Nadia S.
Larsen

Uniqueness theorems for right LCM semigroup C ∗ -algebras

Nadia S. Larsen

University of Oslo

"Interactions between Semigroups and Operator Algebras" Workshop in Newcastle, 24-27 July 2017

based on joint work with N. Brownlowe, N. Stammeier, and B. Kwaśniewski

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(N)$, with $V^*V = I$ and VV[∗] proper projection.

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(N)$, with $V^*V = I$ and VV[∗] proper projection.

Theorem (Coburn). Given $W \in B(H)$ with $W^*W = I$ and $I - W W^* \neq 0$ there is *-isomorphism $\mathsf{C}^*(V) \longrightarrow \mathsf{C}^*(W)$ sending $V \mapsto W$.

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(N)$, with $V^*V = I$ and VV[∗] proper projection.

Theorem (Coburn). Given $W \in B(H)$ with $W^*W = I$ and $I - W W^* \neq 0$ there is *-isomorphism $\mathsf{C}^*(V) \longrightarrow \mathsf{C}^*(W)$ sending $V \mapsto W$.

Alternative interpretation: define a representation $\mathbb{N} \to B(H)$ by isometries, $1 \mapsto V$ and $0 \mapsto I$

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(N)$, with $V^*V = I$ and VV[∗] proper projection.

Theorem (Coburn). Given $W \in B(H)$ with $W^*W = I$ and $I - W W^* \neq 0$ there is *-isomorphism $\mathsf{C}^*(V) \longrightarrow \mathsf{C}^*(W)$ sending $V \mapsto W$.

Alternative interpretation: define a representation $\mathbb{N} \to B(H)$ by isometries, $1 \mapsto V$ and $0 \mapsto I$

Coburn's theorem reinterprets as a uniqueness of representations of $C^*(V) \cong C^*(\mathbb{N})$.

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(N)$, with $V^*V = I$ and VV[∗] proper projection.

Theorem (Coburn). Given $W \in B(H)$ with $W^*W = I$ and $I - W W^* \neq 0$ there is *-isomorphism $\mathsf{C}^*(V) \longrightarrow \mathsf{C}^*(W)$ sending $V \mapsto W$.

Alternative interpretation: define a representation $\mathbb{N} \to B(H)$ by isometries, $1 \mapsto V$ and $0 \mapsto I$

Coburn's theorem reinterprets as a uniqueness of representations of $C^*(V) \cong C^*(\mathbb{N})$.

QUESTION: Anything similar for other semigroups?

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(N)$, with $V^*V = I$ and VV[∗] proper projection.

Theorem (Coburn). Given $W \in B(H)$ with $W^*W = I$ and $I - W W^* \neq 0$ there is *-isomorphism $\mathsf{C}^*(V) \longrightarrow \mathsf{C}^*(W)$ sending $V \mapsto W$.

Alternative interpretation: define a representation $\mathbb{N} \to B(H)$ by isometries, $1 \mapsto V$ and $0 \mapsto I$

Coburn's theorem reinterprets as a uniqueness of representations of $C^*(V) \cong C^*(\mathbb{N})$.

QUESTION: Anything similar for other semigroups?

Yes, for positive cones of ordered subgroups of $\mathbb R$ (Douglas), and for positive cones in totally ordered groups (Murphy).

> Nadia S. Larsen

C ∗ -algebras of quasi-lattice ordered groups

G a discrete group with identity e , P a subsemigroup with $P \cap P^{-1} = \{e\}$, partial order on $G\colon\thinspace g \leq h \iff g^{-1}h \in P.$

> Nadia S. Larsen

C ∗ -algebras of quasi-lattice ordered groups

G a discrete group with identity e , P a subsemigroup with $P \cap P^{-1} = \{e\}$, partial order on $G\colon\thinspace g \leq h \iff g^{-1}h \in P.$

Nica: (G, P) is quasi-lattice ordered (qlo) if g, h in G with a common upper bound in P have (a unique) least common upper bound $g \vee h$ in P.

> Nadia S. Larsen

C ∗ -algebras of quasi-lattice ordered groups

G a discrete group with identity e , P a subsemigroup with $P \cap P^{-1} = \{e\}$, partial order on $G\colon\thinspace g \leq h \iff g^{-1}h \in P.$

Nica: (G, P) is quasi-lattice ordered (qlo) if g, h in G with a common upper bound in P have (a unique) least common upper bound $g \vee h$ in P. Note that for $p, q \in P$.

$$
pP \cap qP \neq \emptyset \Rightarrow pP \cap qP = rP,
$$

with $r = p \vee q$ their least common upper bound.

> Nadia S. Larsen

C ∗ -algebras of quasi-lattice ordered groups

G a discrete group with identity e , P a subsemigroup with $P \cap P^{-1} = \{e\}$, partial order on $G\colon\thinspace g \leq h \iff g^{-1}h \in P.$

Nica: (G, P) is quasi-lattice ordered (qlo) if g, h in G with a common upper bound in P have (a unique) least common upper bound $g \vee h$ in P. Note that for $p, q \in P$.

$$
pP \cap qP \neq \emptyset \Rightarrow pP \cap qP = rP,
$$

with $r = p \vee q$ their least common upper bound.

Examples:

- (G, P) , G totally ordered abelian with positive cone P (Douglas, Murphy);
- $(\mathbb{F}_n, \mathbb{F}_n^+)$ (Nica):
- right-angled and finite type Artin groups (Crisp-Laca);
- $(\mathbb{Q} \rtimes \mathbb{Q}_+^*, \mathbb{N} \rtimes \mathbb{N}^\times)$ (Laca-Raeburn).

> Nadia S. Larsen

C ∗ -algebras of quasi-lattice ordered groups

G a discrete group with identity e , P a subsemigroup with $P \cap P^{-1} = \{e\}$, partial order on $G\colon\thinspace g \leq h \iff g^{-1}h \in P.$

Nica: (G, P) is quasi-lattice ordered (qlo) if g, h in G with a common upper bound in P have (a unique) least common upper bound $g \vee h$ in P. Note that for $p, q \in P$,

$$
pP \cap qP \neq \emptyset \Rightarrow pP \cap qP = rP,
$$

with $r = p \vee q$ their least common upper bound.

Examples:

- (G, P) , G totally ordered abelian with positive cone P (Douglas, Murphy);
- $(\mathbb{F}_n, \mathbb{F}_n^+)$ (Nica):
- right-angled and finite type Artin groups (Crisp-Laca);
- $(\mathbb{Q} \rtimes \mathbb{Q}_+^*, \mathbb{N} \rtimes \mathbb{N}^\times)$ (Laca-Raeburn).

 $C^*(G, P)$: generated by a universal Nica cov. repres. v of P.

