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The crux of generalised scales Examples of right LCM monoids

We shall be concerned with right LCM monoids, that is, left cancellative
monoids in which the intersection of a pair of principal ideals is either empty
or another principal right ideal again.

Here is a selection of right LCM
monoids to play with:

(a) groups and free (abelian) monoids;

(b) ax + b-semigroups over semirings, e.g. N o N× or R o R×, where R
is a principal ideal domain;

(c) Baumslag–Solitar monoids BS(c, d)+ = 〈a, b | abc = bda〉 for positive
integers c and d;

(d) Zappa–Szép products X∗ ./ G built from self-similar actions (G,X);

(e) graph products of right LCM monoids, e.g. right-angled Artin monoids;
and

(f) semidirect products Goθ P built from algebraic dynamical systems: G
is a group, P a right LCM monoid and θ an action by injective group
endomorphisms satisfying pP ∩ qP = rP ⇒ θp(G) ∩ θq(G) = θr(G),
e.g. Ledrappier’s shift in disguise:

(⊕
N Z/2Z

)
oσ,id +σ N2.

OK. — So what is a generalised scale and what are the issues?

1 / 10
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The crux of generalised scales A dabbler’s working definition

From now on, S shall denote a right LCM monoid. We call s, t ∈ S
orthogonal (s ⊥ t) if sS ∩ tS = ∅. Here is a small dictionary we shall need:

core subsemigroup: Sc := {a ∈ S | aS ∩ sS 6= ∅ for all s ∈ S}.
core relation: s ∼ t if sa = tb for some a, b ∈ Sc.
(accurate) foundation set: a finite set F ⊂ S such that for all s ∈ S there

is f ∈ F with fS ∩ sS 6= ∅. The set F is accurate if its elements are
mutually orthogonal.

property (AR): For every foundation set F , there exists an accurate foun-
dation set Fa ⊂ FS.

Definition (Afsar–Brownlowe–Larsen–S.)

A nontrivial homomorphism N : S → N× is a generalised scale if for all
n ∈ N(S), every transversal for N−1(n)/∼ is an accurate foundation set
of size n.

2 / 10
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The crux of generalised scales Existence and uniqueness I — a child’s play

Proposition (Afsar–Brownlowe–Larsen–S.)

Let N : S → N× be a generalised scale on a right LCM semigroup S.

(i) The kernel of N is Sc. In particular, Sc 6= S.

(ii) If s, t ∈ S satisfy Ns = Nt, then either s ∼ t or s ⊥ t.
(iii) If sS ∩ tS = rS, then the LCM of Ns and Nt in N(S) is given by Nr.

Thus if S is a group or a free abelian monoid, it cannot admit a generalised
scale because Sc = S. Also, the free monoid in infinitely many generators
F+
∞ does not admit a generalised scale.

Example

Let F+
n := 〈{ai | 1 ≤ i ≤ n}〉 be the free monoid in 2 ≤ n ≤ ∞

generators. Then F+
n admits a unique generalised scale given by ai 7→ n.

Sketch of proof: The core of F+
n is trivial. The generators ai are mutually

orthogonal and irreducible. Thus they need to be mapped to the same value,
which has to be n to meet the size constraint.

3 / 10
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The crux of generalised scales Existence and uniqueness I — a child’s play

Example

The monoid NoN× admits a unique generalised scale N with (m, p) 7→ p.

Sketch of proof: The core is N× {1}, so N(m,p) = N(n,p) for all m,n ∈ N
and p ∈ N×. We have (m, p) ⊥ (n, p) unless m − n ∈ pZ, in which case
(m, p) ∼ (n, p). As N× is directed, {(m, p) | 0 ≤ m ≤ p−1} is an accurate
foundation set of size p. Thus we get N(m,p) = p for all (m, p) ∈ No N×.

With the following tool, we gain insights into more examples:

Proposition (Afsar–Brownlowe–Larsen–S.)

