The crux of generalised scales

(partly based on joint work with Afsar–Brownlowe–Larsen)

Nicolai Stammeier

University of Oslo

Interactions Between Semigroups and Operator Algebras

[A dabbler's working definition](#page-14-0)

[A dabbler's working definition](#page-14-0)

[Existence and uniqueness I — a child's play](#page-20-0)

2 [A dabbler's working definition](#page-14-0)

 (3) Existence and uniqueness $I - a$ child's play

4 [Existence and uniqueness II — new challenges ahead](#page-32-0)

We shall be concerned with right LCM monoids, that is, left cancellative monoids in which the intersection of a pair of principal ideals is either empty or another principal right ideal again.

(a) groups and free (abelian) monoids;

- (a) groups and free (abelian) monoids;
- (b) $ax + b$ -semigroups over semirings, e.g. $\mathbb{N} \rtimes \mathbb{N}^{\times}$ or $R \rtimes R^{\times}$, where R is a principal ideal domain;

- (a) groups and free (abelian) monoids;
- (b) $ax + b$ -semigroups over semirings, e.g. $\mathbb{N} \rtimes \mathbb{N}^{\times}$ or $R \rtimes R^{\times}$, where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids $BS(c,d)^+=\langle a,b \mid ab^c=b^da \rangle$ for positive integers c and d ;

- (a) groups and free (abelian) monoids;
- (b) $ax + b$ -semigroups over semirings, e.g. $\mathbb{N} \rtimes \mathbb{N}^{\times}$ or $R \rtimes R^{\times}$, where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids $BS(c,d)^+=\langle a,b \mid ab^c=b^da \rangle$ for positive integers c and d ;
- (d) Zappa–Szép products $X^* \bowtie G$ built from self-similar actions (G, X) ;

- (a) groups and free (abelian) monoids;
- (b) $ax + b$ -semigroups over semirings, e.g. $\mathbb{N} \rtimes \mathbb{N}^{\times}$ or $R \rtimes R^{\times}$, where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids $BS(c,d)^+=\langle a,b \mid ab^c=b^da \rangle$ for positive integers c and d ;
- (d) Zappa–Szép products $X^* \bowtie G$ built from self-similar actions (G, X) ;
- (e) graph products of right LCM monoids, e.g. right-angled Artin monoids; and

- (a) groups and free (abelian) monoids;
- (b) $ax + b$ -semigroups over semirings, e.g. $\mathbb{N} \rtimes \mathbb{N}^{\times}$ or $R \rtimes R^{\times}$, where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids $BS(c,d)^+=\langle a,b \mid ab^c=b^da \rangle$ for positive integers c and d ;
- (d) Zappa–Szép products $X^* \bowtie G$ built from self-similar actions (G, X) ;
- (e) graph products of right LCM monoids, e.g. right-angled Artin monoids; and
- (f) semidirect products $G \rtimes_{\theta} P$ built from algebraic dynamical systems: G is a group, P a right LCM monoid and θ an action by injective group endomorphisms satisfying $pP \cap qP = rP \Rightarrow \theta_p(G) \cap \theta_q(G) = \theta_r(G)$,

- (a) groups and free (abelian) monoids;
- (b) $ax + b$ -semigroups over semirings, e.g. $\mathbb{N} \rtimes \mathbb{N}^{\times}$ or $R \rtimes R^{\times}$, where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids $BS(c,d)^+=\langle a,b \mid ab^c=b^da \rangle$ for positive integers c and d ;
- (d) Zappa–Szép products $X^* \bowtie G$ built from self-similar actions (G, X) ;
- (e) graph products of right LCM monoids, e.g. right-angled Artin monoids; and
- (f) semidirect products $G \rtimes_{\theta} P$ built from algebraic dynamical systems: G is a group, P a right LCM monoid and θ an action by injective group endomorphisms satisfying $pP \cap qP = rP \Rightarrow \theta_p(G) \cap \theta_q(G) = \theta_r(G)$, e.g. Ledrappier's shift in disguise: $\left(\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}\right)\rtimes_{\sigma, \mathrm{id} + \sigma} \mathbb{N}^2.$

