```
Nica-Toeplitz
algebras for
product
systems of C*-
correspondences
over right
LCM
semigroups
```

Nica-Toeplitz algebras for product systems of C*-correspondences over right LCM semigroups

Nadia S. Larsen

University of Oslo

"Interactions between Semigroups and Operator Algebras" Workshop at Newcastle, 24-27 July 2017

based on joint work with B. Kwaśniewski

> Nadia S. Larsen

Product systems of C^* -correspondences

Setup (Fowler): \mathscr{P} left cancellative monoid, semigroup

$$X=\bigsqcup_{p\in\mathscr{P}}X_p \ s.t.$$

X_p is a C*-correspondence over (fixed) A, ∀p ∈ P;
 X_p ⊗_A X_q ≅ X_{pq}, x ⊗_A y ↦ xy, ∀p, q ∈ P, p ≠ e;
 X_e = _AA_A, the standard C*-correspondence;
 X_e × X_p → X_p and X_p × X_e → X_p, p ∈ P, are the module actions.

> Nadia S. Larsen

Product systems of C^* -correspondences

Setup (Fowler): \mathscr{P} left cancellative monoid, semigroup

$$X=\bigsqcup_{p\in\mathscr{P}}X_p \ s.t.$$

1 X_p is a C^* -correspondence over (fixed) A, $\forall p \in \mathscr{P}$; **2** $X_p \otimes_A X_q \cong X_{pq}$, $x \otimes_A y \mapsto xy$, $\forall p, q \in \mathscr{P}, p \neq e$; **3** $X_e = {}_A A_A$, the standard C^* -correspondence;

A representation $\psi: X \to B$ is given by Toeplitz representations ψ_p of X_p in B, for all $p \in \mathscr{P}$ s.t.

 $\psi(xy) = \psi(x)\psi(y)$ for all $x \in X_p, y \in X_q$.

> Nadia S. Larsen

Product systems of C^* -correspondences

Setup (Fowler): \mathscr{P} left cancellative monoid, semigroup

$$X=\bigsqcup_{p\in\mathscr{P}}X_p \ s.t.$$

X_p is a C*-correspondence over (fixed) A, ∀p ∈ P;
 X_p ⊗_A X_q ≅ X_{pq}, x ⊗_A y ↦ xy, ∀p, q ∈ P, p ≠ e;
 X_e = _AA_A, the standard C*-correspondence;

A representation $\psi: X \to B$ is given by Toeplitz representations ψ_p of X_p in B, for all $p \in \mathscr{P}$ s.t.

$$\psi(xy) = \psi(x)\psi(y)$$
 for all $x \in X_{\rho}, y \in X_{q}$.

Toeplitz algebra \mathcal{T}_X , universal for representations of X. We are interested in $\mathcal{NT}(X)$, a quotient of \mathcal{T}_X .

> Nadia S. Larsen

Product systems: when \mathcal{P} has units

Suppose $h \in \mathscr{P}^*$. Then there are isomorphisms

$$X_h \otimes_A X_{h^{-1}} \cong {}_A A_A \cong X_{h^{-1}} \otimes_A X_h.$$

> Nadia S. Larsen

Product systems: when \mathcal{P} has units

Suppose $h \in \mathscr{P}^*$. Then there are isomorphisms

$$X_h \otimes_A X_{h^{-1}} \cong {}_A A_A \cong X_{h^{-1}} \otimes_A X_h$$

In particular, X_h and $X_{h^{-1}}$ are mutually adjoint bimodules, i.e. there is an antilinear isometric bijection $\flat_h : X_h \to X_{h^{-1}}$ s.t.

$$\flat_h(ab) = \flat_h(b)a \text{ and } \flat_h(ba) = a\flat_h(b)$$

for all $a \in A$ and $b \in X_h$ (cf. Clare-Crisp-Higson).

> Nadia S. Larsen

Product systems: when \mathcal{P} has units

Suppose $h \in \mathscr{P}^*$. Then there are isomorphisms

$$X_h \otimes_A X_{h^{-1}} \cong {}_A A_A \cong X_{h^{-1}} \otimes_A X_h$$

In particular, X_h and $X_{h^{-1}}$ are mutually adjoint bimodules, i.e. there is an antilinear isometric bijection $\flat_h : X_h \to X_{h^{-1}}$ s.t.

$$\flat_h(ab) = \flat_h(b)a$$
 and $\flat_h(ba) = a\flat_h(b)$

for all $a \in A$ and $b \in X_h$ (cf. Clare-Crisp-Higson).

Consequence: recall $\iota_p^{pq} : \mathcal{L}(X_p) \to \mathcal{L}(X_{pq})$, where $\iota_p^{pq}(T)(xy) = (Tx)y$. Then for $h \in \mathscr{P}^*$,

$$\iota_p^{ph}: \mathcal{L}(X_p) \to \mathcal{L}(X_{ph})$$

is an isomorphism mapping $\mathcal{K}(X_p)$ onto $\mathcal{K}(X_{ph})$.

> Nadia S. Larsen

Product systems of C^* -correspondences

Corollary

For all
$$h \in \mathscr{P}^*$$
, $p, q, r \in \mathscr{P}$, $T_p \in \mathcal{K}(X_p)$, $T_q \in \mathcal{K}(X_q)$,

 $\iota_{\rho}^{r}(T_{\rho})\iota_{q}^{r}(T_{q}) \in \mathcal{K}(X_{r}) \Leftrightarrow \iota_{\rho}^{rh}(T_{\rho})\iota_{q}^{rh}(T_{q}) \in \mathcal{K}(X_{rh}).$

> Nadia S. Larsen

Product systems of C^* -correspondences

Corollary

For all
$$h \in \mathscr{P}^*$$
, $p, q, r \in \mathscr{P}$, $T_p \in \mathcal{K}(X_p)$, $T_q \in \mathcal{K}(X_q)$,

$$\iota_{\rho}^{r}(T_{\rho})\iota_{q}^{r}(T_{q}) \in \mathcal{K}(X_{r}) \Leftrightarrow \iota_{\rho}^{rh}(T_{\rho})\iota_{q}^{rh}(T_{q}) \in \mathcal{K}(X_{rh}).$$

Definition (Fowler (qlo), Brownlowe-L-Stammeier (rLCM)) (a) X is compactly aligned if for all $p, q, r \in \mathscr{P}$ such that $p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P}$ and all $T_p \in \mathcal{K}(X_p), T_q \in \mathcal{K}(X_q)$ we have

 $\iota_p^r(T_p)\iota_q^r(T_q)\in \mathcal{K}(X_r).$

> Nadia S. Larsen

Product systems of C^* -correspondences

Corollary

For all
$$h \in \mathscr{P}^*$$
, $p, q, r \in \mathscr{P}$, $T_p \in \mathcal{K}(X_p)$, $T_q \in \mathcal{K}(X_q)$,

$$\iota_{\rho}^{r}(T_{\rho})\iota_{q}^{r}(T_{q}) \in \mathcal{K}(X_{r}) \Leftrightarrow \iota_{\rho}^{rh}(T_{\rho})\iota_{q}^{rh}(T_{q}) \in \mathcal{K}(X_{rh}).$$

Definition (Fowler (qlo), Brownlowe-L-Stammeier (rLCM)) (a) X is compactly aligned if for all $p, q, r \in \mathscr{P}$ such that $p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P}$ and all $T_p \in \mathcal{K}(X_p), T_q \in \mathcal{K}(X_q)$ we have

$$\iota_p^r(T_p)\iota_q^r(T_q)\in \mathcal{K}(X_r).$$

(b) A representation ψ of X in B is Nica covariant if

$$\psi^{(p)}(T_p)\psi^{(q)}(T_q) = \begin{cases} \psi^{(r)}(\iota_p^r(T_p)\iota_q^r(T_q)) & \text{if } p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P} \\ 0 & \text{otherwise.} \end{cases}$$

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C*-algebra for Nica covariant representations of X,

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C*-algebra for Nica covariant representations of X, more precisely $\mathcal{NT}(X)$ is the C*-algebra generated by a Nica covariant representation i_X which is universal: if $\psi: X \to B$ is Nica covariant there is a *-homomorphism $\psi_*: \mathcal{NT}(X) \to B$ s.t.

$$\psi_* \circ i_X = \psi.$$

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C*-algebra for Nica covariant representations of X, more precisely $\mathcal{NT}(X)$ is the C*-algebra generated by a Nica covariant representation i_X which is universal: if $\psi: X \to B$ is Nica covariant there is a *-homomorphism $\psi_*: \mathcal{NT}(X) \to B$ s.t.