A uniqueness result for $C^*(G,P)$

C [∗]-algebras Nadia S. Larsen

Uniqueness [theorems for](#page-0-0) right LCM semigroup

> **Theorem (Laca-Raeburn 1996)**: Let (G, P) be glo and $C^*(G, P) = \mathcal{D} \rtimes P$. If the canonical conditional expectation $\Phi: C^*(G, P) \to \mathcal{D},$

$$
\Phi\big(\sum_{p,q\in F}a_{p,q}v_pv_q^*\big)=\sum_{p\in F}a_{p,p}v_pv_p^*
$$

for $a_{p,q} \in \mathbb{C}$ is faithful, then a representation $\pi_W \times W$ of $C^*(G, P)$ obtained from a Nica covariant isometric representation W of P is faithful iff

$$
(\#)\quad \prod_{p\in F}(I-W_pW_p^*)\neq 0
$$

whenever $F \subset P \setminus \{e\}$ is finite.

A uniqueness result for $C^*(G,P)$

C [∗]-algebras Nadia S. Larsen

Uniqueness [theorems for](#page-0-0) right LCM semigroup

> **Theorem (Laca-Raeburn 1996)**: Let (G, P) be glo and $C^*(G, P) = \mathcal{D} \rtimes P$. If the canonical conditional expectation $\Phi: C^*(G, P) \to \mathcal{D},$

$$
\Phi\big(\sum_{p,q\in F}a_{p,q}v_pv_q^*\big)=\sum_{p\in F}a_{p,p}v_pv_p^*
$$

for $a_{p,q} \in \mathbb{C}$ is faithful, then a representation $\pi_W \times W$ of $C^*(G, P)$ obtained from a Nica covariant isometric representation W of P is faithful iff

$$
(\#)\quad \prod_{p\in F}(I-W_pW_p^*)\neq 0
$$

whenever $F \subset P \setminus \{e\}$ is finite.

Question: is injectivity of $*$ -homomorphisms on $C^*(S)$ for a larger class of semigroups still characterised by means of a condition expressed in \mathcal{D} , similar to $(\#)$?

Nadia S. Larsen

Semigroup C^{*}-algebras

Regarding the previous question, how much larger a class of semigroups is meant here and where does it come from?

> Nadia S. Larsen

Regarding the previous question, how much larger a class of semigroups is meant here and where does it come from? For a qlo pair (G, P) , the universal C^* -algebra satisfies

Semigroup C^{*}-algebras

$$
C^*(G,P)=\overline{\operatorname{span}}\{v_pv_q^*\mid p,q\in P\},\qquad \qquad (1)
$$

where ν is the universal Nica covariant isometric representation.

Regarding the previous question, how much larger a class of semigroups is meant here and where does it come from? For a qlo pair (G, P) , the universal C^* -algebra satisfies

Semigroup C^{*}-algebras

$$
C^*(G,P)=\overline{\operatorname{span}}\{v_pv_q^*\mid p,q\in P\},\qquad\qquad(1)
$$

where v is the universal Nica covariant isometric representation.

From alo semigroups to arbitrary left cancellative semigroups with identity, or monoids: a long journey, see Xin Li's talks.

Regarding the previous question, how much larger a class of semigroups is meant here and where does it come from? For a qlo pair (G, P) , the universal C^* -algebra satisfies

Semigroup C^{*}-algebras

$$
C^*(G,P)=\overline{\operatorname{span}}\{v_pv_q^*\mid p,q\in P\},\qquad \qquad (1)
$$

where ν is the universal Nica covariant isometric representation.

From glo semigroups to arbitrary left cancellative semigroups with identity, or monoids: a long journey, see Xin Li's talks.

However, there is a large class of left cancellative monoids for which a condition analogous to [\(1\)](#page-14-0) still holds (essentially, due to structure of principal right ideals of the semigroup). Thus $C^*(P)$ has a familiar spanning set.

Regarding the previous question, how much larger a class of semigroups is meant here and where does it come from? For a qlo pair (G, P) , the universal C^* -algebra satisfies

Semigroup C^{*}-algebras

$$
C^*(G,P)=\overline{\operatorname{span}}\{v_pv_q^*\mid p,q\in P\},\qquad \qquad (1)
$$

where v is the universal Nica covariant isometric representation.

From glo semigroups to arbitrary left cancellative semigroups with identity, or monoids: a long journey, see Xin Li's talks.

However, there is a large class of left cancellative monoids for which a condition analogous to [\(1\)](#page-14-0) still holds (essentially, due to structure of principal right ideals of the semigroup). Thus $C^*(P)$ has a familiar spanning set. This class is adequate to consider.

> Nadia S. Larsen

A good class of monoids: right LCM

Definition (Brownlowe-Ramagge-Robertson-Whittaker, Lawson, Norling)

A left cancellative monoid S is right LCM (or is said to satisfy Clifford's condition) if

$$
pS \cap qS \neq \emptyset \Rightarrow pS \cap qS = rS;
$$

here pS is the set of right multiples of p and r is a right least common multiple of p, q .

> Nadia S. Larsen

A good class of monoids: right LCM

Definition (Brownlowe-Ramagge-Robertson-Whittaker, Lawson, Norling)

A left cancellative monoid S is right LCM (or is said to satisfy Clifford's condition) if

$$
pS \cap qS \neq \emptyset \Rightarrow pS \cap qS = rS;
$$

here pS is the set of right multiples of p and r is a right least common multiple of p, q .

Class of examples in [BRRW] is the Zappa-Szép product of monoids, including monoids that model self-similar group actions, see Jacqui Ramagge's talks, also Baumslag-Solitar monoids, the affine monoid $\mathbb{N} \rtimes \mathbb{N}^{\times}$.

> Nadia S. Larsen

A good class of monoids: right LCM

Definition (Brownlowe-Ramagge-Robertson-Whittaker, Lawson, Norling)

A left cancellative monoid S is right LCM (or is said to satisfy Clifford's condition) if

$$
pS \cap qS \neq \emptyset \Rightarrow pS \cap qS = rS;
$$

here pS is the set of right multiples of p and r is a right least common multiple of p, q .

Class of examples in [BRRW] is the Zappa-Szép product of monoids, including monoids that model self-similar group actions, see Jacqui Ramagge's talks, also Baumslag-Solitar monoids, the affine monoid $\mathbb{N} \rtimes \mathbb{N}^{\times}$.

Right LCM's are not unique if S^* is non-trivial: rx is a right LCM for any $x \in S^*$. Unique if (G, S) is qlo.

> Nadia S. Larsen

A good class of monoids: right LCM

Definition (Brownlowe-Ramagge-Robertson-Whittaker, Lawson, Norling)

A left cancellative monoid S is right LCM (or is said to satisfy Clifford's condition) if

$$
pS \cap qS \neq \emptyset \Rightarrow pS \cap qS = rS;
$$

here pS is the set of right multiples of p and r is a right least common multiple of p, q .

