

Uniqueness theorems for right LCM semigroup C*-algebras

Nadia S. Larsen

University of Oslo

"Interactions between Semigroups and Operator Algebras" Workshop in Newcastle, 24-27 July 2017

based on joint work with N. Brownlowe, N. Stammeier, and B. Kwaśniewski

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(\mathbb{N})$, with $V^*V = I$ and VV^* proper projection.

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(\mathbb{N})$, with $V^*V = I$ and VV^* proper projection.

Theorem (Coburn). Given $W \in B(H)$ with $W^*W = I$ and $I - WW^* \neq 0$ there is *-isomorphism $C^*(V) \longrightarrow C^*(W)$ sending $V \mapsto W$.

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(\mathbb{N})$, with $V^*V = I$ and VV^* proper projection.

Theorem (Coburn). Given $W \in B(H)$ with $W^*W = I$ and $I - WW^* \neq 0$ there is *-isomorphism $C^*(V) \longrightarrow C^*(W)$ sending $V \mapsto W$.

Alternative interpretation: define a representation $\mathbb{N} \to B(H)$ by isometries, $1 \mapsto V$ and $0 \mapsto I$

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(\mathbb{N})$, with $V^*V = I$ and VV^* proper projection.

Theorem (Coburn). Given $W \in B(H)$ with $W^*W = I$ and $I - WW^* \neq 0$ there is *-isomorphism $C^*(V) \longrightarrow C^*(W)$ sending $V \mapsto W$.

Alternative interpretation: define a representation $\mathbb{N} \to B(H)$ by isometries, $1 \mapsto V$ and $0 \mapsto I$

Coburn's theorem reinterprets as a uniqueness of representations of $C^*(V) \cong C^*(\mathbb{N})$.

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(\mathbb{N})$, with $V^*V = I$ and VV^* proper projection.

Theorem (Coburn). Given $W \in B(H)$ with $W^*W = I$ and $I - WW^* \neq 0$ there is *-isomorphism $C^*(V) \longrightarrow C^*(W)$ sending $V \mapsto W$.

Alternative interpretation: define a representation $\mathbb{N} \to B(H)$ by isometries, $1 \mapsto V$ and $0 \mapsto I$

Coburn's theorem reinterprets as a uniqueness of representations of $C^*(V) \cong C^*(\mathbb{N})$.

QUESTION: Anything similar for other semigroups?

> Nadia S. Larsen

Fundamental example of a C^* -algebra

 $C^*(V)$: V is the unilateral shift on $I^2(\mathbb{N})$, with $V^*V = I$ and VV^* proper projection.

Theorem (Coburn). Given $W \in B(H)$ with $W^*W = I$ and $I - WW^* \neq 0$ there is *-isomorphism $C^*(V) \longrightarrow C^*(W)$ sending $V \mapsto W$.

Alternative interpretation: define a representation $\mathbb{N} \to B(H)$ by isometries, $1 \mapsto V$ and $0 \mapsto I$

Coburn's theorem reinterprets as a uniqueness of representations of $C^*(V) \cong C^*(\mathbb{N})$.

QUESTION: Anything similar for other semigroups?

Yes, for positive cones of ordered subgroups of \mathbb{R} (Douglas), and for positive cones in totally ordered groups (Murphy).

> Nadia S. Larsen

C^* -algebras of quasi-lattice ordered groups

G a discrete group with identity *e*, *P* a subsemigroup with $P \cap P^{-1} = \{e\}$, partial order on *G*: $g \leq h \iff g^{-1}h \in P$.

> Nadia S. Larsen

C^* -algebras of quasi-lattice ordered groups

G a discrete group with identity e, P a subsemigroup with $P \cap P^{-1} = \{e\}$, partial order on G: $g \leq h \iff g^{-1}h \in P$.

Nica: (G, P) is **quasi-lattice ordered (qlo)** if g, h in G with a common upper bound in P have (a unique) least common upper bound $g \vee h$ in P.

> Nadia S. Larsen

C^* -algebras of quasi-lattice ordered groups

G a discrete group with identity *e*, *P* a subsemigroup with $P \cap P^{-1} = \{e\}$, partial order on *G*: $g \leq h \iff g^{-1}h \in P$.

Nica: (G, P) is **quasi-lattice ordered (qlo)** if g, h in G with a common upper bound in P have (a unique) least common upper bound $g \lor h$ in P. Note that for $p, q \in P$,

$$pP \cap qP \neq \emptyset \Rightarrow pP \cap qP = rP,$$

with $r = p \lor q$ their least common upper bound.

> Nadia S. Larsen

C^* -algebras of quasi-lattice ordered groups

G a discrete group with identity *e*, *P* a subsemigroup with $P \cap P^{-1} = \{e\}$, partial order on *G*: $g \leq h \iff g^{-1}h \in P$.

Nica: (G, P) is **quasi-lattice ordered (qlo)** if g, h in G with a common upper bound in P have (a unique) least common upper bound $g \vee h$ in P. Note that for $p, q \in P$,

$$pP \cap qP \neq \emptyset \Rightarrow pP \cap qP = rP,$$

with $r = p \lor q$ their least common upper bound.

Examples:

- (G, P), G totally ordered abelian with positive cone P (Douglas, Murphy);
- $(\mathbb{F}_n, \mathbb{F}_n^+)$ (Nica):
- right-angled and finite type Artin groups (Crisp-Laca);
- $(\mathbb{Q} \rtimes \mathbb{Q}^*_+, \mathbb{N} \rtimes \mathbb{N}^{\times})$ (Laca-Raeburn).

> Nadia S. Larsen

C^* -algebras of quasi-lattice ordered groups

G a discrete group with identity *e*, *P* a subsemigroup with $P \cap P^{-1} = \{e\}$, partial order on *G*: $g \leq h \iff g^{-1}h \in P$.

Nica: (G, P) is **quasi-lattice ordered (qlo)** if g, h in G with a common upper bound in P have (a unique) least common upper bound $g \vee h$ in P. Note that for $p, q \in P$,

$$pP \cap qP \neq \emptyset \Rightarrow pP \cap qP = rP,$$

with $r = p \lor q$ their least common upper bound.

Examples:

- (G, P), G totally ordered abelian with positive cone P (Douglas, Murphy);
- $(\mathbb{F}_n, \mathbb{F}_n^+)$ (Nica):
- right-angled and finite type Artin groups (Crisp-Laca);
- $(\mathbb{Q} \rtimes \mathbb{Q}^*_+, \mathbb{N} \rtimes \mathbb{N}^{\times})$ (Laca-Raeburn).