 $\psi_* \circ i_X = \psi.$

Fact: $\mathcal{NT}(X) = \overline{\text{span}}\{i_X(x)i_X(y)^* \mid x, y \in X\}.$

> Nadia S. Larsen

The full Nica-Toeplitz algebra of X

Following Fowler (Sims-Yeend, Carlsen-L-Sims-Vittadello, Brownlowe-L-Stammeier): the Nica Toeplitz algebra $\mathcal{NT}(X)$ of X is the universal C*-algebra for Nica covariant representations of X, more precisely $\mathcal{NT}(X)$ is the C*-algebra generated by a Nica covariant representation i_X which is universal: if $\psi: X \to B$ is Nica covariant there is a *-homomorphism $\psi_*: \mathcal{NT}(X) \to B$ s.t.

$$\psi_* \circ i_X = \psi_*$$

Fact: $\mathcal{NT}(X) = \overline{\text{span}}\{i_X(x)i_X(y)^* \mid x, y \in X\}.$ The Fock representation \mathbb{L} acts in the Hilbert A-module

$$\mathcal{F}(X) = \left\{ (x_p)_{p \in \mathscr{P}} \mid x_p \in X_p, \sum_{p \in \mathscr{P}} \|x_p\|_p^2 < \infty \right\}$$

equipped with the inner product $\langle (x_p)_{p\in\mathscr{P}}, (y_p)_{p\in\mathscr{P}} \rangle = \sum_{p\in\mathscr{P}} \langle x_p, y_p \rangle_p$ and obvious actions; $\mathbb{L}(x)(y_q)_{q\in\mathscr{P}} = (\chi_{p\mathscr{P}}(q) \cdot xy_{p^{-1}q})_{q\in\mathscr{P}}$ for $x \in X_p$.

> Nadia S. Larsen

Product systems of C^* -correspondences

Example (Fowler): crossed products for semigroup dynamical systems $(A, \mathscr{P}, \beta, \omega)$ (forgetting the twist by a T-multiplier ω).

> Nadia S. Larsen

Product systems of C^* -correspondences

Example (Fowler): crossed products for semigroup dynamical systems $(A, \mathscr{P}, \beta, \omega)$ (forgetting the twist by a T-multiplier ω). Covariant pairs (π, V) of (A, \mathscr{P}, β) with V partial isometric representation of \mathscr{P} : for all $a \in A, p \in \mathscr{P}$,

$$\pi(eta_p(a)) = V_p \pi(a) V_p^*$$

and

$$V_p^*V_p\pi(a)=\pi(a)V_p^*V_p.$$

> Nadia S. Larsen

Product systems of C^* -correspondences

Example (Fowler): crossed products for semigroup dynamical systems $(A, \mathcal{P}, \beta, \omega)$ (forgetting the twist by a T-multiplier ω). Covariant pairs (π, V) of (A, \mathcal{P}, β) with V partial isometric representation of \mathcal{P} : for all $a \in A, p \in \mathcal{P}$,

$$\pi(eta_{p}(a)) = V_{p}\pi(a)V_{p}^{*}$$

and

$$V_p^*V_p\pi(a)=\pi(a)V_p^*V_p.$$

The Toeplitz crossed product $\mathcal{T}(A \rtimes_{\beta} \mathscr{P})$ is \mathcal{T}_X for the product system with $X_p := \{p\} \times \beta_p(1)A$, actions

$$(p,x) \cdot a = (p,xa), a \cdot (p,x) = (p,\beta_p(a))$$

and inner product $\langle (p, x), (p, y) \rangle = x^* y$.

> Nadia S. Larsen

Product systems of C^* -correspondences

Example (Fowler): crossed products for semigroup dynamical systems $(A, \mathcal{P}, \beta, \omega)$ (forgetting the twist by a T-multiplier ω). Covariant pairs (π, V) of (A, \mathcal{P}, β) with V partial isometric representation of \mathcal{P} : for all $a \in A, p \in \mathcal{P}$,

$$\pi(eta_p(a)) = V_p \pi(a) V_p^*$$

and

$$V_p^*V_p\pi(a)=\pi(a)V_p^*V_p.$$

The Toeplitz crossed product $\mathcal{T}(A \rtimes_{\beta} \mathscr{P})$ is \mathcal{T}_X for the product system with $X_p := \{p\} \times \beta_p(1)A$, actions

$$(p,x) \cdot a = (p,xa), a \cdot (p,x) = (p,\beta_p(a))$$

and inner product $\langle (p, x), (p, y) \rangle = x^* y$. Unfortunately not much known about $\mathcal{T}(A \rtimes_{\beta} \mathscr{P})$. Possible $\mathcal{T}(A \rtimes_{\beta, r} \mathscr{P})$.

> Nadia S. Larsen

Some preparation

Amenability in this talk means one of two properties:

> Nadia S. Larsen

Some preparation

Amenability in this talk means one of two properties:

(i) The obvious (meaningful) regular representation of a universally defined C^* -algebra is injective.

(ii) A "canonical" conditional expectation Φ on a C^* -algebra C to a subalgebra D, i.e. a linear map with module-type properties with respect to $D \subseteq C$, is faithful on positive elements. This means $\Phi(c^*c) = 0$ in D implies c = 0 in C.

> Nadia S. Larsen

Some preparation

Amenability in this talk means one of two properties:

(i) The obvious (meaningful) regular representation of a universally defined C^* -algebra is injective.

(ii) A "canonical" conditional expectation Φ on a C^* -algebra C to a subalgebra D, i.e. a linear map with module-type properties with respect to $D \subseteq C$, is faithful on positive elements. This means $\Phi(c^*c) = 0$ in D implies c = 0 in C.

Given $(\mathscr{G}, \mathscr{P})$ qlo, let $B_{\mathscr{P}}$ be the subalgebra of $\ell^{\infty}(\mathscr{P})$ generated by (even spanned by) $\mathbb{1}_p$, the characteristic function of $p\mathscr{P}$. Let τ be the translation action of \mathscr{P} on $B_{\mathscr{P}}$.

> Nadia S. Larsen

Some preparation

Amenability in this talk means one of two properties:

(i) The obvious (meaningful) regular representation of a universally defined C^* -algebra is injective.

(ii) A "canonical" conditional expectation Φ on a C^* -algebra C to a subalgebra D, i.e. a linear map with module-type properties with respect to $D \subseteq C$, is faithful on positive elements. This means $\Phi(c^*c) = 0$ in D implies c = 0 in C.

Given $(\mathscr{G}, \mathscr{P})$ qlo, let $B_{\mathscr{P}}$ be the subalgebra of $\ell^{\infty}(\mathscr{P})$ generated by (even spanned by) $\mathbb{1}_p$, the characteristic function of $p\mathscr{P}$. Let τ be the translation action of \mathscr{P} on $B_{\mathscr{P}}$.

Given a product system X over \mathscr{P} of C^* -correspondences over A, it is possible to define a crossed product for $(B_{\mathscr{P}}, \mathscr{P}, \tau, X)$ by forming 'covariant pairs' (L^{ψ}, ψ) with ψ repres. of X.