Class of examples in [BRRW] is the Zappa-Szép product of monoids, including monoids that model self-similar group actions, see Jacqui Ramagge's talks, also Baumslag-Solitar monoids, the affine monoid $\mathbb{N} \rtimes \mathbb{N}^{\times}$.

Right LCM's are not unique if S^* is non-trivial: rx is a right LCM for any $x \in S^*$. Unique if (G, S) is qlo.

[BRRW] studied $C^*(S)$ for $S = U \bowtie A$ both as a C^* -algebra with generators and relations and as a semigroup C^* -algebra.

> Nadia S. Larsen

A uniqueness theorem for $C^*(S)$

Let S be right LCM. For $F\subset S$ finite let $X(F)=\bigcup_{q\in F} qS.$

> Nadia S. Larsen

A uniqueness theorem for $C^*(S)$

Let S be right LCM. For $F\subset S$ finite let $X(F)=\bigcup_{q\in F} qS.$ Let (TC) $s \in S, t \in sS, F \subset S$ finite with $tS \nsubseteq X(F)$, then $\forall \mathsf{x} \in \mathcal{S}^* \setminus \{\mathsf{e}\} \; \exists \mathsf{r} \in t \mathcal{S} : \mathsf{rS} \not\subseteq \mathsf{X}(\mathsf{F}), \, \mathsf{x}(\mathsf{s}^{-1}\mathsf{r} \mathcal{S}) \cap (\mathsf{s}^{-1}\mathsf{r} \mathcal{S}) = \emptyset.$

> Nadia S. Larsen

A uniqueness theorem for $C^*(S)$

Let S be right LCM. For $F\subset S$ finite let $X(F)=\bigcup_{q\in F} qS.$ Let (TC) $s \in S, t \in sS, F \subset S$ finite with $tS \nsubseteq X(F)$, then $\forall \mathsf{x} \in \mathcal{S}^* \setminus \{\mathsf{e}\} \; \exists \mathsf{r} \in t \mathcal{S} : \mathsf{rS} \not\subseteq \mathsf{X}(\mathsf{F}), \, \mathsf{x}(\mathsf{s}^{-1}\mathsf{r} \mathcal{S}) \cap (\mathsf{s}^{-1}\mathsf{r} \mathcal{S}) = \emptyset.$ (TC) reflects: $S^* \cap \{ tS \mid t \in S \}$ by left multiplication.

> Nadia S. Larsen

A uniqueness theorem for $C^*(S)$

Let S be right LCM. For $F\subset S$ finite let $X(F)=\bigcup_{q\in F} qS.$ Let (TC) $s \in S, t \in sS, F \subset S$ finite with $tS \nsubseteq X(F)$, then $\forall \mathsf{x} \in \mathcal{S}^* \setminus \{\mathsf{e}\} \; \exists \mathsf{r} \in t \mathcal{S} : \mathsf{rS} \not\subseteq \mathsf{X}(\mathsf{F}), \, \mathsf{x}(\mathsf{s}^{-1}\mathsf{r} \mathcal{S}) \cap (\mathsf{s}^{-1}\mathsf{r} \mathcal{S}) = \emptyset.$ (TC) reflects: $S^* \cap \{ tS \mid t \in S \}$ by left multiplication. Theorem (Brownlowe-L-Stammeier): Let S be unital cancellative right LCM s. t. $\Phi: C^*(S) \to \mathcal{D}$, $\Phi(\sum_{p,q\in F}a_{p,q}v_pv_q^*)=\sum_{p\in F}a_{p,p}v_pv_p^*,$ for $a_{p,q}\in\mathbb{C}$, gives a faithful conditional expectation. Assume condition (TC). Then

a \ast -homomorphism $\pi : C^*(S) \to B$ is injective iff

$$
(\#)\quad \prod_{p\in F}(1-\pi(v_p)\pi(v_p)^*)\neq 0, \,\forall F\subset S\setminus S^*, F\,\,\text{finite}.
$$

> Nadia S. Larsen

A uniqueness theorem for $C^*(S)$

Let S be right LCM. For $F\subset S$ finite let $X(F)=\bigcup_{q\in F} qS.$ Let (TC) $s \in S, t \in sS, F \subset S$ finite with $tS \nsubseteq X(F)$, then $\forall \mathsf{x} \in \mathcal{S}^* \setminus \{\mathsf{e}\} \; \exists \mathsf{r} \in t \mathcal{S} : \mathsf{rS} \not\subseteq \mathsf{X}(\mathsf{F}), \, \mathsf{x}(\mathsf{s}^{-1}\mathsf{r} \mathcal{S}) \cap (\mathsf{s}^{-1}\mathsf{r} \mathcal{S}) = \emptyset.$ (TC) reflects: $S^* \cap \{ tS \mid t \in S \}$ by left multiplication. Theorem (Brownlowe-L-Stammeier): Let S be unital cancellative right LCM s. t. $\Phi: C^*(S) \to \mathcal{D}$, $\Phi(\sum_{p,q\in F}a_{p,q}v_pv_q^*)=\sum_{p\in F}a_{p,p}v_pv_p^*,$ for $a_{p,q}\in\mathbb{C}$, gives a faithful conditional expectation. Assume condition (TC) . Then

a \ast -homomorphism $\pi : C^*(S) \to B$ is injective iff

$$
(\#)\quad \prod_{p\in F}(1-\pi(v_p)\pi(v_p)^*)\neq 0, \,\forall F\subset S\setminus S^*, F\,\,\text{finite}.
$$

Ex: $S = G \rtimes_{\theta} P$ with both finite and infinite index for $\theta_{p}(G)$'s.

> Nadia S. Larsen

Algebraic dynamical systems

Motivating class of examples (Brownlowe-L-Stammeier)

> Nadia S. Larsen

Algebraic dynamical systems

Motivating class of examples (Brownlowe-L-Stammeier) Definition (BLS)

An algebraic dynamical system is a triple (G, P, θ) consisting of a countable, discrete group G, a countable right LCM monoid P, and an action θ of P by injective endomorphisms of G that is order-preserving, i.e. s.t. for all $p, q \in P$

 $\theta_{p}(G) \cap \theta_{q}(G) = \theta_{r}(G)$ if $r \in P$ satisfies $pP \cap qP = rP$.

Proposition (BLS)

The monoid $\mathscr{P} = G \rtimes_{\theta} P$ with operation

 $(g, p)(h, q) = (g\theta_p(h), pq)$ for $g, h \in G, p, q \in P$

is right LCM.

> Nadia S. Larsen

Algebraic dynamical systems: constructible ideals

Proposition

Let $X_{(g,p)}$ and $X_{(h,q)}$ be principal right ideals of $\mathscr{P} = G \rtimes_{\theta} P$, for g, $h \in G$ and $p, q \in P$. Then

$$
X_{(g,p)} \cap X_{(h,q)} = \begin{cases} X_{(g\theta_p(k),r)} & \text{if } p \cap q \cap P = r \cap, g\theta_p(k) \in h\theta_q(G) \\ \emptyset & \text{otherwise.} \end{cases}
$$

for some $r \in P$ and $k \in G$.

