0). These maps are called the range and source maps
respectively.

G3. Setting G (2) := {(α, β) : α, β ∈ G, s(α) = r(β)} ⊆ G × G,
there is a ‘law of composition’

G (2) → G : (α, β) 7→ αβ

that satisfies
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Groupoids

(i) For every (α, β) ∈ G(2), r(αβ) = r(α) and s(αβ) = s(β).

(ii) If (α, β) and (β, γ) belong to G(2), then (α, βγ) and (αβ, γ)
also belong to G(2) and (αβ)γ = α(βγ).

(iii) For every α ∈ G, r(α)α = α = αs(α).

G4. For every α ∈ G there is an ‘inverse’ α−1 ∈ G (necessarily
unique) such that (α, α−1) and (α−1, α) belong to G(2) and such
that αα−1 = r(α) and α−1α = s(α).
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Topological groupoids

A topological groupoid is a groupoid G with a topology such that

i. The set of composable pairs G(2) ⊆ G ×G is closed under the
relative topology (automatic when G is Hausdorff).

ii. Composition G(2) → G : (α, β) 7→ αβ and inversion
G → G : α 7→ α−1 are continuous.

A topological groupoid G is called étale if the maps r , s : G → G
are local homeomorphisms.
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Homomorphisms of groupoids

Let G and H be groupoids. A groupoid homomorphism is a map
φ : G → H such that (φ(α), φ(β)) ∈ H(2) whenever (α, β) ∈ G(2),
and such that φ(αβ) = φ(α)φ(β). A groupoid isomorphism is a
groupoid homomorphism that is bijective.

If G and H are topological groupoids, then a topological
groupoid isomorphism is a groupoid isomorphism that is also a
homeomorphism.

If G is a topological groupoid and H = Γ is a discrete group, then
a continuous homomorphism c : G → Γ is called a continuous
cocycle. That is, c : G → Γ carries composition in G to the group
operation in Γ.
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The reduced C ∗-algebra of a groupoid

Let G be a locally compact, Hausdorff, étale groupoid. The space
Cc(G) is given the structure of a complex ∗-algebra with
convolution

f · g(γ) =
∑
αβ=γ

f (α)g(β),

for γ ∈ G, and involution

f ∗(α) = f (α−1)

for α ∈ G.
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The reduced C ∗-algebra of a groupoid

For u ∈ G(0), there is a representation πu : Cc(G)→ B(`2(s−1(u)))
such that

πu(f )δγ =
∑

s(α)=r(γ)
f (α)δαγ ,

for γ ∈ s−1(u).

There is a C∗-norm on Cc(G) defined by

‖f ‖r := sup{‖πu(f )‖op : u ∈ G(0)}.

The reduced C∗-algebra C∗r (G) of G is the completion of Cc(G)
under this norm.
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The boundary path space of a directed graph

Let E = (E 0,E 1, r , s) be a directed graph. Denote by E ∗ the set
of finite sequences µ in E and by E∞ the set of infinite sequences
x of edges in E such that r(xi ) = s(xi+1) for all i .

The boundary path space ∂E of E is the space

∂E := E∞ ∪ {µ ∈ E ∗ : s−1(r(µ)) is empty or infinite}.

For µ ∈ E ∗, define a cylinder set Z (µ) by

Z (µ) := {µx ∈ ∂E : x ∈ ∂E , s(x) = r(µ)} ⊆ ∂E .
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The boundary path space of a directed graph

For µ ∈ E ∗ and a finite subset F ⊆ E 1 such that s(f ) = r(µ) for
all f ∈ F , we define

Z (µ\F ) := Z (µ)\
( ⋃

f ∈F
Z (µf )

)
.

Sam Webster showed that the collection of all such sets forms a
basis for a locally compact, Hausdorff topology on ∂E , and each
such set is compact and open.

For n ∈ N, let ∂E≥n := {x ∈ ∂E : |x | ≥ n} ⊆ ∂E . Define the
edge shift map σE : ∂E≥1 → ∂E by

σE (x1x2x3 . . . ) = x2x3 . . .

for x1x2x3 · · · ∈ ∂E≥2 and σE (e) = r(e) for e ∈ ∂E ∩ E 1.
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The groupoid of a directed graph
The graph groupoid GE of a directed graph E is given by

GE := {(x ,m−n, y) ∈ ∂E×Z×∂E : m, n ∈ N and σm
E (x) = σn

E (y)},

with unit space

G(0)
E = {(x , 0, x) : x ∈ ∂E} ∼= ∂E ,

range and source maps

r(x ,m − n, y) := x and s(x ,m − n, y) := y ,

composition

(x ,m − n, y)(w ,m′ − n′, z) := (x ,m + m′ − (n + n′), z)

whenever y = w and undefined otherwise, and inverse

(x ,m − n, y)−1 := (y , n −m, x).
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The groupoid of a directed graph

Let m, n ∈ N, let U be an open subset of ∂E≥m such that σm
E |U is

injective, let V be an open subset of ∂E≥n such that σn
E |V is

injective, and such that σm
E (U) = σn

E (V ). Define

Z (U,m, n,V ) := {(x ,m−n, y) ∈ GE : x ∈ U, y ∈ V , σm
E (x) = σn

E (y)}.