> Nadia S. Larsen

Fowler's uniqueness theorem

Theorem (Fowler '02, Theorem 7.2)

Let X be compactly aligned over $(\mathscr{G}, \mathscr{P})$ qlo with every X_p , $p \in \mathscr{P}$ essential such that the dynamical system twisted by a product system $(B_{\mathscr{P}}, \mathscr{P}, \tau, X)$ is amenable. Let ψ be a Nica covariant representation of X on a Hilbert space H, denote $\mathbb{1}_p$ the canonical projections that span $B_{\mathscr{P}}$ and let L^{ψ} be the representation of $B_{\mathscr{P}}$ which yields a representation $L^{\psi} \times \psi$ of $B_{\mathscr{P}} \rtimes_{\tau, X} \mathscr{P}$. Then $L^{\psi} \times \psi$ is faithful iff

$$orall n \geq 1, orall p_1, \dots, p_n \in \mathscr{P} \setminus \{e\}, \ a \mapsto \psi_e(a) \prod_{k=1}^n (1 - \mathcal{L}^\psi(\mathbb{1}_{p_k}))$$

is a faithful representation of A.

> Nadia S. Larsen

Fowler's uniqueness theorem

Theorem (Fowler '02, Theorem 7.2)

Let X be compactly aligned over $(\mathscr{G}, \mathscr{P})$ qlo with every X_p , $p \in \mathscr{P}$ essential such that the dynamical system twisted by a product system $(B_{\mathscr{P}}, \mathscr{P}, \tau, X)$ is amenable. Let ψ be a Nica covariant representation of X on a Hilbert space H, denote $\mathbb{1}_p$ the canonical projections that span $B_{\mathscr{P}}$ and let L^{ψ} be the representation of $B_{\mathscr{P}}$ which yields a representation $L^{\psi} \times \psi$ of $B_{\mathscr{P}} \rtimes_{\tau,X} \mathscr{P}$. Then $L^{\psi} \times \psi$ is faithful iff

$$orall n \geq 1, orall p_1, \dots, p_n \in \mathscr{P} \setminus \{e\}, \ a \mapsto \psi_e(a) \prod_{k=1}^n (1 - L^\psi(\mathbb{1}_{p_k}))$$

is a faithful representation of A. Mystery: Where is $\mathcal{NT}(X)$? How about its representations?

> Nadia S. Larsen

Fowler's uniqueness theorem: some explanation

Fact: $B_{\mathscr{P}} \rtimes_{\tau,X} \mathscr{P}$ is generated by a canonical pair formed of ρ , a representation of $B_{\mathscr{P}}$ and i_X , a Nica covariant representation of X.

Fowler's uniqueness theorem: some explanation

Fact: $B_{\mathscr{P}} \rtimes_{\tau,X} \mathscr{P}$ is generated by a canonical pair formed of ρ , a representation of $B_{\mathscr{P}}$ and i_X , a Nica covariant representation of X.

In truth, $B_{\mathscr{P}} \rtimes_{\tau,X} \mathscr{P}$ is defined for a not necessarily compactly aligned product system over qlo pair, and i_X is then just a representation of X.

Fact: $B_{\mathscr{P}} \rtimes_{\tau,X} \mathscr{P}$ is generated by a canonical pair formed of ρ , a representation of $B_{\mathscr{P}}$ and i_X , a Nica covariant representation of X.

In truth, $B_{\mathscr{P}} \rtimes_{\tau,X} \mathscr{P}$ is defined for a not necessarily compactly aligned product system over qlo pair, and i_X is then just a representation of X.

For compactly aligned X over a qlo pair, we have

$$\begin{split} \mathcal{NT}(X) &= \overline{\operatorname{span}}\{i_X(x)i_X(y)^* \mid x, y \in X\}\\ B_{\mathscr{P}} \rtimes_{\tau, X} \mathscr{P} &= \overline{\operatorname{span}}\{i_X(x)\rho(\mathbb{1}_p)i_X(y)^* \mid x, y \in X, p \in \mathscr{P}\}. \end{split}$$

Fact: $B_{\mathscr{P}} \rtimes_{\tau,X} \mathscr{P}$ is generated by a canonical pair formed of ρ , a representation of $B_{\mathscr{P}}$ and i_X , a Nica covariant representation of X.

In truth, $B_{\mathscr{P}} \rtimes_{\tau,X} \mathscr{P}$ is defined for a not necessarily compactly aligned product system over qlo pair, and i_X is then just a representation of X.

For compactly aligned X over a qlo pair, we have

$$\mathcal{NT}(X) = \overline{\operatorname{span}}\{i_X(x)i_X(y)^* \mid x, y \in X\}$$
$$B_{\mathscr{P}} \rtimes_{\tau, X} \mathscr{P} = \overline{\operatorname{span}}\{i_X(x)\rho(\mathbb{1}_p)i_X(y)^* \mid x, y \in X, p \in \mathscr{P}\}.$$

Fact (Fowler): $\mathcal{B}_{\mathscr{P}} \rtimes_{\tau,X} \mathscr{P} = \mathcal{NT}(X)$ when all left actions of A in X_p for $p \in \mathscr{P}$ are by generalised compacts.

> Nadia S. Larsen

C^* -precategories from product systems

X: product system over a left cancel. monoid \mathscr{P} with coefficients in a C^* -algebra A. Put

> Nadia S. Larsen

C*-precategories from product systems

X: product system over a left cancel. monoid \mathscr{P} with coefficients in a C*-algebra A. Put

$$\mathcal{L}_X(p,q) := egin{cases} \mathcal{L}(X_q,X_p), & ext{ if } p,q\in\mathscr{P}\setminus\{e\}, \ \mathcal{K}(X_q,X_p), & ext{ otherwise.} \end{cases}$$

> Nadia S. Larsen

C*-precategories from product systems

X: product system over a left cancel. monoid \mathscr{P} with coefficients in a C*-algebra A. Put

$$\mathcal{L}_X(p,q) := egin{cases} \mathcal{L}(X_q,X_p), & ext{ if } p,q \in \mathscr{P} \setminus \{e\}, \ \mathcal{K}(X_q,X_p), & ext{ otherwise.} \end{cases}$$

Further

1
$$\mathcal{L}_X(p, e) = \mathcal{K}(X_e, X_p) \cong X_p$$
 via $x \to t_x$ for $t_x(a) = x \cdot a$;
2 $\mathcal{L}_X(e, q) \cong \widetilde{X}_q$ with \widetilde{X}_q dual correspondence.

> Nadia S. Larsen

C*-precategories from product systems

X: product system over a left cancel. monoid \mathscr{P} with coefficients in a C*-algebra A. Put

$$\mathcal{L}_X(p,q) := egin{cases} \mathcal{L}(X_q,X_p), & ext{ if } p,q \in \mathscr{P} \setminus \{e\}, \ \mathcal{K}(X_q,X_p), & ext{ otherwise.} \end{cases}$$

Further

\$\mathcal{L}_X(p,e) = \mathcal{K}(X_e, X_p) \cong X_p\$ via \$x → t_x\$ for \$t_x(a) = x · a\$;
 \$\mathcal{L}_X(e,q) \cong \tilde{X}_q\$ with \$\tilde{X}_q\$ dual correspondence.
 Well-defined product of Banach spaces for \$p,q,t ∈ \$\mathcal{P}\$

$$\mathcal{L}_X(p,q) imes \mathcal{L}_X(q,t) o \mathcal{L}_X(p,t)$$
 s.t.