> Nadia S. Larsen

Example satisfying (TC)

Let $\mathcal{G} = \bigoplus_{\mathbb{N}} \mathbb{Z}$ and P be the unital subsemigroup of \mathbb{N}^{\times} generated by 2 and 3. Define an action θ of P by injective endomorphisms of G as follows: for $g = (g_n)_{n \in \mathbb{N}} \in G$, let

$$
\theta_2(g)=2g, \, (\theta_3(g))_0=3g_0 \text{ and } (\theta_3(g))_n=g_n \text{ for all } n\geq 1.
$$

Fact: θ is order-preserving, therefore $\mathscr{P} = G \rtimes_{\theta} P$ is right LCM.

> Nadia S. Larsen

Example satisfying (TC)

Let $\mathcal{G} = \bigoplus_{\mathbb{N}} \mathbb{Z}$ and P be the unital subsemigroup of \mathbb{N}^{\times} generated by 2 and 3. Define an action θ of P by injective endomorphisms of G as follows: for $g = (g_n)_{n \in \mathbb{N}} \in G$, let

$$
\theta_2(g)=2g, \, (\theta_3(g))_0=3g_0 \text{ and } (\theta_3(g))_n=g_n \text{ for all } n\geq 1.
$$

Fact: θ is order-preserving, therefore $\mathscr{P} = G \rtimes_{\theta} P$ is right LCM.

We have $[G : \theta_2(G)] = \infty$ and $[G : \theta_3(G)] = 3$. In fact, $[\mathsf{G}:\theta_{2^k}(\mathsf{G})]=\infty$ for all $k\geq 1$, which gives the flexibility required for establishing (TC).

> Nadia S. Larsen

Aim: use a Nica-Toeplitz algebra realisation of $\mathsf{C}^*(\mathscr{P})$ for algebraic dynamical systems as a setup in which to obtain uniqueness results.

Aim: use a Nica-Toeplitz algebra realisation of $\mathsf{C}^*(\mathscr{P})$ for algebraic dynamical systems as a setup in which to obtain uniqueness results.

This requires explaining some notions: Hilbert module and C^* -correspondence over a C^* -algebra, a product system of C ∗ -correspondences over a semigroup, representations in this context, associated C^* -algebras...

> Nadia S. Larsen

Hilbert modules and C^* -correspondences

Example (Pimsner): given a dynamical system (A, \mathbb{Z}, α) , give $X = A$ a right module structure by $x \cdot a = xa$ for $x, a \in A$ and pre-inner product $\langle x, y \rangle = x^*y$, $x, y \in A$. Complete to get a Hilbert A-module. Obtain a C^* -correspondence via a left action of A as adjointable operators on X, i.e. $\phi : A \rightarrow \mathcal{L}(X)$ homomorphism

$$
a\cdot x=\phi(a)x=\alpha(a)x.
$$
> Nadia S. Larsen

Hilbert modules and C^* -correspondences

Example (Pimsner): given a dynamical system (A, \mathbb{Z}, α) , give $X = A$ a right module structure by $x \cdot a = xa$ for $x, a \in A$ and pre-inner product $\langle x, y \rangle = x^*y$, $x, y \in A$. Complete to get a Hilbert A-module. Obtain a C^* -correspondence via a left action of A as adjointable operators on X, i.e. $\phi : A \rightarrow \mathcal{L}(X)$ homomorphism

$$
a\cdot x=\phi(a)x=\alpha(a)x.
$$

Definition (Pimsner, Fowler-Raeburn)

Given a C*-correspondence X over A, a Toeplitz representation of X in a C*-algebra is a pair (ψ, π) with $\pi : A \rightarrow B$ homomorphism and $\psi : X \to B$ linear s.t. for $a \in A$, $x, y \in X$

$$
\pi(\langle x, y \rangle) = \psi(x)^* \psi(y)
$$

$$
\psi(x \cdot a) = \psi(x)\pi(a)
$$

$$
\psi(\phi(a)x) = \pi(a)\psi(x).
$$

The Toeplitz algebra \mathcal{T}_X of a \mathcal{C}^* -correspondence X over A is defined as the universal C^* -algebra for representations of X . It is generally tractable, for example there are powerful uniqueness theorems due to Fowler-Raeburn.

The Toeplitz algebra \mathcal{T}_X of a \mathcal{C}^* -correspondence X over A is defined as the universal C^* -algebra for representations of X . It is generally tractable, for example there are powerful uniqueness theorems due to Fowler-Raeburn.

Idea: a product system formalises a multiplicative collection of C^* -correspondences over a fixed C^* -algebra. Motivation comes from similar construction for Hilbert spaces due to Arveson (continuous semigroups) and Dinh (discrete semigroups).

> Nadia S. Larsen

Product systems of C*-correspondences I

Setup (Fowler): $\mathscr P$ left cancellative monoid, semigroup

$$
X=\bigsqcup_{p\in\mathscr{P}}X_p\ s.t.
$$

 $\textbf{1}$ X_p is a C^* -correspondence over (fixed) A , $\forall p \in \mathscr{P};$ ⊇ $X_p \otimes_A X_q \cong X_{pq}, x \otimes_A y \mapsto xy, \,\forall p,q \in \mathscr{P}, p \neq e;$

3 $X_e = {}_A A_A$, the standard C^* -correspondence;

 $\bigoplus X_e \times X_p \to X_p$ and $X_p \times X_e \to X_p$, $p \in \mathscr{P}$, are the module actions.

Uniqueness [theorems for](#page-0-0) right LCM semigroup Product systems of C*-correspondences I

C [∗]-algebras Nadia S. Larsen

Setup (Fowler): $\mathscr P$ left cancellative monoid, semigroup

$$
X=\bigsqcup_{p\in\mathscr{P}}X_p\ s.t.
$$

 \mathbf{D} X_p is a C^* -correspondence over (fixed) A , $\forall p \in \mathscr{P};$ ⊇ $X_p \otimes_A X_q \cong X_{pq}, x \otimes_A y \mapsto xy, \,\forall p,q \in \mathscr{P}, p \neq e;$

3 $X_e = {}_A A_A$, the standard C^* -correspondence;

 \overline{A} $X_{\alpha} \times X_{\alpha} \rightarrow X_{\alpha}$ and $X_{\alpha} \times X_{\alpha} \rightarrow X_{\alpha}$, $p \in \mathscr{P}$, are the module actions.

A representation $\psi: X \to B$ is given by Toeplitz representations ψ_p of X_p in B, for all $p \in \mathscr{P}$ s.t.

 $\psi(xy) = \psi(x)\psi(y)$ for all $x \in X_p, y \in X_q$.