- (a) groups and free (abelian) monoids;
- (b) $ax + b$ -semigroups over semirings, e.g. $\mathbb{N} \rtimes \mathbb{N}^{\times}$ or $R \rtimes R^{\times}$, where R is a principal ideal domain;
- (c) Baumslag–Solitar monoids $BS(c,d)^+=\langle a,b \mid ab^c=b^da \rangle$ for positive integers c and d ;
- (d) Zappa–Szép products $X^* \bowtie G$ built from self-similar actions (G, X) ;
- (e) graph products of right LCM monoids, e.g. right-angled Artin monoids; and
- (f) semidirect products $G \rtimes_{\theta} P$ built from algebraic dynamical systems: G is a group, P a right LCM monoid and θ an action by injective group endomorphisms satisfying $pP \cap qP = rP \Rightarrow \theta_p(G) \cap \theta_q(G) = \theta_r(G)$, e.g. Ledrappier's shift in disguise: $\left(\bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}\right)\rtimes_{\sigma, \mathrm{id} + \sigma} \mathbb{N}^2.$

OK. — So what is a generalised scale and what are the issues?

From now on, S shall denote a right LCM monoid. We call $s, t \in S$ orthogonal $(s \perp t)$ if $sS \cap tS = \emptyset$. Here is a small dictionary we shall need:

From now on, S shall denote a right LCM monoid. We call $s, t \in S$ orthogonal $(s \perp t)$ if $sS \cap tS = \emptyset$. Here is a small dictionary we shall need: core subsemigroup: $S_c := \{a \in S \mid aS \cap sS \neq \emptyset \text{ for all } s \in S\}.$

(accurate) foundation set: a finite set $F \subset S$ such that for all $s \in S$ there is $f \in F$ with $fS \cap sS \neq \emptyset$. The set F is accurate if its elements are mutually orthogonal.

(accurate) foundation set: a finite set $F \subset S$ such that for all $s \in S$ there is $f \in F$ with $fS \cap sS \neq \emptyset$. The set F is accurate if its elements are mutually orthogonal.

property (AR) : For every foundation set F, there exists an accurate foundation set $F_a \subset FS$.

(accurate) foundation set: a finite set $F \subset S$ such that for all $s \in S$ there is $f \in F$ with $fS \cap sS \neq \emptyset$. The set F is accurate if its elements are mutually orthogonal.

property (AR) : For every foundation set F, there exists an accurate foundation set $F_a \subset FS$.

Definition (Afsar–Brownlowe–Larsen–S.)

A nontrivial homomorphism $N\colon S\to \mathbb{N}^\times$ is a generalised scale if for all $n\in N(S)$, every transversal for $N^{-1}(n)/_{\sim}$ is an accurate foundation set of size n

Let $N: S \to \mathbb{N}^\times$ be a generalised scale on a right LCM semigroup S.

- (i) The kernel of N is S_c . In particular, $S_c \neq S$.
- (ii) If $s,t\in S$ satisfy $N_s=N_t$, then either $s\sim t$ or $s\perp t$.

(iii) If $sS \cap tS = rS$, then the LCM of N_s and N_t in $N(S)$ is given by N_r .

Let $N: S \to \mathbb{N}^\times$ be a generalised scale on a right LCM semigroup S.

- (i) The kernel of N is S_c . In particular, $S_c \neq S$.
- (ii) If $s,t\in S$ satisfy $N_s=N_t$, then either $s\sim t$ or $s\perp t$.

(iii) If $sS \cap tS = rS$, then the LCM of N_s and N_t in $N(S)$ is given by N_r .

Thus if S is a group or a free abelian monoid, it cannot admit a generalised scale because $S_c = S$. Also, the free monoid in infinitely many generators \mathbb{F}^+_∞ does not admit a generalised scale.

Let $N: S \to \mathbb{N}^\times$ be a generalised scale on a right LCM semigroup S.

(i) The kernel of N is S_c . In particular, $S_c \neq S$.

(ii) If $s,t\in S$ satisfy $N_s=N_t$, then either $s\sim t$ or $s\perp t$.