The graph groupoid GE is a locally compact, Hausdorff, étale
groupoid when equipped with the topology generated by subsets of
the form Z (U,m, n,V ).
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Graph C ∗-algebras and general gauge actions

Kumjian, Pask, Raeburn and Renault originally used graph
groupoids to construct C∗-algebras for a large class of directed
graphs. For a directed graph E , the graph C∗-algebra C∗(E ) is
the groupoid C∗-algebra of GE .

For µ, ν ∈ E ∗ with r(µ) = r(ν), let

Z (µ, ν) := Z (Z (µ), |µ|, |ν|,Z (ν)).

The graph C∗-algebra C∗(E ) is

C∗(GE ) = span{1Z(µ,ν) : µ, ν ∈ E ∗, r(µ) = r(ν)}.

The diagonal subalgebra of C∗(E ), denoted D(E ), is

C0(∂E ) = span{1Z(µ) : µ ∈ E ∗}.
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Cocycles and generalised gauge-actions

Let E be a directed graph, and let k : E 1 → R be a function. Then
k extends to a function k : E ∗ → R given by k(v) = 0 for v ∈ E 0

and k(e1 . . . en) = k(e1) + · · ·+ k(en) for e1 . . . en ∈ E n, n ≥ 1.

We then get a continuous cocycle ck : GE → R given by

ck((µx , |µ| − |ν|, νx)) = k(µ)− k(ν)

and a generalised gauge action γE ,k : R→ Aut(C∗(E ))
satisfying

γE ,k
t (1Z(µ,ν)) = eit(k(µ)−k(ν))1Z(µ,ν)

for µ, ν ∈ E ∗ and t ∈ R.

Define kE : E 1 → R by kE (e) = 1 for all e ∈ E 1. Then ckE is
standard continuous cocycle and γE ,kE is the standard gauge
action.

James Rout Graph algebras, groupoids and SFT 14 / 27



Diagonal-preserving gauge-invariant isomorphism

Theorem (Brownlowe–Carlsen–Whittaker, Carlsen–R)
Let E and F be directed graphs and let k : E 1 → R and
l : F 1 → R be functions. TFAE.

1. There is an isomorphism Φ : GE → GF satisfying

cl (Φ(η)) = ck(η)

for η ∈ GE .

2. There is a ∗-isomorphism Ψ : C∗(E )→ C∗(F ) satisfying

Ψ(D(E )) = D(F ) and γF ,l
t ◦Ψ = Ψ ◦ γE ,k

t

for t ∈ R.
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Stabilised graphs

Let E be a graph. “Adding a head” to a vertex v ∈ E 0 means
attaching the following graph to v .

. . . w3,v w2,v w1,v v
e4,v e3,v e2,v e1,v

Form a “stabilised graph” SE by “adding a head” to each vertex
and defining

(SE )0 := E 0 ∪
⋃

v∈E0

{w1,v ,w2,v , . . . }

and
(SE )1 := E 1 ∪

⋃
v∈E0

{e1,v , e2,v , . . . }

and setting r(ei ,v ) := wi−1,v and s(ei ,v ) := wi ,v for each v ∈ E 0

and i = 1, 2, . . . .
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Stabilised graph C ∗-algebras

Denote by K the compact operators on `2(N) which are
generated by the rank-one operators {θi ,j : i , j ∈ N}. Denote by C
the maximal abelian subalgebra of K consisting of diagonal
operators which are generated by the rank-one operators
{θi ,i : i ∈ N}.

Mark Tomforde showed that C∗(SE ) is isomorphic to C∗(E )⊗K.
In fact, D(SE ) is isomorphic to D(E )⊗ C.

For a function k : E 1 → R, we define a function k̄ : (SE )1 → R by
k̄(e) = k(e) for e ∈ E 1, and k̄(ei ,v ) = 0 for v ∈ E 0 and
i = 1, 2, . . . .