> Nadia S. Larsen

Product systems of C*-correspondences I

Setup (Fowler): $\mathscr P$ left cancellative monoid, semigroup

$$
X=\bigsqcup_{p\in\mathscr{P}}X_p\ s.t.
$$

 \mathbf{D} X_p is a C^* -correspondence over (fixed) A , $\forall p \in \mathscr{P};$ ⊇ $X_p \otimes_A X_q \cong X_{pq}, x \otimes_A y \mapsto xy, \,\forall p,q \in \mathscr{P}, p \neq e;$

3 $X_e = {}_A A_A$, the standard C^* -correspondence;

 \overline{A} $X_{\alpha} \times X_{\alpha} \rightarrow X_{\alpha}$ and $X_{\alpha} \times X_{\alpha} \rightarrow X_{\alpha}$, $p \in \mathscr{P}$, are the module actions.

A representation $\psi: X \to B$ is given by Toeplitz representations ψ_p of X_p in B, for all $p \in \mathscr{P}$ s.t.

 $\psi(xy) = \psi(x)\psi(y)$ for all $x \in X_n$, $y \in X_n$.

Toeplitz algebra \mathcal{T}_X , universal for representations of X. Generally unmanageable.

Nadia S. Larsen

Product systems of C*-correspondences I

Setup (Fowler): $\mathscr P$ left cancellative monoid, semigroup

$$
X=\bigsqcup_{p\in\mathscr{P}}X_p\ s.t.
$$

 \mathbf{D} X_p is a C^* -correspondence over (fixed) A , $\forall p \in \mathscr{P};$ ⊇ $X_p \otimes_A X_q \cong X_{pq}, x \otimes_A y \mapsto xy, \,\forall p,q \in \mathscr{P}, p \neq e;$

3 $X_e = {}_A A_A$, the standard C^* -correspondence;

 $\bigoplus X_e \times X_p \to X_p$ and $X_p \times X_e \to X_p$, $p \in \mathscr{P}$, are the module actions.

A representation $\psi: X \to B$ is given by Toeplitz representations ψ_p of X_p in B, for all $p \in \mathscr{P}$ s.t.

$$
\psi(xy) = \psi(x)\psi(y) \text{ for all } x \in X_p, y \in X_q.
$$

Toeplitz algebra T_X , universal for representations of X. Generally unmanageable. Throw in more structure on $\mathscr P$ and look for quotients of \mathcal{T}_X .

> Nadia S. Larsen

Product systems of C^* -correspondences II

For $p, q \in \mathcal{P}$, there is a homomorphism

$$
\iota_p^{pq} : \mathcal{L}(X_p) \to \mathcal{L}(X_{pq}), \iota_p^{pq}(T)(xy) = (Tx)y \qquad (2)
$$

for all $x \in X_p, y \in X_q$.

> Nadia S. Larsen

Product systems of C^* -correspondences II

For $p, q \in \mathscr{P}$, there is a homomorphism

$$
\iota_p^{pq} : \mathcal{L}(X_p) \to \mathcal{L}(X_{pq}), \iota_p^{pq}(T)(xy) = (Tx)y \tag{2}
$$

for all $x \in X_n$, $y \in X_n$.

Definition (Fowler (qlo), Brownlowe-L-Stammeier (rLCM)) (a) X is compactly aligned if for all $p, q, r \in \mathscr{P}$ such that $p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P}$ and all $T_p \in \mathcal{K}(X_p)$, $T_q \in \mathcal{K}(X_q)$ we have

 $\iota_p^r(T_p)\iota_q^r(T_q)\in\mathcal{K}(X_r).$

> Nadia S. Larsen

Product systems of C^* -correspondences II

For $p, q \in \mathscr{P}$, there is a homomorphism

$$
\iota_p^{pq} : \mathcal{L}(X_p) \to \mathcal{L}(X_{pq}), \iota_p^{pq}(T)(xy) = (Tx)y \tag{2}
$$

for all $x \in X_p, y \in X_q$.

Definition (Fowler (qlo), Brownlowe-L-Stammeier (rLCM)) (a) X is compactly aligned if for all $p, q, r \in \mathscr{P}$ such that $p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P}$ and all $T_p \in \mathcal{K}(X_p)$, $T_q \in \mathcal{K}(X_q)$ we have

$$
\iota_{p}^{r}(T_{p})\iota_{q}^{r}(T_{q})\in\mathcal{K}(X_{r}).
$$

(b) A representation ψ of X in B is Nica covariant if

$$
\psi^{(p)}(\mathcal{T}_p)\psi^{(q)}(\mathcal{T}_q) = \begin{cases} \psi^{(r)}(\iota_p^r(\mathcal{T}_p)\iota_q^r(\mathcal{T}_q)) & \text{if } p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P} \\ 0 & \text{otherwise,} \end{cases}
$$

where p, $q \in \mathscr{P}$ are arbitrary and r is in \mathscr{P} .

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C^* -algebra for Nica covariant representations of X .

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C^* -algebra for Nica covariant representations of X , more precisely $\mathcal{NT}(X)$ is the \mathcal{C}^* -algebra generated by a Nica covariant representation i_X which is universal: if $\psi: X \to B$ is Nica covariant there is a *-homomorphism $\psi_*: \mathcal{NT}(X) \to B$ s.t.

$$
\psi_* \circ i_X = \psi.
$$

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C^* -algebra for Nica covariant representations of X , more precisely $\mathcal{NT}(X)$ is the \mathcal{C}^* -algebra generated by a Nica covariant representation i_X which is universal: if $\psi: X \to B$ is Nica covariant there is a *-homomorphism $\psi_*: \mathcal{NT}(X) \to B$ s.t.

$$
\psi_* \circ i_X = \psi.
$$

Fact: $\mathcal{NT}(X) = \overline{\text{span}}\{i_X(x)i_X(y)^* \mid x, y \in X\}.$

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C^* -algebra for Nica covariant representations of X , more precisely $\mathcal{NT}(X)$ is the \mathcal{C}^* -algebra generated by a Nica covariant representation i_X which is universal: if $\psi: X \to B$ is Nica covariant there is a *-homomorphism $\psi_*: \mathcal{NT}(X) \to B$ s.t.

$$
\psi_* \circ i_X = \psi.
$$

Fact: $\mathcal{NT}(X) = \overline{\text{span}}\{i_X(x)i_X(y)^* \mid x, y \in X\}.$ The Fock representation L acts in the Hilbert A-module

$$
\mathcal{F}(X) = \left\{ (x_p)_{p \in \mathscr{P}} \mid x_p \in X_p, \sum_{p \in \mathscr{P}} \|x_p\|_p^2 < \infty \right\}
$$

equipped with the inner product $\langle (x_p)_{p\in\mathscr{P}},(y_p)_{p\in\mathscr{P}}\rangle=\sum_{p\in\mathscr{P}}\langle x_p,y_p\rangle_p$ and obvious actions; $\mathbb{L}(x)(y_q)_{q \in \mathscr{P}} = (\chi_p{}_{\mathscr{P}}(q) \cdot xy_{p^{-1}q})_{q \in \mathscr{P}}$ for $x \in X_p$.