Suppose S is a Zappa-Szép product S = U ./ A of two right LCM
monoids U and A such that for all (u, a), (v, b) ∈ S

uU ∩ vU = wU =⇒ (u, a)S ∩ (v, b)S = (w, c)S

for some c ∈ A. Then the restriction N 7→ N |U defines a one-to-one
correspondence between generalised scales N on S and generalised scales
M on U with Ma(u) = Mu for all a ∈ A, u ∈ U .

4 / 10
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and p ∈ N×. We have (m, p) ⊥ (n, p) unless m − n ∈ pZ, in which case
(m, p) ∼ (n, p). As N× is directed, {(m, p) | 0 ≤ m ≤ p−1} is an accurate
foundation set of size p. Thus we get N(m,p) = p for all (m, p) ∈ No N×.

With the following tool, we gain insights into more examples:

Proposition (Afsar–Brownlowe–Larsen–S.)

Suppose S is a Zappa-Szép product S = U ./ A of two right LCM
monoids U and A such that for all (u, a), (v, b) ∈ S

uU ∩ vU = wU =⇒ (u, a)S ∩ (v, b)S = (w, c)S

for some c ∈ A. Then the restriction N 7→ N |U defines a one-to-one
correspondence between generalised scales N on S and generalised scales
M on U with Ma(u) = Mu for all a ∈ A, u ∈ U .
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The crux of generalised scales Existence and uniqueness I — a child’s play

Example

The Baumslag–Solitar monoid BS(c, d)+ = 〈a, b | abc = bda〉 for
c, d ∈ N× admits a generalised scale if and only if d > 1. For d > 1, the
unique generalised scale N is determined by Na = d and Nb = 1.

Sketch of proof: BS(c, d)+ ∼= F+
d ./ N with F+

d
∼= 〈{bka | 0 ≤ k ≤ d− 1}〉,

N ∼= 〈b〉, together with the natural action and restriction maps.

Example

For every self-similar action (G,X) (with the standing assumption
2 ≤ |X| <∞), the right LCM monoid X∗ ./ G admits a unique
generalised scale given by (w, g) 7→ |X|`(w), where ` : X∗ → N denotes the
length function for the generating set X of X∗.
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The crux of generalised scales Existence and uniqueness II — new challenges ahead

Let us now consider countable, undirected graphs Γ = (V,E) without loops
or multiple edges. For every such graph, we can construct its right-angled
Artin monoid A+

Γ := 〈(av)v∈V | (v, w) ∈ E ⇒ avaw = awav〉.

Examples

(a) 1

2

3

(b) 1

2

3

(c) 1

2

3

(d) 1

2 4

3

(e) 1

2 4

3

(f) 1

2 5 4

3

N2 ∗ N N3 N⊕ F+
2 F+

2 ⊕ F+
2 F+

2 ⊕ F+
3

A graph Γ is called coconnected if its opposite graph

Γopp :=
(
V, V × V \ (E ∪ {(v, v) | v ∈ V })

)
is connected. Every graph Γ has a unique decomposition into coconnected
components (Γi)i∈I , and A+

Γ =
⊕

i∈I A
+
Γi

.
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The crux of generalised scales Existence and uniqueness II — new challenges ahead

Theorem (S.)

The right-angled Artin monoid A+
Γ admits a generalised scale N if and

only if

(i) Γ is not the complete graph on V ;

(ii) all coconnected components Γi are finite and edge-free; and

(iii)
⊕

i∈I2 |Vi| is rationally independent, where I2 ⊂ I contains all indices
whose coconnected components have at least two vertices.

In this case, N is unique.

Examples
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The crux of generalised scales Existence and uniqueness II — new challenges ahead

The central reason behind this rigidity is the absence of property (AR) for
the vast majority of right-angled Artin monoids:

Theorem (S.)

For a graph Γ, the right-angled Artin monoid A+
Γ has property (AR) if and

only if every finite coconnected component Γi of Γ is edge-free, that is,
every finitely generated direct summand of A+

Γ is free.