 $C^*(G, P)$: generated by a universal Nica cov. repres. v of P.

A uniqueness result for $C^*(G, P)$

C*-algebras Nadia S. Larsen

Uniqueness theorems for

right LCM semigroup

Theorem (Laca-Raeburn 1996): Let (G, P) be qlo and $C^*(G, P) = \mathcal{D} \rtimes P$. If the canonical conditional expectation $\Phi : C^*(G, P) \to \mathcal{D}$,

$$\Phi(\sum_{p,q\in F}a_{p,q}v_pv_q^*)=\sum_{p\in F}a_{p,p}v_pv_p^*$$

for $a_{p,q} \in \mathbb{C}$ is faithful, then a representation $\pi_W \times W$ of $C^*(G, P)$ obtained from a Nica covariant isometric representation W of P is faithful iff

$$(\#) \quad \prod_{p\in F} (I-W_pW_p^*)\neq 0$$

whenever $F \subset P \setminus \{e\}$ is finite.

theorems for A uniqueness result for $C^*(G, P)$

 C^* -algebras Nadia S Larsen

Uniqueness

right LCM semigroup

> **Theorem (Laca-Raeburn 1996)**: Let (G, P) be glo and $C^*(G, P) = \mathcal{D} \rtimes P$. If the canonical conditional expectation $\Phi: C^*(G, P) \to \mathcal{D}$,

$$\Phi(\sum_{p,q\in F}a_{p,q}v_pv_q^*)=\sum_{p\in F}a_{p,p}v_pv_p^*$$

for $a_{p,q} \in \mathbb{C}$ is faithful, then a representation $\pi_W imes W$ of $C^*(G, P)$ obtained from a Nica covariant isometric representation W of P is faithful iff

$$(\#) \quad \prod_{p\in F} (I-W_pW_p^*)\neq 0$$

whenever $F \subset P \setminus \{e\}$ is finite.

Question: is injectivity of *-homomorphisms on $C^*(S)$ for a larger class of semigroups still characterised by means of a condition expressed in \mathcal{D} , similar to (#)?

Nadia S. Larsen

Semigroup *C**-algebras

Regarding the previous question, how much larger a class of semigroups is meant here and where does it come from?

Regarding the previous question, how much larger a class of semigroups is meant here and where does it come from? For a qlo pair (G, P), the universal C^* -algebra satisfies

Semigroup C^* -algebras

$$C^*(G,P) = \overline{\operatorname{span}}\{v_p v_q^* \mid p, q \in P\},$$
(1)

where v is the universal Nica covariant isometric representation.

Regarding the previous question, how much larger a class of semigroups is meant here and where does it come from? For a qlo pair (G, P), the universal C^* -algebra satisfies

Semigroup C^* -algebras

$$C^*(G,P) = \overline{\operatorname{span}}\{v_p v_q^* \mid p, q \in P\},$$
(1)

where v is the universal Nica covariant isometric representation.

From qlo semigroups to arbitrary left cancellative *semigroups* with identity, or monoids: a long journey, see Xin Li's talks.

Regarding the previous question, how much larger a class of semigroups is meant here and where does it come from? For a qlo pair (G, P), the universal C^* -algebra satisfies

Semigroup C^* -algebras

$$C^*(G,P) = \overline{\operatorname{span}}\{v_p v_q^* \mid p, q \in P\},$$
(1)

where v is the universal Nica covariant isometric representation.

From qlo semigroups to arbitrary left cancellative *semigroups* with identity, or monoids: a long journey, see Xin Li's talks.

However, there is a large class of left cancellative monoids for which a condition analogous to (1) still holds (essentially, due to structure of principal right ideals of the semigroup). Thus $C^*(P)$ has a familiar spanning set.

Semigroup *C**-algebras

Regarding the previous question, how much larger a class of semigroups is meant here and where does it come from? For a qlo pair (G, P), the universal C^* -algebra satisfies

$$C^*(G,P) = \overline{\operatorname{span}}\{v_p v_q^* \mid p, q \in P\},$$
(1)

where v is the universal Nica covariant isometric representation.

From qlo semigroups to arbitrary left cancellative *semigroups* with identity, or monoids: a long journey, see Xin Li's talks.

However, there is a large class of left cancellative monoids for which a condition analogous to (1) still holds (essentially, due to structure of principal right ideals of the semigroup). Thus $C^*(P)$ has a familiar spanning set. This class is adequate to consider.

> Nadia S. Larsen

A good class of monoids: right LCM

Definition (Brownlowe-Ramagge-Robertson-Whittaker, Lawson, Norling)

A left cancellative monoid S is **right LCM** (or is said to satisfy Clifford's condition) if

$$pS \cap qS \neq \emptyset \Rightarrow pS \cap qS = rS;$$

here pS is the set of right multiples of p and r is a right least common multiple of p, q.

> Nadia S. Larsen

A good class of monoids: right LCM

Definition (Brownlowe-Ramagge-Robertson-Whittaker, Lawson, Norling)

A left cancellative monoid S is **right LCM** (or is said to satisfy Clifford's condition) if

$$pS \cap qS
eq \emptyset \Rightarrow pS \cap qS = rS;$$

here pS is the set of right multiples of p and r is a right least common multiple of p, q.

Class of examples in [BRRW] is the Zappa-Szép product of monoids, including monoids that model self-similar group actions, see Jacqui Ramagge's talks, also Baumslag-Solitar monoids, the affine monoid $\mathbb{N} \rtimes \mathbb{N}^{\times}$.

> Nadia S. Larsen

A good class of monoids: right LCM

Definition (Brownlowe-Ramagge-Robertson-Whittaker, Lawson, Norling)

A left cancellative monoid S is **right LCM** (or is said to satisfy Clifford's condition) if

$$pS \cap qS
eq \emptyset \Rightarrow pS \cap qS = rS;$$

here pS is the set of right multiples of p and r is a right least common multiple of p, q.

Class of examples in [BRRW] is the Zappa-Szép product of monoids, including monoids that model self-similar group actions, see Jacqui Ramagge's talks, also Baumslag-Solitar monoids, the affine monoid $\mathbb{N} \rtimes \mathbb{N}^{\times}$.