> Nadia S. Larsen

A product system for algebraic dynamical systems

Let $\mathscr{P} = G \rtimes_{\theta} P$ where (G, P, θ) is an algebraic dynamical system.

A product system for algebraic dynamical systems

Nadia S. Larsen

Let $\mathscr{P} = G \rtimes_{\theta} P$ where (G, P, θ) is an algebraic dynamical system. $\;$ Let $\delta_{\boldsymbol{g}},\, \boldsymbol{g}\in \boldsymbol{G}$ be generating unitaries in $\;\mathsf{C}^*(\boldsymbol{G}).$ Have actions

$$
\alpha: P \curvearrowright C^*(G), \alpha_p(\delta_g) = \delta_{\theta_p(g)}
$$

by endomorphisms of $C^*(G)$, and

$$
L: P^{\text{op}} \curvearrowright C^*(G), L_p(\delta_g) = \chi_{\theta_p(G)}(g) \delta_{\theta_p^{-1}(g)}
$$

by unital, positive, linear maps $L_p: C^*(G) \to C^*(G).$

Nadia S.

Larsen

Let $\mathscr{P} = G \rtimes_{\theta} P$ where (G, P, θ) is an algebraic dynamical system. $\;$ Let $\delta_{\boldsymbol{g}},\, \boldsymbol{g}\in \boldsymbol{G}$ be generating unitaries in $\;\mathsf{C}^*(\boldsymbol{G}).$ Have actions

A product system for algebraic dynamical systems

$$
\alpha: P \curvearrowright C^*(G), \alpha_p(\delta_g) = \delta_{\theta_p(g)}
$$

by endomorphisms of $C^*(G)$, and

$$
L: P^{\text{op}} \curvearrowright C^*(G), L_p(\delta_g) = \chi_{\theta_p(G)}(g) \delta_{\theta_p^{-1}(g)}
$$

by unital, positive, linear maps $L_p: C^*(G) \to C^*(G).$ Turn $C^*(G)$ into a C^* -correspondence M_p with right action and pre-inner product

$$
a \cdot b = a\alpha_p(b), \ \langle a, b \rangle_p = L_p(a^*b).
$$

The left action ϕ_p on M_p is given by left multiplication.

Nadia S. Larsen

Let $\mathscr{P} = G \rtimes_{\theta} P$ where (G, P, θ) is an algebraic dynamical system. $\;$ Let $\delta_{\boldsymbol{g}},\, \boldsymbol{g}\in \boldsymbol{G}$ be generating unitaries in $\;\mathsf{C}^*(\boldsymbol{G}).$ Have actions

A product system for algebraic dynamical systems

$$
\alpha: P \curvearrowright C^*(G), \alpha_p(\delta_g) = \delta_{\theta_p(g)}
$$

by endomorphisms of $C^*(G)$, and

$$
L: P^{\text{op}} \curvearrowright C^*(G), L_p(\delta_g) = \chi_{\theta_p(G)}(g) \delta_{\theta_p^{-1}(g)}
$$

by unital, positive, linear maps $L_p: C^*(G) \to C^*(G).$ Turn $C^*(G)$ into a C^* -correspondence M_p with right action and pre-inner product

$$
a \cdot b = a\alpha_p(b), \ \langle a, b \rangle_p = L_p(a^*b).
$$

The left action ϕ_p on M_p is given by left multiplication. Let $\pi_p(\delta_{\sigma})$ denote the image of δ_{σ} in M_p for $p \in P$, $g \in G$.

> Nadia S. Larsen

Algebraic dynamical systems and their C^* -algebras

Form the semigroup $M=\bigsqcup_{p\in P} M_p$, a product system over P of Exel-type correspondences with operation

$$
\pi_p(\delta_g)\pi_q(\delta_h)=\pi_{pq}(\delta_{g\theta_p(h)})
$$

for $p, q \in P$, $g, h \in G$.

> Nadia S. Larsen

Algebraic dynamical systems and their C^* -algebras

Form the semigroup $M=\bigsqcup_{p\in P} M_p$, a product system over P of Exel-type correspondences with operation

$$
\pi_p(\delta_g)\pi_q(\delta_h)=\pi_{pq}(\delta_{g\theta_p(h)})
$$

for $p, q \in P$, $g, h \in G$.

Theorem (Brownlowe-L-Stammeier)

The product system M is compactly aligned.

> Nadia S. Larsen

Algebraic dynamical systems and their C^* -algebras

Form the semigroup $M=\bigsqcup_{p\in P} M_p$, a product system over P of Exel-type correspondences with operation

$$
\pi_p(\delta_g)\pi_q(\delta_h)=\pi_{pq}(\delta_{g\theta_p(h)})
$$

for $p, q \in P$, $g, h \in G$.

Theorem (Brownlowe-L-Stammeier)

The product system M is compactly aligned. Moreover, $C^*(\mathscr{P}) \cong \mathcal{NT}(M)$ for $\mathscr{P} = G \rtimes_{\theta} P$.

> Nadia S. Larsen

Algebraic dynamical systems and their C^* -algebras

Form the semigroup $M=\bigsqcup_{p\in P} M_p$, a product system over P of Exel-type correspondences with operation

$$
\pi_p(\delta_g)\pi_q(\delta_h)=\pi_{pq}(\delta_{g\theta_p(h)})
$$

for $p, q \in P$, $g, h \in G$.

Theorem (Brownlowe-L-Stammeier)

The product system M is compactly aligned. Moreover, $C^*(\mathscr{P}) \cong \mathcal{NT}(M)$ for $\mathscr{P} = G \rtimes_{\theta} P$.

Hence a representation of $C^*(\mathscr{P})$ arises as a representation ψ_* for a Nica covariant representation ψ of M. Through this perspective we investigate the injectivity of a representation of $C^*(\mathscr{P})$.

> Nadia S. Larsen

Nica covariant representations

Proposition (Kwaśniewski-L)

Let (G, P, θ) be an algebraic dynamical system. Let $A = C^*(G)$ and recall the action L of P^{op} by transfer operators of A . There is a 1-1 correspondence $\psi \longleftrightarrow (\pi, W)$ where $\psi : M \to B(H)$ is Nica covariant, $\pi : A \to B(H)$ is a nondeg. repres. and $W : P \to B(H)$ a homomorphism s.t. (π, W) is Nica covariant (\sharp) for $(A, P^{\rm op}, L)$. Specifically,

 $\pi(a)W_p = \psi_p(a)$ for $p \in P$, $a \in M_p$.

