# The crux of generalised scales

(partly based on joint work with Afsar-Brownlowe-Larsen)

Nicolai Stammeier

University of Oslo

Interactions Between Semigroups and Operator Algebras





2 A dabbler's working definition









2 A dabbler's working definition

3 Existence and uniqueness I — a child's play



We shall be concerned with right LCM monoids, that is, left cancellative monoids in which the intersection of a pair of principal ideals is either empty or another principal right ideal again.

(a) groups and free (abelian) monoids;

- (a) groups and free (abelian) monoids;
- (b) ax + b-semigroups over semirings, e.g.  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  or  $R \rtimes R^{\times}$ , where R is a principal ideal domain;

- (a) groups and free (abelian) monoids;
- (b) ax + b-semigroups over semirings, e.g.  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  or  $R \rtimes R^{\times}$ , where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids  $BS(c,d)^+ = \langle a,b \mid ab^c = b^d a \rangle$  for positive integers c and d;

- (a) groups and free (abelian) monoids;
- (b) ax + b-semigroups over semirings, e.g.  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  or  $R \rtimes R^{\times}$ , where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids  $BS(c,d)^+ = \langle a,b \mid ab^c = b^d a \rangle$  for positive integers c and d;
- (d) Zappa–Szép products  $X^* \bowtie G$  built from self-similar actions (G, X);

- (a) groups and free (abelian) monoids;
- (b) ax + b-semigroups over semirings, e.g.  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  or  $R \rtimes R^{\times}$ , where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids  $BS(c,d)^+ = \langle a,b \mid ab^c = b^d a \rangle$  for positive integers c and d;
- (d) Zappa–Szép products  $X^* \bowtie G$  built from self-similar actions (G, X);
- (e) graph products of right LCM monoids, e.g. right-angled Artin monoids; and

- (a) groups and free (abelian) monoids;
- (b) ax + b-semigroups over semirings, e.g.  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  or  $R \rtimes R^{\times}$ , where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids  $BS(c,d)^+ = \langle a,b \mid ab^c = b^d a \rangle$  for positive integers c and d;
- (d) Zappa–Szép products  $X^* \bowtie G$  built from self-similar actions (G, X);
- (e) graph products of right LCM monoids, e.g. right-angled Artin monoids; and
- (f) semidirect products  $G \rtimes_{\theta} P$  built from algebraic dynamical systems: G is a group, P a right LCM monoid and  $\theta$  an action by injective group endomorphisms satisfying  $pP \cap qP = rP \Rightarrow \theta_p(G) \cap \theta_q(G) = \theta_r(G)$ ,

- (a) groups and free (abelian) monoids;
- (b) ax + b-semigroups over semirings, e.g.  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  or  $R \rtimes R^{\times}$ , where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids  $BS(c,d)^+ = \langle a,b \mid ab^c = b^d a \rangle$  for positive integers c and d;
- (d) Zappa–Szép products  $X^* \bowtie G$  built from self-similar actions (G, X);
- (e) graph products of right LCM monoids, e.g. right-angled Artin monoids; and
- (f) semidirect products  $G \rtimes_{\theta} P$  built from algebraic dynamical systems: G is a group, P a right LCM monoid and  $\theta$  an action by injective group endomorphisms satisfying  $pP \cap qP = rP \Rightarrow \theta_p(G) \cap \theta_q(G) = \theta_r(G)$ , e.g. Ledrappier's shift in disguise:  $(\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}) \rtimes_{\sigma, \mathrm{id} + \sigma} \mathbb{N}^2$ .

- (a) groups and free (abelian) monoids;
- (b) ax + b-semigroups over semirings, e.g.  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  or  $R \rtimes R^{\times}$ , where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids  $BS(c,d)^+ = \langle a,b \mid ab^c = b^d a \rangle$  for positive integers c and d;
- (d) Zappa–Szép products  $X^* \bowtie G$  built from self-similar actions (G, X);
- (e) graph products of right LCM monoids, e.g. right-angled Artin monoids; and
- (f) semidirect products  $G \rtimes_{\theta} P$  built from algebraic dynamical systems: G is a group, P a right LCM monoid and  $\theta$  an action by injective group endomorphisms satisfying  $pP \cap qP = rP \Rightarrow \theta_p(G) \cap \theta_q(G) = \theta_r(G)$ , e.g. Ledrappier's shift in disguise:  $(\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}) \rtimes_{\sigma, \mathrm{id} + \sigma} \mathbb{N}^2$ .