(iii) If $sS \cap tS = rS$, then the LCM of N_s and N_t in $N(S)$ is given by N_r .

Thus if S is a group or a free abelian monoid, it cannot admit a generalised scale because $S_c = S$. Also, the free monoid in infinitely many generators \mathbb{F}^+_∞ does not admit a generalised scale.

Example

Let $\mathbb{F}_n^+:=\langle\{a_i\mid 1\leq i\leq n\}\rangle$ be the free monoid in $2\leq n\leq\infty$ generators. Then \mathbb{F}_n^+ admits a unique generalised scale given by $a_i\mapsto n.$

Let $N: S \to \mathbb{N}^\times$ be a generalised scale on a right LCM semigroup S.

(i) The kernel of N is S_c . In particular, $S_c \neq S$.

(ii) If $s,t\in S$ satisfy $N_s=N_t$, then either $s\sim t$ or $s\perp t$.

(iii) If $sS \cap tS = rS$, then the LCM of N_s and N_t in $N(S)$ is given by N_r .

Thus if S is a group or a free abelian monoid, it cannot admit a generalised scale because $S_c = S$. Also, the free monoid in infinitely many generators \mathbb{F}^+_∞ does not admit a generalised scale.

Example

Let $\mathbb{F}_n^+:=\langle\{a_i\mid 1\leq i\leq n\}\rangle$ be the free monoid in $2\leq n\leq\infty$ generators. Then \mathbb{F}_n^+ admits a unique generalised scale given by $a_i\mapsto n.$

Sketch of proof: The core of \mathbb{F}_n^+ is trivial. The generators a_i are mutually orthogonal and irreducible. Thus they need to be mapped to the same value, which has to be n to meet the size constraint.

The monoid $\mathbb{N} \rtimes \mathbb{N}^\times$ admits a unique generalised scale N with $(m, p) \mapsto p$.

The monoid $\mathbb{N} \rtimes \mathbb{N}^{\times}$ admits a unique generalised scale N with $(m, p) \mapsto p$.

Sketch of proof: The core is $\mathbb{N} \times \{1\}$, so $N_{(m,p)} = N_{(n,p)}$ for all $m,n \in \mathbb{N}$ and $p\in\mathbb{N}^\times.$ We have $(m,p)\perp(n,p)$ unless $m-n\in p\mathbb{Z}$, in which case $(m, p) \sim (n, p).$

The monoid $\mathbb{N} \rtimes \mathbb{N}^{\times}$ admits a unique generalised scale N with $(m, p) \mapsto p$.

Sketch of proof: The core is $\mathbb{N} \times \{1\}$, so $N_{(m,p)} = N_{(n,p)}$ for all $m,n \in \mathbb{N}$ and $p\in\mathbb{N}^\times.$ We have $(m,p)\perp(n,p)$ unless $m-n\in p\mathbb{Z}$, in which case $(m, p) \sim (n, p)$. As \mathbb{N}^{\times} is directed, $\{(m, p) \mid 0 \leq m \leq p-1\}$ is an accurate foundation set of size p. Thus we get $N_{(m,p)} = p$ for all $(m, p) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$.

The monoid $\mathbb{N} \rtimes \mathbb{N}^{\times}$ admits a unique generalised scale N with $(m, p) \mapsto p$.

Sketch of proof: The core is $\mathbb{N} \times \{1\}$, so $N_{(m,p)} = N_{(n,p)}$ for all $m,n \in \mathbb{N}$ and $p\in\mathbb{N}^\times.$ We have $(m,p)\perp(n,p)$ unless $m-n\in p\mathbb{Z}$, in which case $(m, p) \sim (n, p)$. As \mathbb{N}^{\times} is directed, $\{(m, p) \mid 0 \leq m \leq p-1\}$ is an accurate foundation set of size p. Thus we get $N_{(m,p)} = p$ for all $(m, p) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$.

With the following tool, we gain insights into more examples:

Proposition (Afsar–Brownlowe–Larsen–S.)