Fix a nonempty set J . We call m ∈
⊕

j∈J{k ∈ N | 2 ≤ k <∞} rationally

independent if
∏
j∈J m

kj
j 6=

∏
j∈J m

k′j
j for all distinct k, k′ ∈

⊕
j∈J N.

Proposition (S.)

Suppose m ∈
⊕

j∈J{k ∈ N | 2 ≤ k <∞} and M is a free abelian monoid.

Then S := M ⊕
⊕

j∈J F+
mj

admits a generalised scale N : S → N× if and
only if m is rationally independent. In this case, N restricts to the unique
generalised scale on F+

mj
, and is therefore unique.
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The crux of generalised scales Existence and uniqueness II — new challenges ahead

Another interesting example comes from symbolic dynamics:
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Another interesting example comes from symbolic dynamics:

Example (Ledrappier’s shift)

Consider the two-sided subshift of finite type

XL = {x ∈ {0, 1}Z2 | xm,n + xm+1,n = xm,n+1(mod 2)}

equipped with the shift action of Z2. The elements in XL are describable
as pavings of the plane using the four tiles

0 0

0

1 1

0

1 0

1

0 1

1
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equipped with the shift action of Z2. The elements in XL are describable
as pavings of the plane using the four tiles

0 0

0

1 1

0

1 0

1

0 1

1

This example was constructed by Ledrappier in 1978 to show that a strongly
mixing Z2-action need not be strongly 3-mixing, thus providing a negative
answer to Rohlin’s problem for Z2. Its intriguing features have since then
been studied by various authors.

Wait! — Where is the semigroup?
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The crux of generalised scales Existence and uniqueness II — new challenges ahead

Another interesting example comes from symbolic dynamics:

Example (Ledrappier’s shift)

Consider the one-sided subshift of finite type

X = {x ∈
(
Z/2Z

)N2

| xm,n + xm+1,n = xm,n+1(mod 2)}

equipped with the shift action Σ of N2. The elements in X are describable
as pavings of the positive cone of the plane using the four tiles

0 0

0

1 1

0

1 0

1

0 1

1

The projection onto the horizontal axis yields a conjugacy between the dy-

namical system (X,Σ(1,0)) and the Bernoulli shift σ̂ : N y
(
Z/2Z

)N
. Via

this conjugacy, Σ(0,1) corresponds to the group homomorphism id +σ̂ of(
Z/2Z

)N
.  right LCM monoid

(⊕
N Z/2Z

)
oσ,id +σ N2
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The crux of generalised scales Existence and uniqueness II — new challenges ahead

The right LCM monoid S =
(⊕

N Z/2Z
)
oσ,id +σ N2 has no generalised

scale because it has too many accurate foundation sets of the same kind:

The injective group endomorphisms σ and id +σ both have index 2, more
precisely,

G = φ(G) t e1 + φ(G)

for G :=
⊕

N Z/2Z and φ ∈ {σ, id +σ}.

So if N : S → N× is a homomorphism with ker N ⊃ Sc = G × {0}, then
N(0,φ) = N(e1,φ). But {(0, φ), (e1, φ)} is already an accurate foundation
set, so N(0,φ) = N(e1,φ) = 2 if N was a generalised scale. However, we
cannot match the two accurate foundation sets F1 := {(0, σ), (e1, σ)} and
F2 := {(0, id +σ), (e1, id +σ)}, that is, there is no bijection π : F1 → F2

such that f ∼ π(f) for all f ∈ F1.

NB: This simple observation sheds light on the existence and uniqueness
problem of generalised scales for right LCM monoid of the form G oθ P
built from algebraic dynamical systems (G,P, θ).
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NB: This simple observation sheds light on the existence and uniqueness
problem of generalised scales for right LCM monoid of the form G oθ P
built from algebraic dynamical systems (G,P, θ).
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The crux of generalised scales Existence and uniqueness II — new challenges ahead
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N Z/2Z
)
oσ,id +σ N2 has no generalised

scale because it has too many accurate foundation sets of the same kind:
The injective group endomorphisms σ and id +σ both have index 2, more
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