OK. - So what is a generalised scale and what are the issues?

From now on, S shall denote a right LCM monoid. We call  $s, t \in S$  orthogonal  $(s \perp t)$  if  $sS \cap tS = \emptyset$ . Here is a small dictionary we shall need:

From now on, S shall denote a right LCM monoid. We call  $s, t \in S$  orthogonal  $(s \perp t)$  if  $sS \cap tS = \emptyset$ . Here is a small dictionary we shall need: core subsemigroup:  $S_c := \{a \in S \mid aS \cap sS \neq \emptyset \text{ for all } s \in S\}.$ 

(accurate) foundation set: a finite set  $F \subset S$  such that for all  $s \in S$  there is  $f \in F$  with  $fS \cap sS \neq \emptyset$ . The set F is accurate if its elements are mutually orthogonal.

(accurate) foundation set: a finite set  $F \subset S$  such that for all  $s \in S$  there is  $f \in F$  with  $fS \cap sS \neq \emptyset$ . The set F is accurate if its elements are mutually orthogonal.

property (AR): For every foundation set F, there exists an accurate foundation set  $F_a \subset FS$ .

(accurate) foundation set: a finite set  $F \subset S$  such that for all  $s \in S$  there is  $f \in F$  with  $fS \cap sS \neq \emptyset$ . The set F is accurate if its elements are mutually orthogonal.

property (AR): For every foundation set F, there exists an accurate foundation set  $F_a \subset FS$ .

#### Definition (Afsar–Brownlowe–Larsen–S.)

A nontrivial homomorphism  $N: S \to \mathbb{N}^{\times}$  is a generalised scale if for all  $n \in N(S)$ , every transversal for  $N^{-1}(n)/_{\sim}$  is an accurate foundation set of size n.

Let  $N: S \to \mathbb{N}^{\times}$  be a generalised scale on a right LCM semigroup S.

- (i) The kernel of N is  $S_c$ . In particular,  $S_c \neq S$ .
- (ii) If  $s, t \in S$  satisfy  $N_s = N_t$ , then either  $s \sim t$  or  $s \perp t$ .

(iii) If  $sS \cap tS = rS$ , then the LCM of  $N_s$  and  $N_t$  in N(S) is given by  $N_r$ .

Let  $N: S \to \mathbb{N}^{\times}$  be a generalised scale on a right LCM semigroup S.

(i) The kernel of N is  $S_c$ . In particular,  $S_c \neq S$ .

(ii) If  $s, t \in S$  satisfy  $N_s = N_t$ , then either  $s \sim t$  or  $s \perp t$ .

(iii) If  $sS \cap tS = rS$ , then the LCM of  $N_s$  and  $N_t$  in N(S) is given by  $N_r$ .

Thus if S is a group or a free abelian monoid, it cannot admit a generalised scale because  $S_c = S$ . Also, the free monoid in infinitely many generators  $\mathbb{F}^+_{\infty}$  does not admit a generalised scale.

Let  $N: S \to \mathbb{N}^{\times}$  be a generalised scale on a right LCM semigroup S.

(i) The kernel of N is  $S_c$ . In particular,  $S_c \neq S$ .

(ii) If  $s, t \in S$  satisfy  $N_s = N_t$ , then either  $s \sim t$  or  $s \perp t$ .

(iii) If  $sS \cap tS = rS$ , then the LCM of  $N_s$  and  $N_t$  in N(S) is given by  $N_r$ .

Thus if S is a group or a free abelian monoid, it cannot admit a generalised scale because  $S_c = S$ . Also, the free monoid in infinitely many generators  $\mathbb{F}^+_{\infty}$  does not admit a generalised scale.