Right LCM's are not unique if S^* is non-trivial: rx is a right LCM for any $x \in S^*$. Unique if (G, S) is qlo.

> Nadia S. Larsen

A good class of monoids: right LCM

Definition (Brownlowe-Ramagge-Robertson-Whittaker, Lawson, Norling)

A left cancellative monoid S is **right LCM** (or is said to satisfy Clifford's condition) if

$$pS \cap qS
eq \emptyset \Rightarrow pS \cap qS = rS;$$

here pS is the set of right multiples of p and r is a right least common multiple of p, q.

Class of examples in [BRRW] is the Zappa-Szép product of monoids, including monoids that model self-similar group actions, see Jacqui Ramagge's talks, also Baumslag-Solitar monoids, the affine monoid $\mathbb{N} \rtimes \mathbb{N}^{\times}$.

Right LCM's are not unique if S^* is non-trivial: rx is a right LCM for any $x \in S^*$. Unique if (G, S) is qlo.

[BRRW] studied $C^*(S)$ for $S = U \bowtie A$ both as a C^* -algebra with generators and relations and as a semigroup C^* -algebra.

> Nadia S. Larsen

A uniqueness theorem for $C^*(S)$

Let S be right LCM. For $F \subset S$ finite let $X(F) = \bigcup_{q \in F} qS$.

> Nadia S. Larsen

A uniqueness theorem for $C^*(S)$

Let S be right LCM. For $F \subset S$ finite let $X(F) = \bigcup_{q \in F} qS$. Let $(TC) \ s \in S, t \in sS, F \subset S$ finite with $tS \not\subseteq X(F)$, then $\forall x \in S^* \setminus \{e\} \ \exists r \in tS : rS \not\subseteq X(F), \ x(s^{-1}rS) \cap (s^{-1}rS) = \emptyset.$

> Nadia S. Larsen

A uniqueness theorem for $C^*(S)$

Let S be right LCM. For $F \subset S$ finite let $X(F) = \bigcup_{q \in F} qS$. Let $(TC) \ s \in S, t \in sS, F \subset S$ finite with $tS \not\subseteq X(F)$, then $\forall x \in S^* \setminus \{e\} \ \exists r \in tS : rS \not\subseteq X(F), \ x(s^{-1}rS) \cap (s^{-1}rS) = \emptyset$. (TC) reflects: $S^* \frown \{tS \mid t \in S\}$ by left multiplication.

> Nadia S. Larsen

A uniqueness theorem for $C^*(S)$

Let S be right LCM. For $F \subset S$ finite let $X(F) = \bigcup_{a \in F} qS$. Let (*TC*) $s \in S, t \in sS, F \subset S$ finite with $tS \not\subseteq X(F)$, then $\forall x \in S^* \setminus \{e\} \exists r \in tS : rS \not\subseteq X(F), x(s^{-1}rS) \cap (s^{-1}rS) = \emptyset.$ (TC) reflects: $S^* \frown \{tS \mid t \in S\}$ by left multiplication. Theorem (Brownlowe-L-Stammeier): Let S be unital cancellative right LCM s. t. $\Phi : C^*(S) \to \mathcal{D}$, $\Phi(\sum_{p \mid q \in F} a_{p,q} v_p v_q^*) = \sum_{p \in F} a_{p,p} v_p v_p^*$, for $a_{p,q} \in \mathbb{C}$, gives a faithful conditional expectation. Assume condition (TC). Then

a *-homomorphism $\pi: C^*(S) \to B$ is injective iff

$$(\#) \quad \prod_{\rho \in F} (1 - \pi(v_{\rho})\pi(v_{\rho})^*) \neq 0, \, \forall F \subset S \setminus S^*, F \text{ finite.}$$

> Nadia S. Larsen

A uniqueness theorem for $C^*(S)$

Let S be right LCM. For $F \subset S$ finite let $X(F) = \bigcup_{a \in F} qS$. Let (*TC*) $s \in S, t \in sS, F \subset S$ finite with $tS \not\subseteq X(F)$, then $\forall x \in S^* \setminus \{e\} \exists r \in tS : rS \not\subseteq X(F), x(s^{-1}rS) \cap (s^{-1}rS) = \emptyset.$ (TC) reflects: $S^* \frown \{tS \mid t \in S\}$ by left multiplication. Theorem (Brownlowe-L-Stammeier): Let S be unital cancellative right LCM s. t. $\Phi : C^*(S) \to \mathcal{D}$, $\Phi(\sum_{p,q\in F} a_{p,q}v_pv_q^*) = \sum_{p\in F} a_{p,p}v_pv_p^*$, for $a_{p,q} \in \mathbb{C}$, gives a faithful conditional expectation. Assume condition (TC). Then

a *-homomorphism $\pi: C^*(S) o B$ is injective iff

$$(\#) \quad \prod_{p \in F} (1 - \pi(v_p)\pi(v_p)^*) \neq 0, \, \forall F \subset S \setminus S^*, F \text{ finite.}$$

Ex: $S = G \rtimes_{\theta} P$ with both finite and infinite index for $\theta_p(G)$'s.

> Nadia S. Larsen

Algebraic dynamical systems

Motivating class of examples (Brownlowe-L-Stammeier)

> Nadia S. Larsen

Algebraic dynamical systems

Motivating class of examples (Brownlowe-L-Stammeier) Definition (BLS)

An algebraic dynamical system is a triple (G, P, θ) consisting of a countable, discrete group G, a countable right LCM monoid P, and an action θ of P by injective endomorphisms of G that is order-preserving, i.e. s.t. for all $p, q \in P$

 $\theta_p(G) \cap \theta_q(G) = \theta_r(G)$ if $r \in P$ satisfies $pP \cap qP = rP$.

Proposition (BLS)

The monoid $\mathscr{P} = G \rtimes_{\theta} P$ with operation

 $(g,p)(h,q)=(g heta_p(h),pq) ext{ for } g,h\in G,p,q,\in P$

is right LCM.

> Nadia S. Larsen

Algebraic dynamical systems: constructible ideals

Proposition

Let $X_{(g,p)}$ and $X_{(h,q)}$ be principal right ideals of $\mathscr{P} = G \rtimes_{\theta} P$, for $g, h \in G$ and $p, q \in P$. Then

$$X_{(g,p)} \cap X_{(h,q)} = \begin{cases} X_{(g\theta_p(k),r)} & \text{if } pP \cap qP = rP, g\theta_p(k) \in h\theta_q(G) \\ \emptyset & \text{otherwise.} \end{cases}$$

for some $r \in P$ and $k \in G$.