 $\|ab\| \leq \|a\| \cdot \|b\|$ for $a \in \mathcal{L}_X(p,q), b \in \mathcal{L}_X(q,t).$

> Nadia S. Larsen

C*-precategories from product systems

X: product system over a left cancel. monoid \mathscr{P} with coefficients in a C*-algebra A. Put

$$\mathcal{L}_X(p,q) := egin{cases} \mathcal{L}(X_q,X_p), & ext{ if } p,q \in \mathscr{P} \setminus \{e\}, \ \mathcal{K}(X_q,X_p), & ext{ otherwise.} \end{cases}$$

Further

\$\mathcal{L}_X(p,e) = \mathcal{K}(X_e, X_p) \cong X_p\$ via \$x → t_x\$ for \$t_x(a) = x · a\$;
 \$\mathcal{L}_X(e,q) \cong \tilde{X}_q\$ with \$\tilde{X}_q\$ dual correspondence.
 Well-defined product of Banach spaces for \$p, q, t ∈ \$\mathcal{P}\$

 $\mathcal{L}_X(p,q) imes \mathcal{L}_X(q,t) o \mathcal{L}_X(p,t)$ s.t.

 $\|ab\| \leq \|a\| \cdot \|b\|$ for $a \in \mathcal{L}_X(p,q), b \in \mathcal{L}_X(q,t).$

Adjoint * : $\mathcal{L}_X(p,q) \to \mathcal{L}_X(q,p)$ for all p,q; every $\mathcal{L}_X(p,p)$ is a C*-algebra. Then $\mathcal{L} = {\mathcal{L}_X(p,q)}_{p,q \in \mathscr{P}}$ is a C*-precategory.

> Nadia S. Larsen

Another C^* -precategory from product systems

X: product system over \mathscr{P} with coefficients in A. Recall

$$\mathcal{L} = \{\mathcal{L}_X(p,q)\}_{p,q\in\mathscr{P}} \text{ for } \mathcal{L}_X(p,q) = \mathcal{L}(X_q,X_p)$$

 $\text{ if } p,q\in \mathscr{P}\setminus\{e\}, \ \mathcal{L}_X(p,e)=\mathcal{K}(X_e,X_p)\cong X_p, \ \mathcal{L}_X(e,q)\cong \widetilde{X}_q.$

> Nadia S. Larsen

Another C^* -precategory from product systems

X: product system over \mathscr{P} with coefficients in A. Recall

$$\mathcal{L} = \{\mathcal{L}_X(p,q)\}_{p,q\in\mathscr{P}} ext{ for } \mathcal{L}_X(p,q) = \mathcal{L}(X_q,X_p)$$

 $\begin{array}{l} \text{if } p,q\in\mathscr{P}\setminus\{e\},\ \mathcal{L}_X(p,e)=\mathcal{K}(X_e,X_p)\cong X_p,\ \mathcal{L}_X(e,q)\cong \widetilde{X}_q.\\ \text{New } \mathcal{C}^*\text{-precategory }\mathcal{K}=\{\mathcal{K}_X(p,q)\}_{p,q\in\mathscr{P}} \text{ where } \end{array}$

 $\mathcal{K}_X(p,q) := \mathcal{K}(X_q, X_p)$ for all $p, q \in \mathscr{P}$.

> Nadia S. Larsen

Another C^* -precategory from product systems

X: product system over \mathscr{P} with coefficients in A. Recall

$$\mathcal{L} = \{\mathcal{L}_X(p,q)\}_{p,q\in\mathscr{P}} ext{ for } \mathcal{L}_X(p,q) = \mathcal{L}(X_q,X_p)$$

 $\begin{array}{l} \text{if } p,q\in\mathscr{P}\setminus\{e\},\ \mathcal{L}_X(p,e)=\mathcal{K}(X_e,X_p)\cong X_p,\ \mathcal{L}_X(e,q)\cong\widetilde{X}_q.\\ \text{New } \mathcal{C}^*\text{-precategory }\mathcal{K}=\{\mathcal{K}_X(p,q)\}_{p,q\in\mathscr{P}} \text{ where } \end{array}$

 $\mathcal{K}_X(p,q) := \mathcal{K}(X_q, X_p)$ for all $p, q \in \mathscr{P}$.

Say that \mathcal{K} is an ideal in \mathcal{L} , even *essential*, i.e. $\mathcal{K}_X(p, p)$ essential ideal in $\mathcal{L}_X(p, p)$ for all p.
> Nadia S. Larsen

Another C^* -precategory from product systems

X: product system over \mathscr{P} with coefficients in A. Recall

$$\mathcal{L} = \{\mathcal{L}_X(p,q)\}_{p,q\in\mathscr{P}} ext{ for } \mathcal{L}_X(p,q) = \mathcal{L}(X_q,X_p)$$

 $\begin{array}{l} \text{if } p,q\in\mathscr{P}\setminus\{e\},\ \mathcal{L}_X(p,e)=\mathcal{K}(X_e,X_p)\cong X_p,\ \mathcal{L}_X(e,q)\cong\widetilde{X}_q.\\ \text{New } \mathcal{C}^*\text{-precategory }\mathcal{K}=\{\mathcal{K}_X(p,q)\}_{p,q\in\mathscr{P}} \text{ where } \end{array}$

$$\mathcal{K}_X(p,q) := \mathcal{K}(X_q, X_p)$$
 for all $p, q \in \mathscr{P}$.

Say that \mathcal{K} is an ideal in \mathcal{L} , even *essential*, i.e. $\mathcal{K}_X(p, p)$ essential ideal in $\mathcal{L}_X(p, p)$ for all p.

Aim: for \mathscr{P} right LCM, define Nica-Toeplitz C^* -algebras for \mathcal{L} and \mathcal{K} and compare with $\mathcal{NT}(X)$.

> Nadia S. Larsen

Another C^* -precategory from product systems

X: product system over \mathscr{P} with coefficients in A. Recall

$$\mathcal{L} = \{\mathcal{L}_X(p,q)\}_{p,q\in\mathscr{P}} ext{ for } \mathcal{L}_X(p,q) = \mathcal{L}(X_q,X_p)$$

 $\begin{array}{l} \text{if } p,q\in\mathscr{P}\setminus\{e\},\ \mathcal{L}_X(p,e)=\mathcal{K}(X_e,X_p)\cong X_p,\ \mathcal{L}_X(e,q)\cong\widetilde{X}_q.\\ \text{New } \mathcal{C}^*\text{-precategory }\mathcal{K}=\{\mathcal{K}_X(p,q)\}_{p,q\in\mathscr{P}} \text{ where } \end{array}$

$$\mathcal{K}_X(p,q) := \mathcal{K}(X_q,X_p)$$
 for all $p,q \in \mathscr{P}$.

Say that \mathcal{K} is an ideal in \mathcal{L} , even *essential*, i.e. $\mathcal{K}_X(p, p)$ essential ideal in $\mathcal{L}_X(p, p)$ for all p.

Aim: for \mathscr{P} right LCM, define Nica-Toeplitz C^* -algebras for \mathcal{L} and \mathcal{K} and compare with $\mathcal{NT}(X)$. Worthwhile doing both at once to get uniqueness theorems.

> Nadia S. Larsen

C^* -precategories

Definition

(Ghez-Lima-Roberts, Kwaśniewski) A C*-precategory is a collection of Banach spaces $\{\mathcal{L}(p,q)\}_{p,q\in P}$, viewed as morphisms, equipped with bilinear maps, viewed as composition of morphisms,

 $\mathcal{L}(p,q) imes \mathcal{L}(q,r)
i (a,b)
ightarrow ab \in \mathcal{L}(p,r), p,q,r \in P,$

satisfying $||ab|| \le ||a|| \cdot ||b||$, and an antilinear involutive contravariant map $* : \mathcal{L} \to \mathcal{L}$ s.t.

$$a \in \mathcal{L}(p,q) \Rightarrow a^* \in \mathcal{L}(q,p)$$

and $||a^*a|| = ||a||^2$ holds. In particular, $\mathcal{L}(p, p)$ is a C^* -algebra, and we require that for every $a \in \mathcal{L}(q, p)$ the element a^*a is positive in the C^* -algebra $\mathcal{L}(p, p)$. We say \mathcal{L} is C^* -category if \mathcal{L} is a category.