#### Example

Let  $\mathbb{F}_n^+ := \langle \{a_i \mid 1 \leq i \leq n\} \rangle$  be the free monoid in  $2 \leq n \leq \infty$  generators. Then  $\mathbb{F}_n^+$  admits a unique generalised scale given by  $a_i \mapsto n$ .

Let  $N: S \to \mathbb{N}^{\times}$  be a generalised scale on a right LCM semigroup S.

- (i) The kernel of N is  $S_c$ . In particular,  $S_c \neq S$ .
- (ii) If  $s, t \in S$  satisfy  $N_s = N_t$ , then either  $s \sim t$  or  $s \perp t$ .

(iii) If  $sS \cap tS = rS$ , then the LCM of  $N_s$  and  $N_t$  in N(S) is given by  $N_r$ .

Thus if S is a group or a free abelian monoid, it cannot admit a generalised scale because  $S_c = S$ . Also, the free monoid in infinitely many generators  $\mathbb{F}^+_{\infty}$  does not admit a generalised scale.

#### Example

Let  $\mathbb{F}_n^+ := \langle \{a_i \mid 1 \leq i \leq n\} \rangle$  be the free monoid in  $2 \leq n \leq \infty$  generators. Then  $\mathbb{F}_n^+$  admits a unique generalised scale given by  $a_i \mapsto n$ .

Sketch of proof: The core of  $\mathbb{F}_n^+$  is trivial. The generators  $a_i$  are mutually orthogonal and irreducible. Thus they need to be mapped to the same value, which has to be n to meet the size constraint.

The monoid  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  admits a unique generalised scale N with  $(m, p) \mapsto p$ .

The monoid  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  admits a unique generalised scale N with  $(m, p) \mapsto p$ .

Sketch of proof: The core is  $\mathbb{N} \times \{1\}$ , so  $N_{(m,p)} = N_{(n,p)}$  for all  $m, n \in \mathbb{N}$ and  $p \in \mathbb{N}^{\times}$ . We have  $(m,p) \perp (n,p)$  unless  $m - n \in p\mathbb{Z}$ , in which case  $(m,p) \sim (n,p)$ .

The monoid  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  admits a unique generalised scale N with  $(m, p) \mapsto p$ .

Sketch of proof: The core is  $\mathbb{N} \times \{1\}$ , so  $N_{(m,p)} = N_{(n,p)}$  for all  $m, n \in \mathbb{N}$ and  $p \in \mathbb{N}^{\times}$ . We have  $(m,p) \perp (n,p)$  unless  $m - n \in p\mathbb{Z}$ , in which case  $(m,p) \sim (n,p)$ . As  $\mathbb{N}^{\times}$  is directed,  $\{(m,p) \mid 0 \leq m \leq p-1\}$  is an accurate foundation set of size p. Thus we get  $N_{(m,p)} = p$  for all  $(m,p) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$ .

The monoid  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  admits a unique generalised scale N with  $(m, p) \mapsto p$ .

Sketch of proof: The core is  $\mathbb{N} \times \{1\}$ , so  $N_{(m,p)} = N_{(n,p)}$  for all  $m, n \in \mathbb{N}$ and  $p \in \mathbb{N}^{\times}$ . We have  $(m, p) \perp (n, p)$  unless  $m - n \in p\mathbb{Z}$ , in which case  $(m, p) \sim (n, p)$ . As  $\mathbb{N}^{\times}$  is directed,  $\{(m, p) \mid 0 \leq m \leq p - 1\}$  is an accurate foundation set of size p. Thus we get  $N_{(m,p)} = p$  for all  $(m, p) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$ .

With the following tool, we gain insights into more examples:

#### Proposition (Afsar–Brownlowe–Larsen–S.)

Suppose S is a Zappa-Szép product  $S=U\bowtie A$  of two right LCM monoids U and A such that for all  $(u,a),(v,b)\in S$ 

$$uU\cap vU=wU\Longrightarrow (u,a)S\cap (v,b)S=(w,c)S$$

for some  $c \in A$ .

The monoid  $\mathbb{N} \rtimes \mathbb{N}^{\times}$  admits a unique generalised scale N with  $(m, p) \mapsto p$ .