> Nadia S. Larsen

Example satisfying (TC)

Let $G = \bigoplus_{\mathbb{N}} \mathbb{Z}$ and P be the unital subsemigroup of \mathbb{N}^{\times} generated by 2 and 3. Define an action θ of P by injective endomorphisms of G as follows: for $g = (g_n)_{n \in \mathbb{N}} \in G$, let

$$heta_2(g)=2g,\,(heta_3(g))_0=3g_0$$
 and $(heta_3(g))_n=g_n$ for all $n\geq 1.$

Fact: θ is order-preserving, therefore $\mathscr{P} = G \rtimes_{\theta} P$ is right LCM.

> Nadia S. Larsen

Example satisfying (TC)

Let $G = \bigoplus_{\mathbb{N}} \mathbb{Z}$ and P be the unital subsemigroup of \mathbb{N}^{\times} generated by 2 and 3. Define an action θ of P by injective endomorphisms of G as follows: for $g = (g_n)_{n \in \mathbb{N}} \in G$, let

$$heta_2(g)=2g,\,(heta_3(g))_0=3g_0$$
 and $(heta_3(g))_n=g_n$ for all $n\geq 1.$

Fact: θ is order-preserving, therefore $\mathscr{P} = G \rtimes_{\theta} P$ is right LCM.

We have $[G : \theta_2(G)] = \infty$ and $[G : \theta_3(G)] = 3$. In fact, $[G : \theta_{2^k}(G)] = \infty$ for all $k \ge 1$, which gives the flexibility required for establishing (TC).

> Nadia S. Larsen

Aim: use a Nica-Toeplitz algebra realisation of $C^*(\mathscr{P})$ for algebraic dynamical systems as a setup in which to obtain uniqueness results.

Aim: use a Nica-Toeplitz algebra realisation of $C^*(\mathscr{P})$ for algebraic dynamical systems as a setup in which to obtain uniqueness results.

This requires explaining some notions: Hilbert module and C^* -correspondence over a C^* -algebra, a product system of C^* -correspondences over a semigroup, representations in this context, associated C^* -algebras...

> Nadia S. Larsen

Hilbert modules and C^* -correspondences

Example (Pimsner): given a dynamical system (A, \mathbb{Z}, α) , give X = A a right module structure by $x \cdot a = xa$ for $x, a \in A$ and pre-inner product $\langle x, y \rangle = x^*y$, $x, y \in A$. Complete to get a Hilbert *A*-module. Obtain a *C**-correspondence via a left action of *A* as adjointable operators on *X*, i.e. $\phi : A \to \mathcal{L}(X)$ homomorphism

$$a \cdot x = \phi(a)x = \alpha(a)x.$$
> Nadia S. Larsen

Hilbert modules and C^* -correspondences

Example (Pimsner): given a dynamical system (A, \mathbb{Z}, α) , give X = A a right module structure by $x \cdot a = xa$ for $x, a \in A$ and pre-inner product $\langle x, y \rangle = x^*y$, $x, y \in A$. Complete to get a Hilbert *A*-module. Obtain a *C**-correspondence via a left action of *A* as adjointable operators on *X*, i.e. $\phi : A \to \mathcal{L}(X)$ homomorphism

$$a \cdot x = \phi(a)x = \alpha(a)x.$$

Definition (Pimsner, Fowler-Raeburn)

Given a C*-correspondence X over A, a Toeplitz representation of X in a C*-algebra is a pair (ψ, π) with $\pi : A \to B$ homomorphism and $\psi : X \to B$ linear s.t. for $a \in A$, $x, y \in X$

$$\pi(\langle x, y \rangle) = \psi(x)^* \psi(y)$$

$$\psi(x \cdot a) = \psi(x)\pi(a)$$

$$\psi(\phi(a)x) = \pi(a)\psi(x).$$

The Toeplitz algebra \mathcal{T}_X of a C^* -correspondence X over A is defined as the universal C^* -algebra for representations of X. It is generally tractable, for example there are powerful uniqueness theorems due to Fowler-Raeburn.

The Toeplitz algebra \mathcal{T}_X of a C^* -correspondence X over A is defined as the universal C^* -algebra for representations of X. It is generally tractable, for example there are powerful uniqueness theorems due to Fowler-Raeburn.

Idea: a product system formalises a multiplicative collection of C^* -correspondences over a fixed C^* -algebra. Motivation comes from similar construction for Hilbert spaces due to Arveson (continuous semigroups) and Dinh (discrete semigroups).

Nadia S. Larsen

Product systems of C^* -correspondences I

Setup (Fowler): \mathscr{P} left cancellative monoid, semigroup

$$X=\bigsqcup_{p\in\mathscr{P}}X_p \ s.t.$$

X_p is a C*-correspondence over (fixed) A, ∀p ∈ P;
 X_p ⊗_A X_q ≅ X_{pq}, x ⊗_A y ↦ xy, ∀p, q ∈ P, p ≠ e;
 X_e = _AA_A, the standard C*-correspondence;

4 $X_e \times X_p \to X_p$ and $X_p \times X_e \to X_p$, $p \in \mathscr{P}$, are the module actions.

Product systems of C^* -correspondences I

C*-algebras Nadia S. Larsen

Uniqueness theorems for

right LCM semigroup

Setup (Fowler): ${\mathscr P}$ left cancellative monoid, semigroup

$$X=\bigsqcup_{p\in\mathscr{P}}X_p \ s.t.$$

1 X_p is a C^* -correspondence over (fixed) $A, \forall p \in \mathscr{P}$; **2** $X_p \otimes_A X_q \cong X_{pq}, x \otimes_A y \mapsto xy, \forall p, q \in \mathscr{P}, p \neq e$;

3 $X_e = {}_A A_A$, the standard C^* -correspondence;

A representation $\psi : X \to B$ is given by Toeplitz representations ψ_p of X_p in B, for all $p \in \mathscr{P}$ s.t.

 $\psi(xy) = \psi(x)\psi(y)$ for all $x \in X_p, y \in X_q$.