> Nadia S. Larsen

Right tensoring on C^* -precategories

Recall homomorphisms
$$\iota_p^{pq} : \mathcal{L}(X_p, X_p) \to \mathcal{L}(X_{pq}, X_{pq})$$
,

$$\iota_p^{pq}(T)(xy) = (Tx)y. \tag{1}$$

> Nadia S. Larsen

Right tensoring on C^* -precategories

Recall homomorphisms
$$\iota_p^{pq} : \mathcal{L}(X_p, X_p) \to \mathcal{L}(X_{pq}, X_{pq}),$$

 $\iota_p^{pq}(T)(xy) = (Tx)y.$ (1)

For
$$q \neq e$$
 define $\iota_{p,q}^{pr,qr} : \mathcal{L}(X_q, X_p) \to \mathcal{L}(X_{qr}, X_{pr})$ by
 $\iota_{p,q}^{pr,qr}(T)(xy) := (Tx)y$ (2)

for $x \in X_q, y \in X_r$ and $T \in \mathcal{L}(X_q, X_p)$.

> Nadia S. Larsen

Right tensoring on C^* -precategories

Recall homomorphisms
$$\iota_p^{pq} : \mathcal{L}(X_p, X_p) \to \mathcal{L}(X_{pq}, X_{pq}),$$

 $\iota_p^{pq}(T)(xy) = (Tx)y.$ (1)

For
$$q \neq e$$
 define $\iota_{p,q}^{pr,qr} : \mathcal{L}(X_q, X_p) \to \mathcal{L}(X_{qr}, X_{pr})$ by
 $\iota_{p,q}^{pr,qr}(T)(xy) := (Tx)y$ (2)

for
$$x \in X_q, y \in X_r$$
 and $T \in \mathcal{L}(X_q, X_p)$.
For $q = e$ let $\iota_{p,e}^{pr,r} : \mathcal{K}(X_e, X_p) \to \mathcal{L}(X_r, X_{pr})$ by

$$\iota_{p,e}^{pr,r}(t_x)(y) = xy.$$

> Nadia S. Larsen

Right tensoring on C^* -precategories

Recall homomorphisms
$$\iota_p^{pq} : \mathcal{L}(X_p, X_p) \to \mathcal{L}(X_{pq}, X_{pq}),$$

 $\iota_p^{pq}(T)(xy) = (Tx)y.$ (1)

For
$$q \neq e$$
 define $\iota_{p,q}^{pr,qr} : \mathcal{L}(X_q, X_p) \to \mathcal{L}(X_{qr}, X_{pr})$ by
 $\iota_{p,q}^{pr,qr}(T)(xy) := (Tx)y$ (2)

for
$$x \in X_q, y \in X_r$$
 and $T \in \mathcal{L}(X_q, X_p)$.
For $q = e$ let $\iota_{p,e}^{pr,r} : \mathcal{K}(X_e, X_p) \to \mathcal{L}(X_r, X_{pr})$ by

$$\iota_{p,e}^{pr,r}(t_x)(y)=xy.$$

Write $T \otimes 1_r := \iota_{p,q}^{pr,qr}(T)$ and $t_x \otimes 1_r := \iota_{p,e}^{pr,r}$ using $X_q \otimes_A X_r \cong X_{qr}$ and $X_e \otimes_A X_r \to X_r$ etc. Say $\{\otimes 1_r\}_{r \in \mathscr{P}}$ is a right tensoring on \mathcal{L} .

> Nadia S. Larsen

Properties of right tensoring on C^* -precategories

Recall the map
$$\iota_{p,q}^{pr,qr}: \mathcal{L}(X_q,X_p) \to \mathcal{L}(X_{qr},X_{pr}),$$

 $T \otimes 1_r := \iota_{p,q}^{pr,qr}(T)$

with $\iota_{p,q}^{pr,qr}(T)(xy) := (Tx)y$.

Nadia S. Larsen

Properties of right tensoring on C^* -precategories

Recall the map
$$\iota_{p,q}^{pr,qr} : \mathcal{L}(X_q, X_p) \to \mathcal{L}(X_{qr}, X_{pr}),$$

 $T \otimes 1_r := \iota_{p,q}^{pr,qr}(T)$

with $\iota_{p,q}^{pr,qr}(T)(xy) := (Tx)y$.

In general, a right tensoring on L = {L(p,q)}_{p,q∈𝒫} satisfies
(a ⊗ 1_r) ⊗ 1_s = a ⊗ 1_{rs}, p, r ∈ 𝒫, a ∈ L(p,q),
(a ⊗ 1_r)* = a* ⊗ 1_r,
(a ⊗ 1_r)(b ⊗ 1_r) = (ab ⊗ 1_r), b ∈ L(q, s).

Nadia S. Larsen

Properties of right tensoring on C^* -precategories

Recall the map
$$\iota_{p,q}^{pr,qr} : \mathcal{L}(X_q, X_p) \to \mathcal{L}(X_{qr}, X_{pr}),$$

 $T \otimes 1_r := \iota_{p,q}^{pr,qr}(T)$

with $\iota_{p,q}^{pr,qr}(T)(xy) := (Tx)y$.

In general, a right tensoring on L = {L(p,q)}_{p,q∈𝒫} satisfies
(a ⊗ 1_r) ⊗ 1_s = a ⊗ 1_{rs}, p, r ∈ 𝒫, a ∈ L(p,q),
(a ⊗ 1_r)* = a* ⊗ 1_r,
(a ⊗ 1_r)(b ⊗ 1_r) = (ab ⊗ 1_r), b ∈ L(q, s).

An ideal \mathcal{K} in \mathcal{L} is \otimes -invariant (think action by compacts) if

$$\mathcal{K}(p,q)\otimes 1_r\subset \mathcal{K}(pr,qr) \; orall p,q,r\in \mathscr{P}.$$

Nadia S. Larsen

Properties of right tensoring on C^* -precategories

Recall the map
$$\iota_{p,q}^{pr,qr} : \mathcal{L}(X_q, X_p) \to \mathcal{L}(X_{qr}, X_{pr}),$$

 $T \otimes 1_r := \iota_{p,q}^{pr,qr}(T)$

with $\iota_{p,q}^{pr,qr}(T)(xy) := (Tx)y$.

In general, a right tensoring on $\mathcal{L} = \{\mathcal{L}(p,q)\}_{p,q\in\mathscr{P}}$ satisfies **1** $(a \otimes 1_r) \otimes 1_s = a \otimes 1_{rs}, p, r \in \mathscr{P}, a \in \mathcal{L}(p,q),$ **2** $(a \otimes 1_r)^* = a^* \otimes 1_r,$ **3** $(a \otimes 1_r)(b \otimes 1_r) = (ab \otimes 1_r), b \in \mathcal{L}(q,s).$

An ideal \mathcal{K} in \mathcal{L} is \otimes -invariant (think action by compacts) if

$$\mathcal{K}(p,q)\otimes 1_r\subset \mathcal{K}(pr,qr) \; \forall p,q,r\in \mathscr{P}.$$

 ${\mathcal K}$ is well-aligned (think compactly aligned) in ${\mathcal L}$ if

$$(a \otimes 1_{p^{-1}r})(b \otimes 1_{q^{-1}r}) \in \mathcal{K}(r,r) \text{ if } p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P}.$$

> Nadia S. Larsen

Properties of right tensoring on C^* -precategories

Recall the map
$$\iota_{p,q}^{pr,qr} : \mathcal{L}(X_q, X_p) \to \mathcal{L}(X_{qr}, X_{pr}),$$

 $T \otimes 1_r := \iota_{p,q}^{pr,qr}(T)$

with $\iota_{p,q}^{pr,qr}(T)(xy) := (Tx)y$.