Suppose S is a Zappa-Szép product $S = U \bowtie A$ of two right LCM monoids U and A such that for all (u, a) , $(v, b) \in S$

$$
uU \cap vU = wU \Longrightarrow (u, a)S \cap (v, b)S = (w, c)S
$$

for some $c \in A$.

The monoid $\mathbb{N} \rtimes \mathbb{N}^{\times}$ admits a unique generalised scale N with $(m, p) \mapsto p$.

Sketch of proof: The core is $\mathbb{N} \times \{1\}$, so $N_{(m,p)} = N_{(n,p)}$ for all $m,n \in \mathbb{N}$ and $p\in\mathbb{N}^\times.$ We have $(m,p)\perp(n,p)$ unless $m-n\in p\mathbb{Z}$, in which case $(m, p) \sim (n, p)$. As \mathbb{N}^{\times} is directed, $\{(m, p) \mid 0 \leq m \leq p-1\}$ is an accurate foundation set of size p. Thus we get $N_{(m,p)} = p$ for all $(m, p) \in \mathbb{N} \rtimes \mathbb{N}^{\times}$.

With the following tool, we gain insights into more examples:

Proposition (Afsar–Brownlowe–Larsen–S.)

Suppose S is a Zappa-Szép product $S = U \bowtie A$ of two right LCM monoids U and A such that for all (u, a) , $(v, b) \in S$

$$
uU \cap vU = wU \Longrightarrow (u, a)S \cap (v, b)S = (w, c)S
$$

for some $c \in A$. Then the restriction $N \mapsto N|_U$ defines a one-to-one correspondence between generalised scales N on S and generalised scales M on U with $M_{a(u)} = M_u$ for all $a \in A, u \in U$.

The Baumslag–Solitar monoid $BS(c,d)^+=\langle a,b \mid ab^c=b^da \rangle$ for $c, d \in \mathbb{N}^\times$ admits a generalised scale if and only if $d > 1$. For $d > 1$, the unique generalised scale N is determined by $N_a = d$ and $N_b = 1$.

The Baumslag–Solitar monoid $BS(c,d)^+=\langle a,b \mid ab^c=b^da \rangle$ for $c, d \in \mathbb{N}^\times$ admits a generalised scale if and only if $d > 1$. For $d > 1$, the unique generalised scale N is determined by $N_a = d$ and $N_b = 1$.

Sketch of proof: $BS(c, d)^+ \cong \mathbb{F}_d^+$ $_d^+$ \bowtie \mathbb{N} with \mathbb{F}_d^+ $d_d^+ \cong \langle \{b^k a \mid 0 \leq k \leq d-1\} \rangle,$ $\mathbb{N} \cong \langle b \rangle$, together with the natural action and restriction maps.

The Baumslag–Solitar monoid $BS(c,d)^+=\langle a,b \mid ab^c=b^da \rangle$ for $c, d \in \mathbb{N}^\times$ admits a generalised scale if and only if $d > 1$. For $d > 1$, the unique generalised scale N is determined by $N_a = d$ and $N_b = 1$.

Sketch of proof: $BS(c, d)^+ \cong \mathbb{F}_d^+$ $_d^+$ \bowtie \mathbb{N} with \mathbb{F}_d^+ $d_d^+ \cong \langle \{b^k a \mid 0 \leq k \leq d-1\} \rangle,$ $\mathbb{N} \cong \langle b \rangle$, together with the natural action and restriction maps.

Example

For every self-similar action (G, X) (with the standing assumption $2 \leq |X| < \infty$), the right LCM monoid $X^* \bowtie G$ admits a unique generalised scale given by $(w,g) \mapsto |X|^{\ell(w)}$, where $\ell \colon X^* \to \mathbb{N}$ denotes the length function for the generating set X of X^* .