Uniqueness theorems for right LCM semigroup Product systems of C^* -correspondences I

C*-algebras Nadia S. Larsen

Setup (Fowler): \mathscr{P} left cancellative monoid, semigroup

$$X=\bigsqcup_{p\in\mathscr{P}}X_p \ s.t.$$

1 X_p is a C^* -correspondence over (fixed) A, $\forall p \in \mathscr{P}$; **2** $X_p \otimes_A X_q \cong X_{pq}$, $x \otimes_A y \mapsto xy$, $\forall p, q \in \mathscr{P}, p \neq e$;

3 $X_e = {}_A A_A$, the standard C^* -correspondence;

A representation $\psi: X \to B$ is given by Toeplitz representations ψ_p of X_p in B, for all $p \in \mathscr{P}$ s.t.

$$\psi(xy) = \psi(x)\psi(y)$$
 for all $x \in X_p, y \in X_q$.

Toeplitz algebra T_X , universal for representations of X. Generally unmanageable.

> Nadia S. Larsen

Product systems of C^* -correspondences I

Setup (Fowler): \mathscr{P} left cancellative monoid, semigroup

$$X=\bigsqcup_{p\in\mathscr{P}}X_p \ s.t.$$

1 X_p is a C^* -correspondence over (fixed) A, $\forall p \in \mathscr{P}$; **2** $X_p \otimes_A X_q \cong X_{pq}$, $x \otimes_A y \mapsto xy$, $\forall p, q \in \mathscr{P}, p \neq e$;

3 $X_e = {}_A A_A$, the standard C^* -correspondence;

 $\ \ \, {\it 4} \ \ \, X_e \times X_p \to X_p \ \, {\rm and} \ \ \, X_p \times X_e \to X_p, \ \, p \in \mathscr{P}, \ {\rm are \ the} \ \ \, {\rm module \ actions.}$

A representation $\psi : X \to B$ is given by Toeplitz representations ψ_p of X_p in B, for all $p \in \mathscr{P}$ s.t.

$$\psi(xy) = \psi(x)\psi(y)$$
 for all $x \in X_p, y \in X_q$.

Toeplitz algebra \mathcal{T}_X , universal for representations of X. Generally unmanageable. Throw in more structure on \mathscr{P} and look for quotients of \mathcal{T}_X .

> Nadia S. Larsen

Product systems of C*-correspondences II

For $p, q \in \mathscr{P}$, there is a homomorphism

$$\iota_p^{pq}: \mathcal{L}(X_p) \to \mathcal{L}(X_{pq}), \iota_p^{pq}(T)(xy) = (Tx)y$$
(2)

for all $x \in X_p, y \in X_q$.

> Nadia S. Larsen

Product systems of C*-correspondences II

For $p, q \in \mathscr{P}$, there is a homomorphism

$$\iota_p^{pq}: \mathcal{L}(X_p) \to \mathcal{L}(X_{pq}), \iota_p^{pq}(T)(xy) = (Tx)y$$
(2)

for all $x \in X_p, y \in X_q$.

Definition (Fowler (qlo), Brownlowe-L-Stammeier (rLCM)) (a) X is compactly aligned if for all $p, q, r \in \mathcal{P}$ such that $p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P}$ and all $T_p \in \mathcal{K}(X_p), T_q \in \mathcal{K}(X_q)$ we have

 $\iota_p^r(T_p)\iota_q^r(T_q)\in \mathcal{K}(X_r).$

> Nadia S. Larsen

Product systems of C*-correspondences II

For $p, q \in \mathscr{P}$, there is a homomorphism

$$\iota_p^{pq}: \mathcal{L}(X_p) \to \mathcal{L}(X_{pq}), \iota_p^{pq}(T)(xy) = (Tx)y$$
(2)

for all $x \in X_p, y \in X_q$.

Definition (Fowler (qlo), Brownlowe-L-Stammeier (rLCM)) (a) X is compactly aligned if for all $p, q, r \in \mathscr{P}$ such that $p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P}$ and all $T_p \in \mathcal{K}(X_p), T_q \in \mathcal{K}(X_q)$ we have

$$\iota_p^r(T_p)\iota_q^r(T_q)\in \mathcal{K}(X_r).$$

(b) A representation ψ of X in B is Nica covariant if

$$\psi^{(p)}(T_p)\psi^{(q)}(T_q) = \begin{cases} \psi^{(r)}(\iota_p^r(T_p)\iota_q^r(T_q)) & \text{if } p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P} \\ 0 & \text{otherwise,} \end{cases}$$

where $p, q \in \mathscr{P}$ are arbitrary and r is in \mathscr{P} .

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C*-algebra for Nica covariant representations of X,

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C*-algebra for Nica covariant representations of X, more precisely $\mathcal{NT}(X)$ is the C*-algebra generated by a Nica covariant representation i_X which is universal: if $\psi: X \to B$ is Nica covariant there is a *-homomorphism $\psi_*: \mathcal{NT}(X) \to B$ s.t.

$$\psi_* \circ i_X = \psi.$$

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C*-algebra for Nica covariant representations of X, more precisely $\mathcal{NT}(X)$ is the C*-algebra generated by a Nica covariant representation i_X which is universal: if $\psi: X \to B$ is Nica covariant there is a *-homomorphism $\psi_*: \mathcal{NT}(X) \to B$ s.t.

 $\psi_* \circ i_X = \psi.$

Fact: $\mathcal{NT}(X) = \overline{\text{span}}\{i_X(x)i_X(y)^* \mid x, y \in X\}.$

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C*-algebra for Nica covariant representations of X, more precisely $\mathcal{NT}(X)$ is the C*-algebra generated by a Nica covariant representation i_X which is universal: if $\psi: X \to B$ is Nica covariant there is a *-homomorphism $\psi_*: \mathcal{NT}(X) \to B$ s.t.

$$\psi_* \circ i_X = \psi_*$$

Fact: $\mathcal{NT}(X) = \overline{\text{span}}\{i_X(x)i_X(y)^* \mid x, y \in X\}.$ The Fock representation \mathbb{L} acts in the Hilbert A-module

$$\mathcal{F}(X) = \left\{ (x_p)_{p \in \mathscr{P}} \mid x_p \in X_p, \sum_{p \in \mathscr{P}} \|x_p\|_p^2 < \infty \right\}$$

equipped with the inner product $\langle (x_p)_{p\in\mathscr{P}}, (y_p)_{p\in\mathscr{P}} \rangle = \sum_{p\in\mathscr{P}} \langle x_p, y_p \rangle_p$ and obvious actions; $\mathbb{L}(x)(y_q)_{q\in\mathscr{P}} = (\chi_{p\mathscr{P}}(q) \cdot xy_{p^{-1}q})_{q\in\mathscr{P}}$ for $x \in X_p$.