In general, a right tensoring on $\mathcal{L} = \{\mathcal{L}(p,q)\}_{p,q\in\mathscr{P}}$ satisfies **1** $(a \otimes 1_r) \otimes 1_s = a \otimes 1_{rs}, p, r \in \mathscr{P}, a \in \mathcal{L}(p,q),$ **2** $(a \otimes 1_r)^* = a^* \otimes 1_r,$ **3** $(a \otimes 1_r)(b \otimes 1_r) = (ab \otimes 1_r), b \in \mathcal{L}(q,s).$

An ideal \mathcal{K} in \mathcal{L} is \otimes -invariant (think action by compacts) if

$$\mathcal{K}(p,q)\otimes 1_r\subset \mathcal{K}(pr,qr) \; \forall p,q,r\in \mathscr{P}.$$

 ${\cal K}$ is well-aligned (think compactly aligned) in ${\cal L}$ if

$$(a \otimes 1_{p^{-1}r})(b \otimes 1_{q^{-1}r}) \in \mathcal{K}(r,r) \text{ if } p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P}.$$

Now introduce representations of \mathcal{L} and of \mathcal{K} .

> Nadia S. Larsen

Representations of C^* -precategories I

Given $\mathcal{L} = {\mathcal{L}(p,q)}_{p,q\in\mathscr{P}}$ and a C^* -algebra B. A representation $\Phi : \mathcal{L} \to B$ is a family $\Phi = {\Phi_{p,q}}_{p,q\in\mathscr{P}}$ of linear maps $\Phi_{p,q} : \mathcal{L}(p,q) \to B$ s. t.

 $\Phi_{p,q}(a)^* = \Phi_{q,p}(a^*) \text{ and } \Phi_{p,r}(ab) = \Phi_{p,q}(a)\Phi_{q,r}(b),$

for all $a \in \mathcal{L}(p,q)$, $b \in \mathcal{L}(q,r)$.

> Nadia S. Larsen

Representations of C^* -precategories I

Given $\mathcal{L} = {\mathcal{L}(p,q)}_{p,q\in\mathscr{P}}$ and a C^* -algebra B. A representation $\Phi : \mathcal{L} \to B$ is a family $\Phi = {\Phi_{p,q}}_{p,q\in\mathscr{P}}$ of linear maps $\Phi_{p,q} : \mathcal{L}(p,q) \to B$ s. t.

$$\Phi_{p,q}(a)^* = \Phi_{q,p}(a^*)$$
 and $\Phi_{p,r}(ab) = \Phi_{p,q}(a)\Phi_{q,r}(b),$

for all $a \in \mathcal{L}(p,q)$, $b \in \mathcal{L}(q,r)$. Properties and notation:

1 $\Phi_{p,q}$, $p,q \in \mathscr{P}$, are contractions;

2 $\Phi_{p,p}$, $p \in \mathscr{P}$, are isometric iff injective;

- **3** $C^*(\Phi(\mathcal{L}))$ is the C^* -algebra generated by $\Phi(\mathcal{L}(p,q))$, $p, q \in \mathscr{P}$.
- ④ If *K* is an ideal in *L* and *Ψ* is a representation of *K* on a Hilbert space *H*, there is a unique extension *Ψ* of *Ψ* to a representation of *L* s.t. the essential subspace of *Ψ*_{p,q}, is contained in the essential subspace of *Ψ*_{p,q}, for every *p*, *q* ∈ *P*.

> Nadia S. Larsen

Representations of C^* -precategories II

Suppose $\{\otimes 1_r\}_{r\in\mathscr{P}}$ is a right tensoring on \mathcal{L} and \mathcal{K} is a well-aligned ideal in \mathcal{L} , i.e.

 $(a \otimes 1_{p^{-1}r})(b \otimes 1_{q^{-1}r}) \in \mathcal{K}(r,r) \text{ if } p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P}$

for $a \in \mathcal{K}(p, p)$, $b \in \mathcal{K}(q, q)$.

> Nadia S. Larsen

Representations of C^* -precategories II

Suppose $\{\otimes 1_r\}_{r\in\mathscr{P}}$ is a right tensoring on \mathcal{L} and \mathcal{K} is a well-aligned ideal in \mathcal{L} , i.e.

 $(a \otimes 1_{p^{-1}r})(b \otimes 1_{q^{-1}r}) \in \mathcal{K}(r,r) \text{ if } p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P}$

for
$$a \in \mathcal{K}(p, p)$$
, $b \in \mathcal{K}(q, q)$.

Definition

A representation $\Psi : \mathcal{K} \to B$ is Nica covariant if for all $a \in \mathcal{K}(p,q)$, $b \in \mathcal{K}(s,t)$ we have

$$\Psi(a)\Psi(b) = egin{cases} \Psi\left((a\otimes 1_{q^{-1}r})(b\otimes 1_{s^{-1}r})
ight) & \textit{if } qP\cap sP = rP \\ 0 & \textit{otherwise}, \end{cases}$$

for some $r \in P$.

> Nadia S. Larsen

Representations of C^* -precategories II

Suppose $\{\otimes 1_r\}_{r\in\mathscr{P}}$ is a right tensoring on \mathcal{L} and \mathcal{K} is a well-aligned ideal in \mathcal{L} , i.e.

$$(a \otimes 1_{p^{-1}r})(b \otimes 1_{q^{-1}r}) \in \mathcal{K}(r,r) \text{ if } p\mathscr{P} \cap q\mathscr{P} = r\mathscr{P}$$

for
$$a \in \mathcal{K}(p, p)$$
, $b \in \mathcal{K}(q, q)$.

Definition

A representation $\Psi : \mathcal{K} \to B$ is Nica covariant if for all $a \in \mathcal{K}(p,q)$, $b \in \mathcal{K}(s,t)$ we have

$$\Psi(a)\Psi(b) = egin{cases} \Psi\left((a\otimes 1_{q^{-1}r})(b\otimes 1_{s^{-1}r})
ight) & \textit{if } qP\cap sP = rP \\ 0 & \textit{otherwise}, \end{cases}$$

for some $r \in P$. Are there any Nica covariant reps?

> Nadia S. Larsen

The full and reduced Nica-Toeplitz algebras

The Fock representation of a right tensor C^* -category: defined similarly as for product systems, but generally involves "non-diagonal" fibers. It is Nica covariant.

Nadia S. Larsen

The full and reduced Nica-Toeplitz algebras

The Fock representation of a right tensor C^* -category: defined similarly as for product systems, but generally involves "non-diagonal" fibers. It is Nica covariant.

 $\mathbb L$ acts in the Fock module $\mathcal F_{\mathcal K}:=\bigoplus_{p\in\mathscr P} X_p$ for $X_p:=\mathcal K(p,e)$

$$\mathbb{L}_{p,q}(a)x = egin{cases} (a\otimes 1_{q^{-1}s})x & ext{if } s\in qP, \ 0 & ext{otherwise}, \end{cases}$$

for $a \in \mathcal{K}(p,q)$, $x \in X_s$ and $p,q,s \in P$.

The full and reduced Nica-Toeplitz algebras

algebras for product systems of C*correspondences over right LCM semigroups

Nica-Toeplitz

Nadia S. Larsen The Fock representation of a right tensor C^* -category: defined similarly as for product systems, but generally involves "non-diagonal" fibers. It is Nica covariant.

 $\mathbb L$ acts in the Fock module $\mathcal F_{\mathcal K}:=\bigoplus_{p\in\mathscr P} X_p$ for $X_p:=\mathcal K(p,e)$

$$\mathbb{L}_{p,q}(a)x = egin{cases} (a\otimes 1_{q^{-1}s})x & ext{if } s\in qP, \ 0 & ext{otherwise}, \end{cases}$$

for $a \in \mathcal{K}(p,q)$, $x \in X_s$ and $p,q,s \in P$. The *reduced Nica-Toeplitz algebras* of \mathcal{K} and \mathcal{L} are

 $\mathcal{NT}^r_{\mathcal{L}}(\mathcal{K}):=\mathcal{C}^*(\mathbb{L}(\mathcal{K})) \text{ and } \mathcal{NT}^r(\mathcal{L}):=\mathcal{C}^*(\overline{\mathbb{L}}(\mathcal{L})).$

The full and reduced Nica-Toeplitz algebras

algebras for product systems of C*correspondences over right LCM semigroups

Nica-Toeplitz

Nadia S. Larsen The Fock representation of a right tensor C^* -category: defined similarly as for product systems, but generally involves "non-diagonal" fibers. It is Nica covariant.