A graph Γ is called coconnected if its opposite graph

$$
\Gamma^{\mathsf{opp}} := \big(V, V \times V \setminus (E \cup \{(v, v) \mid v \in V\})\big)
$$

A graph Γ is called coconnected if its opposite graph

$$
\Gamma^{\text{opp}} := \big(V, V \times V \setminus (E \cup \{(v, v) \mid v \in V\}) \big)
$$

A graph Γ is called coconnected if its opposite graph

$$
\Gamma^{\text{opp}} := \big(V, V \times V \setminus (E \cup \{(v, v) \mid v \in V\}) \big)
$$

A graph Γ is called coconnected if its opposite graph

$$
\Gamma^{\text{opp}} := \big(V, V \times V \setminus (E \cup \{(v, v) \mid v \in V\}) \big)
$$

A graph Γ is called coconnected if its opposite graph

$$
\Gamma^{\mathsf{opp}} := \big(V, V \times V \setminus (E \cup \{(v, v) \mid v \in V\})\big)
$$

A graph Γ is called coconnected if its opposite graph

$$
\Gamma^{\mathrm{opp}}:=\left(V,V\times V\setminus (E\cup\{(v,v)\mid v\in V\})\right)
$$

Theorem (S.)

The right-angled Artin monoid A_{Γ}^{+} $^+_\Gamma$ admits a generalised scale N if and only if

- (i) Γ is not the complete graph on V;
- (ii) all coconnected components Γ_i are finite and edge-free; and
- (iii) $\bigoplus_{i\in I_2} \lvert V_i \rvert$ is rationally independent, where $I_2\subset I$ contains all indices whose coconnected components have at least two vertices.
- In this case, N is unique.

Theorem (S.)

The right-angled Artin monoid A_{Γ}^{+} $^+_\Gamma$ admits a generalised scale N if and only if

- (i) Γ is not the complete graph on V;
- (ii) all coconnected components Γ_i are finite and edge-free; and
- (iii) $\bigoplus_{i\in I_2} \lvert V_i \rvert$ is rationally independent, where $I_2\subset I$ contains all indices whose coconnected components have at least two vertices.

In this case, N is unique.

Examples

Theorem (S.)

The right-angled Artin monoid A_{Γ}^{+} $^+_\Gamma$ admits a generalised scale N if and only if

- (i) Γ is not the complete graph on V;
- (ii) all coconnected components Γ_i are finite and edge-free; and
- (iii) $\bigoplus_{i\in I_2} \lvert V_i \rvert$ is rationally independent, where $I_2\subset I$ contains all indices whose coconnected components have at least two vertices.

In this case, N is unique.

The central reason behind this rigidity is the absence of property (AR) for the vast majority of right-angled Artin monoids:

Theorem (S.)

For a graph Γ , the right-angled Artin monoid A_{Γ}^+ $^+_\Gamma$ has property (AR) if and only if every finite coconnected component Γ_i of Γ is edge-free, that is, every finitely generated direct summand of A_Γ^+ $_{\Gamma}^+$ is free.

The central reason behind this rigidity is the absence of property (AR) for the vast majority of right-angled Artin monoids:

Theorem (S.)

For a graph Γ , the right-angled Artin monoid A_{Γ}^+ $^+_\Gamma$ has property (AR) if and only if every finite coconnected component Γ_i of Γ is edge-free, that is, every finitely generated direct summand of A_Γ^+ $_{\Gamma}^+$ is free.

Fix a nonempty set $J.$ We call $m\in\bigoplus_{j\in J}\{k\in\mathbb{N}\mid 2\leq k<\infty\}$ *rationally* independent if $\prod_{j\in J}m_j^{k_j}$ $j^{k_j}_j \neq \prod_{j \in J} m_j^{k_j'}$ for all distinct $k, k' \in \bigoplus_{j \in J} \mathbb{N}.$

The central reason behind this rigidity is the absence of property (AR) for the vast majority of right-angled Artin monoids:

Theorem (S.)

For a graph Γ , the right-angled Artin monoid A_{Γ}^+ $^+_\Gamma$ has property (AR) if and only if every finite coconnected component Γ_i of Γ is edge-free, that is, every finitely generated direct summand of A_Γ^+ $_{\Gamma}^+$ is free.

Fix a nonempty set $J.$ We call $m\in\bigoplus_{j\in J}\{k\in\mathbb{N}\mid 2\leq k<\infty\}$ *rationally* independent if $\prod_{j\in J}m_j^{k_j}$ $j^{k_j}_j \neq \prod_{j \in J} m_j^{k_j'}$ for all distinct $k, k' \in \bigoplus_{j \in J} \mathbb{N}.$

Proposition (S.)