> Nadia S. Larsen

Nica covariant representations

Proposition (Kwaśniewski-L)

Let (G, P, θ) be an algebraic dynamical system. Let $A = C^*(G)$ and recall the action L of P^{op} by transfer operators of A . There is a 1-1 correspondence $\psi \longleftrightarrow (\pi, W)$ where $\psi : M \to B(H)$ is Nica covariant, $\pi : A \to B(H)$ is a nondeg. repres. and $W : P \to B(H)$ a homomorphism s.t. (π, W) is Nica covariant (\sharp) for $(A, P^{\rm op}, L)$. Specifically,

$$
\pi(a)W_p=\psi_p(a) \text{ for } p\in P, a\in M_p.
$$

 (\sharp) means preserves redundancies: if $a\in \pi(A)W_p\pi(A)W_q^*\pi(A)$, $b\in \overline{\pi(A)W_{\mathfrak{s}}\pi(A)W_{t}^*\pi(A)},\ k\in \overline{\pi(A)W_{pm}\pi(A)W_{tn}^*\pi(A)}$ for $qP \cap sP = rP$ and $qm = r = sn$ such that

$$
ab\pi(c)W_{tn}=k\pi(c)W_{tn}
$$

for $c \in A$, then $ab = k$.

Some further preparation

Fact: amenability for M here will mean that the regular representation of $\mathcal{NT}(M)$ arising from the Fock representation of M is injective.

Fact: amenability for M here will mean that the regular representation of $\mathcal{NT}(M)$ arising from the Fock representation of M is injective.

Fact/Def: A group $\{\alpha_h\}_{h\in H}$ of automorphisms of a C^* -algebra C is aperiodic if for every $h \in H \setminus \{e\}$ and every non-zero hereditary subalgebra D of C we have

 $\inf \{ \alpha_h(d) d \mid d \in D^+, \| d \|=1 \} = 0.$

Fact: amenability for M here will mean that the regular representation of $\mathcal{NT}(M)$ arising from the Fock representation of M is injective.

Fact/Def: A group $\{\alpha_h\}_{h\in H}$ of automorphisms of a C^* -algebra C is aperiodic if for every $h \in H \setminus \{e\}$ and every non-zero hereditary subalgebra D of C we have

$$
\inf \{ \alpha_h(d) d \mid d \in D^+, ||d|| = 1 \} = 0.
$$

In the context of product systems, there are natural equivalent characterisations, e.g. as aperiodicity of a certain Fell bundle.

> Nadia S. Larsen

Uniqueness theorem for left semidirect products

Theorem (Kwaśniewski-L)

Let $\mathscr{P} = G \rtimes_{\theta} P$ where (G, P, θ) is an algebraic dynamical system. Suppose that either $P^* = \{e\}$ or that the action of $\{\alpha_h\}_{h\in P^*}$ on $A=C^*(G)$ is aperiodic. Assume that M is amenable. Let (π, W) be a Nica covariant representation of (A, P, L) and let Q_p be the projection onto the space $\pi(A)W_pH$, $p \in P$. Then there is a surjective homomorphism

$$
C^*(\mathscr{P}) \mapsto \overline{\operatorname{span}}\{\pi(a)W_pW_q^*\pi(b): a, b \in A\}
$$

with $p, q \in P$, which is an isomorphism if for every finite family q_1,\ldots,q_n in $P\setminus P^*$, the representation $a\mapsto \pi(a)\Pi_{i=1}^n(1-Q_{q_i})$ of $C^*(G)$ is faithful. If in addition $G/\theta_p(G)$ is finite for every P, then the converse holds.

> Nadia S. Larsen

Uniqueness theorem for right semidirect products

Form the (right) semidirect product $\mathscr{P} = P_{\vartheta} \ltimes G$ where ϑ is a right action of a right LCM semigroup P on a group G .

> Nadia S. Larsen

Uniqueness theorem for right semidirect products

Form the (right) semidirect product $\mathscr{P} = P_{\vartheta} \ltimes G$ where ϑ is a right action of a right LCM semigroup P on a group G . Generally, given monoids \mathcal{T}, P and a right action $\mathcal{T} \stackrel{\vartheta}{\curvearrowleft} P$, the right semidirect product $P_{\theta} \ltimes T$, is the semigroup $P \times T$ with composition

 $(p, g)(q, h) = (pq, \vartheta_q(g)h),$ for $g, h \in \mathcal{T}$ and $p, q \in \mathcal{P}$.

> Nadia S. Larsen

Uniqueness theorem for right semidirect products

Form the (right) semidirect product $\mathscr{P} = P_{\vartheta} \ltimes G$ where ϑ is a right action of a right LCM semigroup P on a group G . Generally, given monoids \mathcal{T}, P and a right action $\mathcal{T} \stackrel{\vartheta}{\curvearrowleft} P$, the right semidirect product $P_{\vartheta} \ltimes T$, is the semigroup $P \times T$ with composition

 $(p, g)(q, h) = (pq, \vartheta_q(g)h),$ for $g, h \in \mathcal{T}$ and $p, q \in \mathcal{P}$.

Lemma

If ϑ is a right action of a right LCM semigroup P on a group G, then $\mathscr{P} = P_{\vartheta} \ltimes G$ is right LCM. Its constructible right ideals satisfy

$$
\mathcal{J}(P) \cong \mathcal{J}(P_{\vartheta} \ltimes G) \quad \text{and} \quad (P_{\vartheta} \ltimes G)^* = P^*_{\vartheta} \ltimes G.
$$

Moreover, $P_{\vartheta} \ltimes G$ is cancellative if and only if P is cancellative and every ϑ_p is injective, $p \in P$.

> Nadia S. Larsen

Uniqueness theorem for right semidirect products

Theorem (Kwaśniewski-L)

Let $\mathscr{P} = P_{\vartheta} \ltimes G$ where ϑ is a right action of a right LCM semigroup P on a group G. Suppose that either $P^* = \{e\}$ or that the action of $\{\alpha_h\}_{h\in P^{*op}}$ on $\textsf{C}^*(\textsf{G})$ is aperiodic. Assume that the system $(C^*(G), P, \alpha)$ is amenable. For a Nica covariant representation (π, W) of $(C^*(G), P, \alpha)$ there is a canonical surjective homomorphism

$$
C^*(\mathscr{P}) \mapsto \overline{\text{span}}\{W_p\pi(a)W_q^*: a \in \mathcal{A}_{p,q}, p, q \in P\}
$$

with $A_{p,q} = \alpha_p(C^*(G))C^*(G)\alpha_q(C^*(G)).$ This map is an isomorphism if and only if for every finite family q_1, \ldots, q_n in $P \setminus P^*$, the representation $a \mapsto \pi(a) \prod_{i=1}^n (1 - W_{q_i} W_{q_i}^*)$ of $C^*(G)$ is faithful.