 $\mathbb L$ acts in the Fock module $\mathcal F_{\mathcal K}:=\bigoplus_{p\in\mathscr P} X_p$ for $X_p:=\mathcal K(p,e)$

$$\mathbb{L}_{p,q}(a)x = egin{cases} (a\otimes 1_{q^{-1}s})x & ext{if } s\in qP, \ 0 & ext{otherwise}, \end{cases}$$

for $a \in \mathcal{K}(p,q)$, $x \in X_s$ and $p,q,s \in P$. The *reduced Nica-Toeplitz algebras* of \mathcal{K} and \mathcal{L} are

$$\mathcal{NT}^r_\mathcal{L}(\mathcal{K}) := \mathcal{C}^*(\mathbb{L}(\mathcal{K})) ext{ and } \mathcal{NT}^r(\mathcal{L}) := \mathcal{C}^*(\overline{\mathbb{L}}(\mathcal{L})).$$

The full Nica-Toeplitz algebras of ${\mathcal K}$ and of ${\mathcal L}$ are

 $(\mathcal{NT}_{\mathcal{L}}(\mathcal{K}), i_{\mathcal{K}})$ and $(\mathcal{NT}(\mathcal{L}), i_{\mathcal{L}})$

generated by an injective Nica covariant representation $i_{\mathcal{K}}$ and $i_{\mathcal{L}}$, respectively, with a universal property.

> Nadia S. Larsen

The C^* -precategory from a product system

Let X be a product system over a right LCM monoid \mathscr{P} , let

$$\mathcal{L}_X = \{\mathcal{L}_X(p,q)\}_{p,q\in\mathscr{P}} ext{ for } \mathcal{L}_X(p,q) = \mathcal{L}(X_q,X_p)$$

if $p,q \neq e$, $\mathcal{L}_X(p,e) = \mathcal{K}(X_e,X_p)$, $\mathcal{L}_X(e,q) = \mathcal{K}(X_q,X_e)$, let

> Nadia S. Larsen

The C^* -precategory from a product system

Let X be a product system over a right LCM monoid \mathscr{P} , let

$$\mathcal{L}_X = \{\mathcal{L}_X(p,q)\}_{p,q\in\mathscr{P}} ext{ for } \mathcal{L}_X(p,q) = \mathcal{L}(X_q,X_p)$$

if $p, q \neq e$, $\mathcal{L}_X(p, e) = \mathcal{K}(X_e, X_p)$, $\mathcal{L}_X(e, q) = \mathcal{K}(X_q, X_e)$, let $\mathcal{K}_X(p, q) := \mathcal{K}(X_q, X_p)$ for all $p, q \in \mathscr{P}$.

> Nadia S. Larsen

The C^* -precategory from a product system

Let X be a product system over a right LCM monoid \mathscr{P} , let

$$\mathcal{L}_X = \{\mathcal{L}_X(p,q)\}_{p,q\in\mathscr{P}} \text{ for } \mathcal{L}_X(p,q) = \mathcal{L}(X_q,X_p)$$

if $p, q \neq e$, $\mathcal{L}_X(p, e) = \mathcal{K}(X_e, X_p)$, $\mathcal{L}_X(e, q) = \mathcal{K}(X_q, X_e)$, let $\mathcal{K}_X(p, q) := \mathcal{K}(X_q, X_p)$ for all $p, q \in \mathscr{P}$.

Lemma

 \mathcal{K}_X is well-aligned in \mathcal{L}_X iff X is compactly-aligned.

> Nadia S. Larsen

The C^* -precategory from a product system

Let X be a product system over a right LCM monoid \mathscr{P} , let

$$\mathcal{L}_X = \{\mathcal{L}_X(p,q)\}_{p,q\in\mathscr{P}} \text{ for } \mathcal{L}_X(p,q) = \mathcal{L}(X_q,X_p)$$

if $p, q \neq e$, $\mathcal{L}_X(p, e) = \mathcal{K}(X_e, X_p)$, $\mathcal{L}_X(e, q) = \mathcal{K}(X_q, X_e)$, let $\mathcal{K}_X(p, q) := \mathcal{K}(X_q, X_p)$ for all $p, q \in \mathscr{P}$.

Lemma

 \mathcal{K}_X is well-aligned in \mathcal{L}_X iff X is compactly-aligned.

Lemma

There is a 1-1 correspondence given by

 $\Psi_{p,q}(\Theta_{x,y}) = \psi_p(x)\psi_q(y)^*$ between repres. Ψ of \mathcal{K}_X and representations ψ of X. This preserves Nica covariance.

> Nadia S. Larsen

The C^* -precategory from a product system

Let X be a product system over a right LCM monoid \mathscr{P} , let

$$\mathcal{L}_X = \{\mathcal{L}_X(p,q)\}_{p,q\in\mathscr{P}} \text{ for } \mathcal{L}_X(p,q) = \mathcal{L}(X_q,X_p)$$

if $p, q \neq e$, $\mathcal{L}_X(p, e) = \mathcal{K}(X_e, X_p)$, $\mathcal{L}_X(e, q) = \mathcal{K}(X_q, X_e)$, let $\mathcal{K}_X(p, q) := \mathcal{K}(X_q, X_p)$ for all $p, q \in \mathscr{P}$.

Lemma

 \mathcal{K}_X is well-aligned in \mathcal{L}_X iff X is compactly-aligned.

Lemma

There is a 1-1 correspondence given by $\Psi_{p,q}(\Theta_{x,y}) = \psi_p(x)\psi_q(y)^*$ between repres. Ψ of \mathcal{K}_X and

representations ψ of X. This preserves Nica covariance.

Corollary

If X is compactly aligned we have $\mathcal{NT}_{\mathcal{L}_X}(\mathcal{K}_X) \cong \mathcal{NT}(X)$.

> Nadia S. Larsen

New C^* -algebras associated to X

Definition

The reduced Nica-Toeplitz algebra of X is $\mathcal{NT}^{r}(X) := \mathcal{NT}^{r}_{\mathcal{L}_{X}}(\mathcal{K}_{X}).$

> Nadia S. Larsen

New C^* -algebras associated to X

Definition

The reduced Nica-Toeplitz algebra of X is $\mathcal{NT}^{r}(X) := \mathcal{NT}^{r}_{\mathcal{L}_{X}}(\mathcal{K}_{X}).$

Lemma (Doplicher-Roberts type algebra of $\mathcal{NT}(X)$) There is a commutative diagram

in which the map $\overline{\Lambda}$ is injective on the core subalgebra $\overline{\text{span}}\{i_{\mathcal{L}_X}(a): a \in \mathcal{L}_X(p, p), p \in \mathscr{P}\} \text{ of } \mathcal{NT}^r(\mathcal{L}_X) \text{ and } \Lambda \text{ is}$ injective on $\overline{\text{span}}\{i_X(x)i_X(y)^*: x, y \in X\}.$

> Nadia S. Larsen

Towards uniqueness theorems: useful projections

Fix X compactly-aligned over \mathscr{P} rLCM monoid.

> Nadia S. Larsen

Towards uniqueness theorems: useful projections

Fix X compactly-aligned over \mathscr{P} rLCM monoid. Fact/Def. \mathcal{L}_X is amenable if the regular representation

$$\overline{\Lambda}:\mathcal{NT}(\mathcal{L}_X)
ightarrow\mathcal{NT}^r(\mathcal{L}_X)$$

is injective. Similar for \mathcal{K}_X .