Suppose $m\in\bigoplus_{j\in J}\{k\in\mathbb{N}\mid 2\leq k<\infty\}$ and M is a free abelian monoid. Then $S:=M\oplus \mathop{\bigoplus}\limits_{j\in J}\mathbb{F}_{m_j}^+$ admits a generalised scale $N\colon S\to \mathbb{N}^\times$ if and only if m is rationally independent. In this case, N restricts to the unique generalised scale on $\mathbb{F}_{m_j}^+$, and is therefore unique.

Example (Ledrappier's shift)

Consider the two-sided subshift of finite type

$$
X_L = \{x \in \{0,1\}^{\mathbb{Z}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} \text{(mod 2)}\}
$$

equipped with the shift action of $\mathbb{Z}^2.$ The elements in X_L are describable as pavings of the plane using the four tiles

Example (Ledrappier's shift)

Consider the two-sided subshift of finite type

$$
X_L = \{ x \in \{0,1\}^{\mathbb{Z}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} \text{(mod 2)} \}
$$

equipped with the shift action of $\mathbb{Z}^2.$ The elements in X_L are describable as pavings of the plane using the four tiles

This example was constructed by Ledrappier in 1978 to show that a strongly mixing \mathbb{Z}^2 -action need not be strongly 3-mixing, thus providing a negative answer to Rohlin's problem for \mathbb{Z}^2 . Its intriguing features have since then been studied by various authors.

Example (Ledrappier's shift)

Consider the two-sided subshift of finite type

$$
X_L = \{ x \in \{0,1\}^{\mathbb{Z}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} \text{(mod 2)} \}
$$

equipped with the shift action of $\mathbb{Z}^2.$ The elements in X_L are describable as pavings of the plane using the four tiles

This example was constructed by Ledrappier in 1978 to show that a strongly mixing \mathbb{Z}^2 -action need not be strongly 3-mixing, thus providing a negative answer to Rohlin's problem for \mathbb{Z}^2 . Its intriguing features have since then been studied by various authors.

Wait! — Where is the semigroup?

Example (Ledrappier's shift)

Consider the one-sided subshift of finite type

$$
X = \{ x \in (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} \text{(mod 2)} \}
$$

equipped with the shift action Σ of \mathbb{N}^2 . The elements in X are describable as pavings of the positive cone of the plane using the four tiles

Example (Ledrappier's shift)

Consider the one-sided subshift of finite type

$$
X = \{ x \in (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} (\text{mod } 2) \}
$$

equipped with the shift action Σ of \mathbb{N}^2 . The elements in X are describable as pavings of the positive cone of the plane using the four tiles

The projection onto the horizontal axis yields a conjugacy between the dynamical system $(X,\Sigma_{(1,0)})$ and the Bernoulli shift $\hat{\sigma} \colon \mathbb{N} \curvearrowright (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$.

Example (Ledrappier's shift)

Consider the one-sided subshift of finite type

$$
X = \{ x \in (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} (\text{mod } 2) \}
$$

equipped with the shift action Σ of \mathbb{N}^2 . The elements in X are describable as pavings of the positive cone of the plane using the four tiles

The projection onto the horizontal axis yields a conjugacy between the dynamical system $(X,\Sigma_{(1,0)})$ and the Bernoulli shift $\hat{\sigma}\colon\mathbb{N}\curvearrowright \left(\mathbb{Z}/2\mathbb{Z}\right)^\mathbb{N}$. Via this conjugacy, $\Sigma_{(0,1)}$ corresponds to the group homomorphism id $+\hat{\sigma}$ of $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$.