The isomorphism between C∗(SE ) and C∗(E )⊗K intertwines the
gauge actions γSE ,k and γE ,K ⊗ IdK.
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Stable isomorphism of graph C ∗-algebras

Corollary
Let E and F be directed graphs and k : E 1 → R and l : F 1 → R
functions. TFAE.

1. There is an isomorphism Φ : GSE → GSF satisfying

c̄l (Φ(η)) = ck̄(η)

for η ∈ GSE .

2. There is a ∗-isomorphism Ψ : C∗(E )⊗K → C∗(F )⊗K
satisfying Ψ(D(E )⊗ C) = D(F )⊗ C and

(γF ,l
t ⊗ IdK) ◦Ψ = Ψ ◦ (γE ,k

t ⊗ IdK)

for t ∈ R.
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Two-sided edge shifts

Let E be a finite directed graph with no sinks or sources. The
two-sided edge shift X E is the space

X E := {(xn)n∈Z : xn ∈ E 1 and r(xn) = s(xn+1) for all n ∈ Z}.

The shift map is the homeomorphism σE : X E → X E given by

σE (. . . x−1x0x1 . . . ) = . . . x0x1x2 . . . .

If E and F are finite directed graphs with no sinks or sources, then
X E and X F are conjugate if there is a homeomorphism
φ : X E → X F such that

σF ◦ φ = φ ◦ σE .
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Two-sided edge shifts and groupoids

Theorem
Let E and F are finite graphs with no sinks or sources. TFAE.

1. The two-sided edge shifts X E and X F are conjugate.

2. There is an isomorphism Φ : GSE → GSF satisfying

ckF
(Φ(γ)) = ckE

(γ)

for γ ∈ GSE .
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Two-sided edge shifts and graph C ∗-algebras

Corollary (Cuntz–Krieger, Carlsen–R)
Let E and F are finite graphs with no sinks or sources. TFAE.

1. The two-sided edge shifts X E and X F are conjugate.

2. There is a ∗-isomorphism Ψ : C∗(E )⊗K → C∗(F )⊗K
satisfying Ψ(D(E )⊗ C) = D(F )⊗ C and

(γF ,kF
t ⊗ IdK) ◦Ψ = Ψ ◦ (γE ,kE

t ⊗ IdK)

for t ∈ R
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Graded Leavitt path algebras

Let E be a graph and R a commutative integral domain with
identity. The Leavitt path algebra LR(E ) is the R-algebra

spanR{1Z(µ,ν) : µ, ν ∈ E ∗, r(µ) = r(ν)},

and the diagonal subalgebra DR(E ) is the R-algebra

spanR{1Z(µ) : µ ∈ E ∗}.

Let k : E 1 → R be a function and write Γk for the additive
subgroup {k(µ)− k(ν) : µ, ν ∈ E ∗, r(µ) = r(ν)} of R. For g ∈ Γk ,
setting

LR(E )g := spanR{1Z(µ,ν) : µ, ν ∈ E ∗, r(µ) = r(ν), k(µ)−k(ν) = g},

gives a Γk-grading LR(E ) =
⊕

g∈Γk
LR(E )g . The standard

Z-grading is obtained when k = kE .
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Groupoids and graded Leavitt path algebras

Theorem (Ara–Bosa–Hazrat–Sims, Carlsen–R)
Let E and F be directed graphs and let k : E 1 → R and
l : F 1 → R be functions. TFAE.

1. There is an isomorphism Φ : GE → GF satisfying

cl (Φ(η)) = ck(η)

for η ∈ GE .

2. There is a ring-isomorphism Ψ : LR(E )→ LR(F ) satisfying

Ψ(D(E )) = D(F ) and Ψ(LR(E )g ) = LR(F )g

for g ∈ ck(GE ).
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Two-sided edge shifts and Leavitt path algebras
Let M∞(R) denote the ring of finitely supported, countable
infinite square matrices over R, and D∞(R) the abelian subring
of M∞(R) consisting of diagonal matrices.

Corollary
If E and F are finite graphs with no sinks or sources and R is a
commutative integral domain with identity, then TFAE.

1. The two-sided edge shifts X E and X F are conjugate.

2. There is a ring-isomorphism
Ψ : LR(E )⊗M∞(R)→ LR(F )⊗M∞(R) such that

Ψ(DR(E )⊗ D∞(R)) = DR(F )⊗ D∞(R))

and
Ψ(LR(E )n ⊗M∞(R)) = LR(F )n ⊗M∞(R)

for n ∈ Z.James Rout Graph algebras, groupoids and SFT 24 / 27
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