> Nadia S. Larsen

Towards uniqueness theorems: useful projections

Fix X compactly-aligned over \mathscr{P} rLCM monoid. Fact/Def. \mathcal{L}_X is amenable if the regular representation

$$\overline{\Lambda}:\mathcal{NT}(\mathcal{L}_X)
ightarrow\mathcal{NT}^r(\mathcal{L}_X)$$

is injective. Similar for \mathcal{K}_X . If $\psi: X \to B(H)$ is a representation of X, let Q_p^{ψ} be the projection in B(H) s.t.

$$Q_p^{\psi}H = egin{cases} \psi^{(p)}(\mathcal{K}(X_p))H & ext{if } p \in P \setminus \{e\}, \ \overline{\psi(X_e)H} & ext{if } p = e. \end{cases}$$

> Nadia S. Larsen

Uniqueness theorems for C^* -algebras from X I

Theorem (Kwaśniewski-L)

Assume \mathcal{K}_X is amenable and \mathscr{P} has no nontrivial units. Given a Nica covariant representation $\psi : X \to B(H)$, consider

1 ψ satisfies condition (C), i.e. $\forall q_1, \ldots, q_n \in \mathscr{P} \setminus \{e\}$,

$$A
i a \mapsto \psi_e(a) \prod_{i=1}^n (1 - Q_{q_i}^{\psi})$$
 is injective.

2 ψ × P is injective on NT(X).
3 ψ is inj. and Toeplitz covariant, i.e. ∀q₁,..., q_n ∈ 𝒫 \ {e},

 $\psi_e(A) \cap \overline{\operatorname{span}}\{\psi^{(q_i)}(\mathcal{K}(X_{q_i})) : i = 1, \dots, n\} = \{0\}.$

Then $(1) \Rightarrow (2) \Rightarrow (3)$, with equivalence if A acts by compacts.

> Nadia S. Larsen

Uniqueness theorems for C^* -algebras from X I

Theorem (Kwaśniewski-L)

Assume \mathcal{K}_X is amenable and \mathscr{P} has no nontrivial units. Given a Nica covariant representation $\psi : X \to B(H)$, consider

1 ψ satisfies condition (C), i.e. $\forall q_1, \ldots, q_n \in \mathscr{P} \setminus \{e\}$,

$$A \ni a \longmapsto \psi_e(a) \prod_{i=1}^n (1 - Q_{q_i}^{\psi})$$
 is injective.

2 ψ × P is injective on NT(X).
3 ψ is inj. and Toeplitz covariant, i.e. ∀q₁,..., q_n ∈ 𝒫 \ {e},

 $\psi_e(A) \cap \overline{\operatorname{span}}\{\psi^{(q_i)}(\mathcal{K}(X_{q_i})) : i = 1, \dots, n\} = \{0\}.$

Then $(1) \Rightarrow (2) \Rightarrow (3)$, with equivalence if A acts by compacts. Remark: Thm holds if $\{X_h \mid h \in \mathscr{P}^*\}$ periodic Fell bundle.

> Nadia S. Larsen

Uniqueness theorems for C^* -algebras from X II

Theorem (Kwaśniewski-L)

Assume \mathcal{L}_X is amenable and \mathscr{P} has no nontrivial units. Given a Nica covariant representation $\psi : X \to B(H)$, TFA

1 ψ satisfies condition (C), i.e. $\forall q_1, \ldots, q_n \in \mathscr{P} \setminus \{e\}$,

$$A \ni a \longmapsto \psi_{e}(a) \prod_{i=1}^{n} (1 - Q_{q_{i}}^{\psi})$$
 is injective.

2 $\overline{\psi \rtimes P}$ is an isomorphism from $\mathcal{NT}(\mathcal{L}_X)$ onto the closed linear span of operators T s.t. $T \in \psi(X_e) \cup \psi(X_e)^*$ or

 $T \in Q_p^{\psi} \mathcal{B}(\mathcal{H}) Q_q^{\psi}, T \psi(X_q) \subseteq \psi(X_p), T^* \psi(X_p) \subseteq \psi(X_q)$ for $p, q \in \mathscr{P} \setminus \{e\}.$

> Nadia S. Larsen

Uniqueness theorems for C^* -algebras from X II

Theorem (Kwaśniewski-L)

Assume \mathcal{L}_X is amenable and \mathscr{P} has no nontrivial units. Given a Nica covariant representation $\psi : X \to B(H)$, TFA

1 ψ satisfies condition (C), i.e. $\forall q_1, \ldots, q_n \in \mathscr{P} \setminus \{e\}$,

$$A \ni a \longmapsto \psi_{e}(a) \prod_{i=1}^{n} (1 - Q_{q_{i}}^{\psi})$$
 is injective.

2 $\overline{\psi \rtimes P}$ is an isomorphism from $\mathcal{NT}(\mathcal{L}_X)$ onto the closed linear span of operators T s.t. $T \in \psi(X_e) \cup \psi(X_e)^*$ or

 $\mathcal{T} \in Q^{\psi}_{p}B(\mathcal{H})Q^{\psi}_{q}, \mathcal{T}\psi(X_{q}) \subseteq \psi(X_{p}), \mathcal{T}^{*}\psi(X_{p}) \subseteq \psi(X_{q})$

for $p, q \in \mathscr{P} \setminus \{e\}$.

The isomorphism in (2) restricts to an isomorphism of $\mathcal{NT}(X)$ onto $\overline{\text{span}}\{\psi(x)\psi(y)^* \mid x, y \in X\}.$

> Nadia S. Larsen

Uniqueness theorems for C^* -algebras from X III

Define
$$\mathcal{FR}(X) = C^*(B_{\mathscr{P}} \cdot \mathcal{NT}(X)) \subseteq \mathcal{NT}(\mathcal{L}_X)$$
. Then $\mathcal{FR}(X) = \mathcal{NT}(X)$ precisely when A acts by gen. compacts.
Nica-Toeplitz algebras for product systems of C*correspondences over right LCM semigroups

> Nadia S. Larsen

Uniqueness theorems for C^* -algebras from X III

Define $\mathcal{FR}(X) = C^*(B_{\mathscr{P}} \cdot \mathcal{NT}(X)) \subseteq \mathcal{NT}(\mathcal{L}_X)$. Then $\mathcal{FR}(X) = \mathcal{NT}(X)$ precisely when A acts by gen. compacts. Fact: when $(\mathscr{G}, \mathscr{P})$ is qlo and all fibers X_p are essential, we have $\mathcal{FR}(X) = B_{\mathscr{P}} \rtimes_{\tau, X} \mathscr{P}$. Nica-Toeplitz algebras for product systems of C*correspondences over right LCM semigroups

> Nadia S. Larsen

Uniqueness theorems for C^* -algebras from X III

Define $\mathcal{FR}(X) = C^*(B_{\mathscr{P}} \cdot \mathcal{NT}(X)) \subseteq \mathcal{NT}(\mathcal{L}_X)$. Then $\mathcal{FR}(X) = \mathcal{NT}(X)$ precisely when A acts by gen. compacts. Fact: when $(\mathscr{G}, \mathscr{P})$ is qlo and all fibers X_p are essential, we have $\mathcal{FR}(X) = B_{\mathscr{P}} \rtimes_{\tau, X} \mathscr{P}$.

Theorem (Kwaśniewski-L)

Assume \mathcal{L}_X is amenable and \mathscr{P} has no nontrivial units. Given a Nica covariant representation $\psi : X \to B(H)$, TFA

1 ψ satisfies condition (C), i.e. $\forall q_1, \ldots, q_n \in \mathscr{P} \setminus \{e\}$,

$$A
i a \mapsto \psi_{e}(a) \prod_{i=1}^{n} (1 - Q_{q_{i}}^{\psi})$$
 is injective.

2 $\mathcal{FR}(X) \cong \overline{\operatorname{span}}\{\psi(x)Q_{\rho}^{\psi}\psi(y) \mid x, y \in X\}.$