> Nadia S. Larsen

A product system for algebraic dynamical systems

Let $\mathscr{P} = G \rtimes_{\theta} P$ where (G, P, θ) is an algebraic dynamical system.

A product system for algebraic dynamical systems

Nadia S. Larsen Let $\mathscr{P} = G \rtimes_{\theta} P$ where (G, P, θ) is an algebraic dynamical system. Let δ_g , $g \in G$ be generating unitaries in $C^*(G)$. Have actions

$$\alpha: P \curvearrowright C^*(G), \alpha_p(\delta_g) = \delta_{\theta_p(g)}$$

by endomorphisms of $C^*(G)$, and

$$L: \mathcal{P}^{\mathsf{op}} \curvearrowright \mathcal{C}^*(\mathcal{G}), L_p(\delta_g) = \chi_{ heta_p(\mathcal{G})}(g) \delta_{ heta_p^{-1}(g)}$$

by unital, positive, linear maps $L_p: C^*(G) \to C^*(G)$.

Nadia S. Larsen

Let $\mathscr{P} = G \rtimes_{\theta} P$ where (G, P, θ) is an algebraic dynamical system. Let δ_g , $g \in G$ be generating unitaries in $C^*(G)$. Have actions

A product system for algebraic dynamical systems

$$\alpha: P \curvearrowright C^*(G), \alpha_p(\delta_g) = \delta_{\theta_p(g)}$$

by endomorphisms of $C^*(G)$, and

$$L: \mathcal{P}^{\mathsf{op}} \curvearrowright \mathcal{C}^*(\mathcal{G}), L_p(\delta_g) = \chi_{ heta_p(\mathcal{G})}(g) \delta_{ heta_p^{-1}(g)}$$

by unital, positive, linear maps $L_p : C^*(G) \to C^*(G)$. Turn $C^*(G)$ into a C^* -correspondence M_p with right action and pre-inner product

$$a \cdot b = a\alpha_p(b), \langle a, b \rangle_p = L_p(a^*b).$$

The left action ϕ_p on M_p is given by left multiplication.

Nadia S. Larsen

Let $\mathscr{P} = G \rtimes_{\theta} P$ where (G, P, θ) is an algebraic dynamical system. Let δ_g , $g \in G$ be generating unitaries in $C^*(G)$. Have actions

A product system for algebraic dynamical systems

$$\alpha: P \curvearrowright C^*(G), \alpha_p(\delta_g) = \delta_{\theta_p(g)}$$

by endomorphisms of $C^*(G)$, and

$$L: \mathcal{P}^{\mathsf{op}} \curvearrowright \mathcal{C}^*(\mathcal{G}), L_p(\delta_g) = \chi_{ heta_p(\mathcal{G})}(g) \delta_{ heta_p^{-1}(g)}$$

by unital, positive, linear maps $L_p : C^*(G) \to C^*(G)$. Turn $C^*(G)$ into a C^* -correspondence M_p with right action and pre-inner product

$$a \cdot b = a\alpha_p(b), \langle a, b \rangle_p = L_p(a^*b).$$

The left action ϕ_p on M_p is given by left multiplication. Let $\pi_p(\delta_g)$ denote the image of δ_g in M_p for $p \in P$, $g \in G$.

> Nadia S. Larsen

Algebraic dynamical systems and their C^* -algebras

Form the semigroup $M = \bigsqcup_{p \in P} M_p$, a product system over P of Exel-type correspondences with operation

$$\pi_p(\delta_g)\pi_q(\delta_h) = \pi_{pq}(\delta_{g\theta_p(h)})$$

for $p, q \in P$, $g, h \in G$.

> Nadia S. Larsen

Algebraic dynamical systems and their C^* -algebras

Form the semigroup $M = \bigsqcup_{p \in P} M_p$, a product system over P of Exel-type correspondences with operation

$$\pi_p(\delta_g)\pi_q(\delta_h) = \pi_{pq}(\delta_{g\theta_p(h)})$$

for $p, q \in P$, $g, h \in G$.

Theorem (Brownlowe-L-Stammeier)

The product system M is compactly aligned.

> Nadia S. Larsen

Algebraic dynamical systems and their C^* -algebras

Form the semigroup $M = \bigsqcup_{p \in P} M_p$, a product system over P of Exel-type correspondences with operation

$$\pi_p(\delta_g)\pi_q(\delta_h) = \pi_{pq}(\delta_{g\theta_p(h)})$$

for $p, q \in P$, $g, h \in G$.

Theorem (Brownlowe-L-Stammeier)

The product system M is compactly aligned. Moreover, $C^*(\mathscr{P}) \cong \mathcal{NT}(M)$ for $\mathscr{P} = G \rtimes_{\theta} P$.

> Nadia S. Larsen

Algebraic dynamical systems and their C^* -algebras

Form the semigroup $M = \bigsqcup_{p \in P} M_p$, a product system over P of Exel-type correspondences with operation

$$\pi_p(\delta_g)\pi_q(\delta_h) = \pi_{pq}(\delta_{g\theta_p(h)})$$

for $p, q \in P$, $g, h \in G$.

Theorem (Brownlowe-L-Stammeier)

The product system M is compactly aligned. Moreover, $C^*(\mathscr{P}) \cong \mathcal{NT}(M)$ for $\mathscr{P} = G \rtimes_{\theta} P$.

Hence a representation of $C^*(\mathscr{P})$ arises as a representation ψ_* for a Nica covariant representation ψ of M. Through this perspective we investigate the injectivity of a representation of $C^*(\mathscr{P})$.