> Nadia S. Larsen

Uniqueness theorem for right semidirect products

Theorem (Kwaśniewski-L)

Let $\mathscr{P} = P_{\vartheta} \ltimes G$ where ϑ is a right action of a right LCM semigroup P on a group G. Suppose that either $P^* = \{e\}$ or that the action of $\{\alpha_h\}_{h\in P^{*op}}$ on $\textsf{C}^*(\textsf{G})$ is aperiodic. Assume that the system $(C^*(G), P, \alpha)$ is amenable. For a Nica covariant representation (π, W) of $(C^*(G), P, \alpha)$ there is a canonical surjective homomorphism

$$
C^*(\mathscr{P}) \mapsto \overline{\text{span}}\{W_p\pi(a)W_q^*: a \in \mathcal{A}_{p,q}, p, q \in P\}
$$

with $A_{p,q} = \alpha_p(C^*(G))C^*(G)\alpha_q(C^*(G)).$ This map is an isomorphism if and only if for every finite family q_1, \ldots, q_n in $P \setminus P^*$, the representation $a \mapsto \pi(a) \prod_{i=1}^n (1 - W_{q_i} W_{q_i}^*)$ of $C^*(G)$ is faithful. Here Nica covariance of (π, W) is determined as Nica covariance of W .

> Nadia S. Larsen

Example: right wreath product

Let Γ be a group and P a cancellative right LCM semigroup.

> Nadia S. Larsen

Example: right wreath product

Let Γ be a group and P a cancellative right LCM semigroup. Put

$$
\mathscr{P} := P \wr \Gamma = P_{\vartheta} \ltimes \left(\bigoplus_{p \in P} \Gamma\right)
$$

with the action by left shifts $\vartheta_{\bm{\rho}}\big((\gamma_r)_{r\in P}\big):=(\gamma_{r\bm{p}})_{r\in P}$ for $\bm{\rho}\in P$ and $(\gamma_r)_{r\in P}\in \mathsf{G}=\bigoplus_{\bm{\mathcal{p}}\in P} \mathsf{\Gamma}.$ Here, $\vartheta_{\bm{\mathcal{p}}}\circ \vartheta_{\bm{q}}=\vartheta_{\bm{q}\bm{\mathcal{p}}}$ for all $p,q\in P$. Denote $a\delta_q$ the element in $C^*(G)$ with a in the q -th component and zero elsewhere. Define $\alpha_p(a\delta_q) = a\delta_r$ where $rp = q$.

> Nadia S. Larsen

Example: right wreath product

Let Γ be a group and P a cancellative right LCM semigroup. Put

$$
\mathscr{P} := P \wr \Gamma = P_{\vartheta} \ltimes \left(\bigoplus_{p \in P} \Gamma\right)
$$

with the action by left shifts $\vartheta_{\bm{\rho}}\big((\gamma_r)_{r\in P}\big):=(\gamma_{r\bm{p}})_{r\in P}$ for $\bm{\rho}\in P$ and $(\gamma_r)_{r\in P}\in \mathsf{G}=\bigoplus_{\bm{\mathcal{p}}\in P} \mathsf{\Gamma}.$ Here, $\vartheta_{\bm{\mathcal{p}}}\circ \vartheta_{\bm{q}}=\vartheta_{\bm{q}\bm{\mathcal{p}}}$ for all $p,q\in P$. Denote $a\delta_q$ the element in $C^*(G)$ with a in the q -th component and zero elsewhere. Define $\alpha_p(a\delta_q) = a\delta_r$ where $rp = q$. Aperiodicity of $\{\alpha_h\}_{h \in P^*}$ is automatic.
Uniqueness [theorems for](#page-0-0) right LCM semigroup C [∗]-algebras

> Nadia S. Larsen

Example: right wreath product

Let Γ be a group and P a cancellative right LCM semigroup. Put

$$
\mathscr{P} := P \wr \Gamma = P_{\vartheta} \ltimes \left(\bigoplus_{p \in P} \Gamma\right)
$$

with the action by left shifts $\vartheta_{\bm{\rho}}\big((\gamma_r)_{r\in P}\big):=(\gamma_{r\bm{p}})_{r\in P}$ for $\bm{\rho}\in P$ and $(\gamma_r)_{r\in P}\in \mathsf{G}=\bigoplus_{\bm{\mathcal{p}}\in P} \mathsf{\Gamma}.$ Here, $\vartheta_{\bm{\mathcal{p}}}\circ \vartheta_{\bm{q}}=\vartheta_{\bm{q}\bm{\mathcal{p}}}$ for all $p,q\in P$. Denote $a\delta_q$ the element in $C^*(G)$ with a in the q -th component and zero elsewhere. Define $\alpha_p(a\delta_q) = a\delta_r$ where $rp = q$. Aperiodicity of $\{\alpha_h\}_{h \in P^*}$ is automatic. Suppose W is a Nica covariant isometric representation of P on a Hilbert space H and π a nondeg. representation of $C^*(G)$ on H s.t.

$$
W_p^* \pi(a\delta_q) W_p^* = \pi(a\delta_r)
$$
 where $rp = q$.

Uniqueness [theorems for](#page-0-0) right LCM semigroup C [∗]-algebras

> Nadia S. Larsen

Example: right wreath product

Let Γ be a group and P a cancellative right LCM semigroup. Put

$$
\mathscr{P} := P \wr \Gamma = P_{\vartheta} \ltimes \left(\bigoplus_{p \in P} \Gamma\right)
$$

with the action by left shifts $\vartheta_{\bm{\rho}}\big((\gamma_r)_{r\in P}\big):=(\gamma_{r\bm{p}})_{r\in P}$ for $\bm{\rho}\in P$ and $(\gamma_r)_{r\in P}\in \mathsf{G}=\bigoplus_{\bm{\mathcal{p}}\in P} \mathsf{\Gamma}.$ Here, $\vartheta_{\bm{\mathcal{p}}}\circ \vartheta_{\bm{q}}=\vartheta_{\bm{q}\bm{\mathcal{p}}}$ for all $p,q\in P$. Denote $a\delta_q$ the element in $C^*(G)$ with a in the q -th component and zero elsewhere. Define $\alpha_p(a\delta_q) = a\delta_r$ where $rp = q$. Aperiodicity of $\{\alpha_h\}_{h \in P^*}$ is automatic. Suppose W is a Nica covariant isometric representation of P on a Hilbert space H and π a nondeg. representation of $C^*(G)$ on H s.t.

$$
W_p^*\pi(a\delta_q)W_p^*=\pi(a\delta_r)
$$
 where $rp=q$.

Then the repr of $C^*(\mathscr{P})$ is injective iff for every $q_1, \ldots, q_n \in P \setminus P^*$ and $q \in P$, the representation $C^*(\Gamma) \ni a \mapsto \pi(a\delta_q) \prod_{i=1}^n (1 - W_{q_i} W_{q_i}^*)$ is faithful.