Sketch of proof: The core is  $\mathbb{N} \times \{1\}$ , so  $N_{(m,p)} = N_{(n,p)}$  for all  $m, n \in \mathbb{N}$ and  $p \in \mathbb{N}^{\times}$ . We have  $(m, p) \perp (n, p)$  unless  $m - n \in p\mathbb{Z}$ , in which case  $(m, p) \sim (n, p)$ . As  $\mathbb{N}^{\times}$  is directed,  $\{(m, p) \mid 0 \leq m \leq p - 1\}$  is an accurate foundation set of size p. Thus we get  $N_{(m,p)} = p$  for all  $(m, p) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$ .

With the following tool, we gain insights into more examples:

#### Proposition (Afsar–Brownlowe–Larsen–S.)

Suppose S is a Zappa-Szép product  $S=U\bowtie A$  of two right LCM monoids U and A such that for all  $(u,a),(v,b)\in S$ 

$$uU\cap vU=wU\Longrightarrow (u,a)S\cap (v,b)S=(w,c)S$$

for some  $c \in A$ . Then the restriction  $N \mapsto N|_U$  defines a one-to-one correspondence between generalised scales N on S and generalised scales M on U with  $M_{a(u)} = M_u$  for all  $a \in A, u \in U$ .

The Baumslag–Solitar monoid  $BS(c, d)^+ = \langle a, b \mid ab^c = b^d a \rangle$  for  $c, d \in \mathbb{N}^{\times}$  admits a generalised scale if and only if d > 1. For d > 1, the unique generalised scale N is determined by  $N_a = d$  and  $N_b = 1$ .

The Baumslag–Solitar monoid  $BS(c, d)^+ = \langle a, b \mid ab^c = b^d a \rangle$  for  $c, d \in \mathbb{N}^{\times}$  admits a generalised scale if and only if d > 1. For d > 1, the unique generalised scale N is determined by  $N_a = d$  and  $N_b = 1$ .

Sketch of proof:  $BS(c,d)^+ \cong \mathbb{F}_d^+ \bowtie \mathbb{N}$  with  $\mathbb{F}_d^+ \cong \langle \{b^k a \mid 0 \le k \le d-1\} \rangle$ ,  $\mathbb{N} \cong \langle b \rangle$ , together with the natural action and restriction maps.

The Baumslag–Solitar monoid  $BS(c, d)^+ = \langle a, b \mid ab^c = b^d a \rangle$  for  $c, d \in \mathbb{N}^{\times}$  admits a generalised scale if and only if d > 1. For d > 1, the unique generalised scale N is determined by  $N_a = d$  and  $N_b = 1$ .

Sketch of proof:  $BS(c,d)^+ \cong \mathbb{F}_d^+ \bowtie \mathbb{N}$  with  $\mathbb{F}_d^+ \cong \langle \{b^k a \mid 0 \le k \le d-1\} \rangle$ ,  $\mathbb{N} \cong \langle b \rangle$ , together with the natural action and restriction maps.

#### Example

For every self-similar action (G, X) (with the standing assumption  $2 \leq |X| < \infty$ ), the right LCM monoid  $X^* \bowtie G$  admits a unique generalised scale given by  $(w, g) \mapsto |X|^{\ell(w)}$ , where  $\ell \colon X^* \to \mathbb{N}$  denotes the length function for the generating set X of  $X^*$ .





A graph  $\Gamma$  is called coconnected if its opposite graph

$$\Gamma^{\mathsf{opp}} := \left( V, V \times V \setminus (E \cup \{(v, v) \mid v \in V\}) \right)$$



A graph  $\Gamma$  is called coconnected if its opposite graph

$$\Gamma^{\mathsf{opp}} := \left( V, V \times V \setminus (E \cup \{(v, v) \mid v \in V\}) \right)$$



A graph  $\Gamma$  is called coconnected if its opposite graph

$$\Gamma^{\mathsf{opp}} := \left( V, V \times V \setminus (E \cup \{(v, v) \mid v \in V\}) \right)$$



A graph  $\Gamma$  is called coconnected if its opposite graph

$$\Gamma^{\mathsf{opp}} := \left( V, V \times V \setminus (E \cup \{(v, v) \mid v \in V\}) \right)$$