> Nadia S. Larsen

Nica covariant representations

Proposition (Kwaśniewski-L)

Let (G, P, θ) be an algebraic dynamical system. Let $A = C^*(G)$ and recall the action L of P^{op} by transfer operators of A. There is a 1-1 correspondence $\psi \longleftrightarrow (\pi, W)$ where $\psi : M \to B(H)$ is Nica covariant, $\pi : A \to B(H)$ is a nondeg. repres. and $W : P \to B(H)$ a homomorphism s.t. (π, W) is Nica covariant (\sharp) for (A, P^{op}, L) . Specifically,

$$\pi(a)W_p = \psi_p(a) \text{ for } p \in P, a \in M_p.$$

> Nadia S. Larsen

Nica covariant representations

Proposition (Kwaśniewski-L)

Let (G, P, θ) be an algebraic dynamical system. Let $A = C^*(G)$ and recall the action L of P^{op} by transfer operators of A. There is a 1-1 correspondence $\psi \longleftrightarrow (\pi, W)$ where $\psi : M \to B(H)$ is Nica covariant, $\pi : A \to B(H)$ is a nondeg. repres. and $W : P \to B(H)$ a homomorphism s.t. (π, W) is Nica covariant (\ddagger) for (A, P^{op}, L) . Specifically,

$$\pi(a)W_p = \psi_p(a) \text{ for } p \in P, a \in M_p.$$

(#) means preserves redundancies: if $a \in \overline{\pi(A)W_p\pi(A)W_q^*\pi(A)}$, $b \in \overline{\pi(A)W_s\pi(A)W_t^*\pi(A)}$, $k \in \overline{\pi(A)W_{pm}\pi(A)W_{tn}^*\pi(A)}$ for $qP \cap sP = rP$ and qm = r = sn such that

$$ab\pi(c)W_{tn}=k\pi(c)W_{tn}$$

for $c \in A$, then ab = k.

Some further preparation

Fact: amenability for M here will mean that the regular representation of $\mathcal{NT}(M)$ arising from the Fock representation of M is injective.

Fact: amenability for M here will mean that the regular representation of $\mathcal{NT}(M)$ arising from the Fock representation of M is injective.

Fact/Def: A group $\{\alpha_h\}_{h\in H}$ of automorphisms of a C^* -algebra C is aperiodic if for every $h \in H \setminus \{e\}$ and every non-zero hereditary subalgebra D of C we have

 $\inf \{ \alpha_h(d) d \mid d \in D^+, \|d\| = 1 \} = 0.$

Fact: amenability for M here will mean that the regular representation of $\mathcal{NT}(M)$ arising from the Fock representation of M is injective.

Fact/Def: A group $\{\alpha_h\}_{h\in H}$ of automorphisms of a C^* -algebra C is aperiodic if for every $h \in H \setminus \{e\}$ and every non-zero hereditary subalgebra D of C we have

$$\inf\{\alpha_h(d)d \mid d \in D^+, \|d\|=1\}=0.$$

In the context of product systems, there are natural equivalent characterisations, e.g. as aperiodicity of a certain Fell bundle.

> Nadia S. Larsen

Uniqueness theorem for left semidirect products

Theorem (Kwaśniewski-L)

Let $\mathscr{P} = G \rtimes_{\theta} P$ where (G, P, θ) is an algebraic dynamical system. Suppose that either $P^* = \{e\}$ or that the action of $\{\alpha_h\}_{h\in P^*}$ on $A = C^*(G)$ is aperiodic. Assume that M is amenable. Let (π, W) be a Nica covariant representation of (A, P, L) and let Q_p be the projection onto the space $\overline{\pi(A)W_pH}$, $p \in P$. Then there is a surjective homomorphism

$$C^*(\mathscr{P})\mapsto \overline{\operatorname{span}}\{\pi(a)W_pW_q^*\pi(b):a,b\in A\}$$

with $p, q \in P$, which is an isomorphism if for every finite family q_1, \ldots, q_n in $P \setminus P^*$, the representation $a \mapsto \pi(a) \prod_{i=1}^n (1 - Q_{q_i})$ of $C^*(G)$ is faithful. If in addition $G/\theta_p(G)$ is finite for every P, then the converse holds.

> Nadia S. Larsen

Uniqueness theorem for right semidirect products

Form the (right) semidirect product $\mathscr{P} = P_{\vartheta} \ltimes G$ where ϑ is a right action of a right LCM semigroup P on a group G.

> Nadia S. Larsen

Uniqueness theorem for right semidirect products

Form the (right) semidirect product $\mathscr{P} = P_{\vartheta} \ltimes G$ where ϑ is a right action of a right LCM semigroup P on a group G.

Generally, given monoids T, P and a right action $T \stackrel{\vartheta}{\curvearrowleft} P$, the right semidirect product $P_{\vartheta} \ltimes T$, is the semigroup $P \times T$ with composition

 $(p,g)(q,h) = (pq, \vartheta_q(g)h), \quad \text{for } g,h \in T \text{ and } p,q \in P.$

> Nadia S. Larsen

Uniqueness theorem for right semidirect products

Form the (right) semidirect product $\mathscr{P} = P_{\vartheta} \ltimes G$ where ϑ is a right action of a right LCM semigroup P on a group G.

Generally, given monoids T, P and a right action $T \stackrel{\vartheta}{\curvearrowleft} P$, the right semidirect product $P_{\vartheta} \ltimes T$, is the semigroup $P \times T$ with composition

 $(p,g)(q,h) = (pq, \vartheta_q(g)h), \quad \text{for } g,h \in T \text{ and } p,q \in P.$

Lemma

If ϑ is a right action of a right LCM semigroup P on a group G, then $\mathscr{P} = P_{\vartheta} \ltimes G$ is right LCM. Its constructible right ideals satisfy

$$\mathcal{J}(P) \cong \mathcal{J}(P_{\vartheta} \ltimes G) \quad and \quad (P_{\vartheta} \ltimes G)^* = P^*_{\vartheta} \ltimes G.$$

Moreover, $P_{\vartheta} \ltimes G$ is cancellative if and only if P is cancellative and every ϑ_p is injective, $p \in P$.

> Nadia S. Larsen

Uniqueness theorem for right semidirect products

Theorem (Kwaśniewski-L)

Let $\mathscr{P} = P_{\vartheta} \ltimes G$ where ϑ is a right action of a right LCM semigroup P on a group G. Suppose that either $P^* = \{e\}$ or that the action of $\{\alpha_h\}_{h \in P^{*op}}$ on $C^*(G)$ is aperiodic. Assume that the system $(C^*(G), P, \alpha)$ is amenable. For a Nica covariant representation (π, W) of $(C^*(G), P, \alpha)$ there is a canonical surjective homomorphism

$$\mathcal{C}^*(\mathscr{P})\mapsto \overline{\operatorname{span}}\{W_p\pi(a)W_q^*:a\in\mathcal{A}_{p,q},p,q\in P\}$$

with $\mathcal{A}_{p,q} = \alpha_p(C^*(G))C^*(G)\alpha_q(C^*(G))$. This map is an isomorphism if and only if for every finite family q_1, \ldots, q_n in $P \setminus P^*$, the representation $a \mapsto \pi(a)\prod_{i=1}^n (1 - W_{q_i}W_{q_i}^*)$ of $C^*(G)$ is faithful.