Example (Ledrappier's shift)

Consider the one-sided subshift of finite type

$$
X = \{ x \in (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}^2} \mid x_{m,n} + x_{m+1,n} = x_{m,n+1} (\text{mod } 2) \}
$$

equipped with the shift action Σ of \mathbb{N}^2 . The elements in X are describable as pavings of the positive cone of the plane using the four tiles

The projection onto the horizontal axis yields a conjugacy between the dynamical system $(X,\Sigma_{(1,0)})$ and the Bernoulli shift $\hat{\sigma}\colon\mathbb{N}\curvearrowright \left(\mathbb{Z}/2\mathbb{Z}\right)^\mathbb{N}$. Via this conjugacy, $\Sigma_{(0,1)}$ corresponds to the group homomorphism $id + \hat{\sigma}$ of $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$. \rightsquigarrow right LCM monoid $(\bigoplus_{\mathbb{N}}\mathbb{Z}/2\mathbb{Z})\rtimes_{\sigma,\mathrm{id}+\sigma}\mathbb{N}^2$

The right LCM monoid $S\,=\, \left(\bigoplus_\mathbb{N} \mathbb{Z}/2\mathbb{Z}\right)\rtimes_{\sigma, \mathrm{id} \,+\sigma} \mathbb{N}^2$ has no generalised scale because it has too many accurate foundation sets of the same kind:

 $G = \phi(G) \sqcup e_1 + \phi(G)$

for $G := \bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$ and $\phi \in {\sigma, \text{id} + \sigma}.$

 $G = \phi(G) \sqcup e_1 + \phi(G)$

for $G := \bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$ and $\phi \in {\sigma, \text{id} + \sigma}.$

So if $N: S \to \mathbb{N}^\times$ is a homomorphism with $\ker N \supset S_c = G \times \{0\}$, then $N_{(0,\phi)}\,=\,N_{(e_1,\phi)}.$ But $\{(0,\phi),(e_1,\phi)\}$ is already an accurate foundation set, so $N_{(0,\phi)} = N_{(e_1,\phi)} = 2$ if N was a generalised scale.

 $G = \phi(G) \sqcup e_1 + \phi(G)$

for $G := \bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$ and $\phi \in {\sigma, \text{id} + \sigma}.$

So if $N: S \to \mathbb{N}^\times$ is a homomorphism with $\ker N \supset S_c = G \times \{0\}$, then $N_{(0,\phi)}\,=\,N_{(e_1,\phi)}.$ But $\{(0,\phi),(e_1,\phi)\}$ is already an accurate foundation set, so $N_{(0,\phi)} = N_{(e_1,\phi)} = 2$ if N was a generalised scale. However, we cannot match the two accurate foundation sets $F_1 := \{(0, \sigma), (e_1, \sigma)\}\)$ $F_2 := \{(0, \mathrm{id} + \sigma), (e_1, \mathrm{id} + \sigma)\}\$, that is, there is no bijection $\pi \colon F_1 \to F_2$ such that $f \sim \pi(f)$ for all $f \in F_1$.

 $G = \phi(G) \sqcup e_1 + \phi(G)$

for $G := \bigoplus_{\mathbb{N}} \mathbb{Z}/2\mathbb{Z}$ and $\phi \in {\sigma, \text{id} + \sigma}.$

So if $N: S \to \mathbb{N}^\times$ is a homomorphism with $\ker N \supset S_c = G \times \{0\}$, then $N_{(0,\phi)}\,=\,N_{(e_1,\phi)}.$ But $\{(0,\phi),(e_1,\phi)\}$ is already an accurate foundation set, so $N_{(0,\phi)} = N_{(e_1,\phi)} = 2$ if N was a generalised scale. However, we cannot match the two accurate foundation sets $F_1 := \{(0, \sigma), (e_1, \sigma)\}\)$ $F_2 := \{(0, id + \sigma), (e_1, id + \sigma)\}\$, that is, there is no bijection $\pi \colon F_1 \to F_2$ such that $f \sim \pi(f)$ for all $f \in F_1$.

NB: This simple observation sheds light on the existence and uniqueness problem of generalised scales for right LCM monoid of the form $G \rtimes_{\theta} P$ built from algebraic dynamical systems (G, P, θ) .

Facets of Irreversibility: Inverse Semigroups, Groupoids, and Operator Algebras

December 4–8, 2017 www.mn.uio.no/facets Oslo, Norway