A graph  $\Gamma$  is called coconnected if its opposite graph

$$\Gamma^{\mathsf{opp}} := \left( V, V \times V \setminus (E \cup \{(v, v) \mid v \in V\}) \right)$$



A graph  $\Gamma$  is called coconnected if its opposite graph

$$\Gamma^{\mathsf{opp}} := \left( V, V \times V \setminus (E \cup \{(v, v) \mid v \in V\}) \right)$$

## Theorem (S.)

The right-angled Artin monoid  $A_{\Gamma}^+$  admits a generalised scale N if and only if

- (i)  $\Gamma$  is not the complete graph on V;
- (ii) all coconnected components  $\Gamma_i$  are finite and edge-free; and
- (iii)  $\bigoplus_{i \in I_2} |V_i|$  is rationally independent, where  $I_2 \subset I$  contains all indices whose coconnected components have at least two vertices.
- In this case, N is unique.

## Theorem (S.)

The right-angled Artin monoid  $A_{\Gamma}^+$  admits a generalised scale N if and only if

- (i)  $\Gamma$  is not the complete graph on V;
- (ii) all coconnected components  $\Gamma_i$  are finite and edge-free; and
- (iii)  $\bigoplus_{i \in I_2} |V_i|$  is rationally independent, where  $I_2 \subset I$  contains all indices whose coconnected components have at least two vertices.
- In this case, N is unique.

## Examples



## Theorem (S.)

The right-angled Artin monoid  $A_{\Gamma}^+$  admits a generalised scale N if and only if

- (i)  $\Gamma$  is not the complete graph on V;
- (ii) all coconnected components  $\Gamma_i$  are finite and edge-free; and
- (iii)  $\bigoplus_{i \in I_2} |V_i|$  is rationally independent, where  $I_2 \subset I$  contains all indices whose coconnected components have at least two vertices.
- In this case, N is unique.

# Examples $(a) \xrightarrow{1} (b) \xrightarrow{1} (c) \xrightarrow{1} (d) \xrightarrow{1} (e) \xrightarrow{1}$

 $\mathbb{F}_2^+ \oplus \mathbb{F}_2^+$ 

The central reason behind this rigidity is the absence of property (AR) for the vast majority of right-angled Artin monoids:

## Theorem (S.)

For a graph  $\Gamma$ , the right-angled Artin monoid  $A_{\Gamma}^+$  has property (AR) if and only if every finite coconnected component  $\Gamma_i$  of  $\Gamma$  is edge-free, that is, every finitely generated direct summand of  $A_{\Gamma}^+$  is free. The central reason behind this rigidity is the absence of property (AR) for the vast majority of right-angled Artin monoids:

## Theorem (S.)

For a graph  $\Gamma$ , the right-angled Artin monoid  $A_{\Gamma}^+$  has property (AR) if and only if every finite coconnected component  $\Gamma_i$  of  $\Gamma$  is edge-free, that is, every finitely generated direct summand of  $A_{\Gamma}^+$  is free.

Fix a nonempty set J. We call  $m \in \bigoplus_{j \in J} \{k \in \mathbb{N} \mid 2 \le k < \infty\}$  rationally independent if  $\prod_{j \in J} m_j^{k_j} \neq \prod_{j \in J} m_j^{k'_j}$  for all distinct  $k, k' \in \bigoplus_{j \in J} \mathbb{N}$ .

The central reason behind this rigidity is the absence of property (AR) for the vast majority of right-angled Artin monoids:

## Theorem (S.)

For a graph  $\Gamma$ , the right-angled Artin monoid  $A_{\Gamma}^+$  has property (AR) if and only if every finite coconnected component  $\Gamma_i$  of  $\Gamma$  is edge-free, that is, every finitely generated direct summand of  $A_{\Gamma}^+$  is free.

Fix a nonempty set J. We call  $m \in \bigoplus_{j \in J} \{k \in \mathbb{N} \mid 2 \le k < \infty\}$  rationally independent if  $\prod_{j \in J} m_j^{k_j} \neq \prod_{j \in J} m_j^{k'_j}$  for all distinct  $k, k' \in \bigoplus_{j \in J} \mathbb{N}$ .