> Nadia S. Larsen

Uniqueness theorem for right semidirect products

Theorem (Kwaśniewski-L)

Let $\mathscr{P} = P_{\vartheta} \ltimes G$ where ϑ is a right action of a right LCM semigroup P on a group G. Suppose that either $P^* = \{e\}$ or that the action of $\{\alpha_h\}_{h \in P^{*op}}$ on $C^*(G)$ is aperiodic. Assume that the system $(C^*(G), P, \alpha)$ is amenable. For a Nica covariant representation (π, W) of $(C^*(G), P, \alpha)$ there is a canonical surjective homomorphism

$$\mathcal{C}^*(\mathscr{P})\mapsto \overline{\operatorname{span}}\{W_p\pi(a)W_q^*:a\in\mathcal{A}_{p,q},p,q\in P\}$$

with $\mathcal{A}_{p,q} = \alpha_p(C^*(G))C^*(G)\alpha_q(C^*(G))$. This map is an isomorphism if and only if for every finite family q_1, \ldots, q_n in $P \setminus P^*$, the representation $a \mapsto \pi(a)\prod_{i=1}^n (1 - W_{q_i}W_{q_i}^*)$ of $C^*(G)$ is faithful. Here Nica covariance of (π, W) is determined as Nica covariance of W.

> Nadia S. Larsen

Example: right wreath product

Let Γ be a group and P a cancellative right LCM semigroup.

> Nadia S. Larsen

Example: right wreath product

Let Γ be a group and P a cancellative right LCM semigroup. Put

$$\mathscr{P} := P \wr \Gamma = P_{\vartheta} \ltimes \bigl(\bigoplus_{p \in P} \Gamma\bigr)$$

with the action by left shifts $\vartheta_p((\gamma_r)_{r\in P}) := (\gamma_{rp})_{r\in P}$ for $p \in P$ and $(\gamma_r)_{r\in P} \in G = \bigoplus_{p\in P} \Gamma$. Here, $\vartheta_p \circ \vartheta_q = \vartheta_{qp}$ for all $p, q \in P$. Denote $a\delta_q$ the element in $C^*(G)$ with a in the q-th component and zero elsewhere. Define $\alpha_p(a\delta_q) = a\delta_r$ where rp = q.

> Nadia S. Larsen

Example: right wreath product

Let Γ be a group and P a cancellative right LCM semigroup. Put

$$\mathscr{P} := P \wr \Gamma = P_{\vartheta} \ltimes \bigl(\bigoplus_{p \in P} \Gamma\bigr)$$

with the action by left shifts $\vartheta_p((\gamma_r)_{r\in P}) := (\gamma_{rp})_{r\in P}$ for $p \in P$ and $(\gamma_r)_{r\in P} \in G = \bigoplus_{p\in P} \Gamma$. Here, $\vartheta_p \circ \vartheta_q = \vartheta_{qp}$ for all $p, q \in P$. Denote $a\delta_q$ the element in $C^*(G)$ with a in the q-th component and zero elsewhere. Define $\alpha_p(a\delta_q) = a\delta_r$ where rp = q. Aperiodicity of $\{\alpha_h\}_{h\in P^*\circ P}$ is automatic.
Uniqueness theorems for right LCM semigroup C*-algebras

> Nadia S. Larsen

Example: right wreath product

Let Γ be a group and P a cancellative right LCM semigroup. Put

$$\mathscr{P} := P \wr \Gamma = P_{\vartheta} \ltimes \bigl(\bigoplus_{p \in P} \Gamma\bigr)$$

with the action by left shifts $\vartheta_p((\gamma_r)_{r\in P}) := (\gamma_{rp})_{r\in P}$ for $p \in P$ and $(\gamma_r)_{r\in P} \in G = \bigoplus_{p\in P} \Gamma$. Here, $\vartheta_p \circ \vartheta_q = \vartheta_{qp}$ for all $p, q \in P$. Denote $a\delta_q$ the element in $C^*(G)$ with a in the q-th component and zero elsewhere. Define $\alpha_p(a\delta_q) = a\delta_r$ where rp = q. Aperiodicity of $\{\alpha_h\}_{h\in P^*\circ p}$ is automatic. Suppose W is a Nica covariant isometric representation of P on a Hilbert space H and π a nondeg. representation of $C^*(G)$ on H s.t.

$$W^*_p \pi(a \delta_q) W^*_p = \pi(a \delta_r)$$
 where $rp = q$.

Uniqueness theorems for right LCM semigroup C*-algebras

> Nadia S. Larsen

Example: right wreath product

Let Γ be a group and P a cancellative right LCM semigroup. Put

$$\mathscr{P} := P \wr \Gamma = P_{\vartheta} \ltimes \bigl(\bigoplus_{p \in P} \Gamma\bigr)$$

with the action by left shifts $\vartheta_p((\gamma_r)_{r\in P}) := (\gamma_{rp})_{r\in P}$ for $p \in P$ and $(\gamma_r)_{r\in P} \in G = \bigoplus_{p\in P} \Gamma$. Here, $\vartheta_p \circ \vartheta_q = \vartheta_{qp}$ for all $p, q \in P$. Denote $a\delta_q$ the element in $C^*(G)$ with a in the q-th component and zero elsewhere. Define $\alpha_p(a\delta_q) = a\delta_r$ where rp = q. Aperiodicity of $\{\alpha_h\}_{h\in P^{*\,op}}$ is automatic. Suppose W is a Nica covariant isometric representation of Pon a Hilbert space H and π a nondeg. representation of $C^*(G)$ on H s.t.

$$W_p^*\pi(a\delta_q)W_p^*=\pi(a\delta_r)$$
 where $rp=q$.

Then the repr of $C^*(\mathscr{P})$ is injective iff for every $q_1, \ldots, q_n \in P \setminus P^*$ and $q \in P$, the representation $C^*(\Gamma) \ni a \mapsto \pi(a\delta_q) \prod_{i=1}^n (1 - W_{q_i} W_{q_i}^*)$ is faithful.