## Proposition (S.)

Suppose  $m \in \bigoplus_{j \in J} \{k \in \mathbb{N} \mid 2 \le k < \infty\}$  and M is a free abelian monoid. Then  $S := M \oplus \bigoplus_{j \in J} \mathbb{F}_{m_j}^+$  admits a generalised scale  $N \colon S \to \mathbb{N}^{\times}$  if and only if m is rationally independent. In this case, N restricts to the unique generalised scale on  $\mathbb{F}_{m_j}^+$ , and is therefore unique.

## Example (Ledrappier's shift)

Consider the two-sided subshift of finite type

$$X_L = \{x \in \{0,1\}^{\mathbb{Z}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} \pmod{2}\}$$

equipped with the shift action of  $\mathbb{Z}^2$ . The elements in  $X_L$  are describable as pavings of the plane using the four tiles

## Example (Ledrappier's shift)

Consider the two-sided subshift of finite type

$$X_L = \{x \in \{0,1\}^{\mathbb{Z}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} \pmod{2}\}$$

equipped with the shift action of  $\mathbb{Z}^2$ . The elements in  $X_L$  are describable as pavings of the plane using the four tiles



This example was constructed by Ledrappier in 1978 to show that a strongly mixing  $\mathbb{Z}^2$ -action need not be strongly 3-mixing, thus providing a negative answer to Rohlin's problem for  $\mathbb{Z}^2$ . Its intriguing features have since then been studied by various authors.

## Example (Ledrappier's shift)

Consider the two-sided subshift of finite type

$$X_L = \{x \in \{0,1\}^{\mathbb{Z}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} \pmod{2}\}$$

equipped with the shift action of  $\mathbb{Z}^2$ . The elements in  $X_L$  are describable as pavings of the plane using the four tiles



This example was constructed by Ledrappier in 1978 to show that a strongly mixing  $\mathbb{Z}^2$ -action need not be strongly 3-mixing, thus providing a negative answer to Rohlin's problem for  $\mathbb{Z}^2$ . Its intriguing features have since then been studied by various authors.

Wait! — Where is the semigroup?

## Example (Ledrappier's shift)

Consider the one-sided subshift of finite type

$$X = \{x \in \left(\mathbb{Z}/2\mathbb{Z}\right)^{\mathbb{N}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} (\text{mod } 2)\}$$

equipped with the shift action  $\Sigma$  of  $\mathbb{N}^2$ . The elements in X are describable as pavings of the positive cone of the plane using the four tiles



## Example (Ledrappier's shift)

Consider the one-sided subshift of finite type

$$X = \{x \in \left(\mathbb{Z}/2\mathbb{Z}\right)^{\mathbb{N}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} \pmod{2}\}$$

equipped with the shift action  $\Sigma$  of  $\mathbb{N}^2$ . The elements in X are describable as pavings of the positive cone of the plane using the four tiles



The projection onto the horizontal axis yields a conjugacy between the dynamical system  $(X, \Sigma_{(1,0)})$  and the Bernoulli shift  $\hat{\sigma} \colon \mathbb{N} \curvearrowright (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ .

## Example (Ledrappier's shift)

Consider the one-sided subshift of finite type

$$X = \{x \in \left(\mathbb{Z}/2\mathbb{Z}\right)^{\mathbb{N}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} \pmod{2}\}$$

equipped with the shift action  $\Sigma$  of  $\mathbb{N}^2$ . The elements in X are describable as pavings of the positive cone of the plane using the four tiles



The projection onto the horizontal axis yields a conjugacy between the dynamical system  $(X, \Sigma_{(1,0)})$  and the Bernoulli shift  $\hat{\sigma} \colon \mathbb{N} \curvearrowright (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ . Via this conjugacy,  $\Sigma_{(0,1)}$  corresponds to the group homomorphism  $\mathrm{id} + \hat{\sigma}$  of  $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ .

## Example (Ledrappier's shift)

Consider the one-sided subshift of finite type

$$X = \{x \in \left(\mathbb{Z}/2\mathbb{Z}\right)^{\mathbb{N}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} \pmod{2}\}$$

equipped with the shift action  $\Sigma$  of  $\mathbb{N}^2$ . The elements in X are describable as pavings of the positive cone of the plane using the four tiles



The projection onto the horizontal axis yields a conjugacy between the dynamical system  $(X, \Sigma_{(1,0)})$  and the Bernoulli shift  $\hat{\sigma} \colon \mathbb{N} \curvearrowright (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ . Via this conjugacy,  $\Sigma_{(0,1)}$  corresponds to the group homomorphism  $\mathrm{id} + \hat{\sigma}$  of  $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$ .  $\rightsquigarrow$  right LCM monoid  $(\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}) \rtimes_{\sigma,\mathrm{id}+\sigma} \mathbb{N}^2$  The right LCM monoid  $S = (\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}) \rtimes_{\sigma, \mathrm{id} + \sigma} \mathbb{N}^2$  has no generalised scale because it has too many accurate foundation sets of the same kind:

 $G = \phi(G) \sqcup e_1 + \phi(G)$ 

for  $G := \bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$  and  $\phi \in \{\sigma, \mathrm{id} + \sigma\}$ .

$$G = \phi(G) \sqcup e_1 + \phi(G)$$

for  $G := \bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$  and  $\phi \in \{\sigma, \mathrm{id} + \sigma\}$ .

So if  $N: S \to \mathbb{N}^{\times}$  is a homomorphism with ker  $N \supset S_c = G \times \{0\}$ , then  $N_{(0,\phi)} = N_{(e_1,\phi)}$ . But  $\{(0,\phi), (e_1,\phi)\}$  is already an accurate foundation set, so  $N_{(0,\phi)} = N_{(e_1,\phi)} = 2$  if N was a generalised scale.

$$G = \phi(G) \sqcup e_1 + \phi(G)$$

for  $G := \bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$  and  $\phi \in \{\sigma, \mathrm{id} + \sigma\}$ .

So if  $N: S \to \mathbb{N}^{\times}$  is a homomorphism with ker  $N \supset S_c = G \times \{0\}$ , then  $N_{(0,\phi)} = N_{(e_1,\phi)}$ . But  $\{(0,\phi), (e_1,\phi)\}$  is already an accurate foundation set, so  $N_{(0,\phi)} = N_{(e_1,\phi)} = 2$  if N was a generalised scale. However, we cannot match the two accurate foundation sets  $F_1 := \{(0,\sigma), (e_1,\sigma)\}$  and  $F_2 := \{(0, \mathrm{id} + \sigma), (e_1, \mathrm{id} + \sigma)\}$ , that is, there is no bijection  $\pi: F_1 \to F_2$  such that  $f \sim \pi(f)$  for all  $f \in F_1$ .

$$G = \phi(G) \sqcup e_1 + \phi(G)$$

for  $G := \bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$  and  $\phi \in \{\sigma, \mathrm{id} + \sigma\}$ .

So if  $N: S \to \mathbb{N}^{\times}$  is a homomorphism with ker  $N \supset S_c = G \times \{0\}$ , then  $N_{(0,\phi)} = N_{(e_1,\phi)}$ . But  $\{(0,\phi), (e_1,\phi)\}$  is already an accurate foundation set, so  $N_{(0,\phi)} = N_{(e_1,\phi)} = 2$  if N was a generalised scale. However, we cannot match the two accurate foundation sets  $F_1 := \{(0,\sigma), (e_1,\sigma)\}$  and  $F_2 := \{(0, \mathrm{id} + \sigma), (e_1, \mathrm{id} + \sigma)\}$ , that is, there is no bijection  $\pi: F_1 \to F_2$  such that  $f \sim \pi(f)$  for all  $f \in F_1$ .

**NB:** This simple observation sheds light on the existence and uniqueness problem of generalised scales for right LCM monoid of the form  $G \rtimes_{\theta} P$  built from algebraic dynamical systems  $(G, P, \theta)$ .

## Facets of Irreversibility: Inverse Semigroups, Groupoids, and Operator Algebras



December 4-8, 2017

www.mn.uio.no/facets

**Oslo, Norway**