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(e) graph products of right LCM monoids, e.g. right-angled Artin monoids;
and

(f) semidirect products G x¢ P built from algebraic dynamical systems: G
is a group, P a right LCM monoid and 8 an action by injective group
endomorphisms satisfying pP N gP = rP = 6,(G) N 6,(G) = 0,(G),
e.g. Ledrappier's shift in disguise: (@N Z/QZ) X id +o N2,

OK. — So what is a generalised scale and what are the issues?
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From now on, S shall denote a right LCM monoid. We call s,t € S
orthogonal (s L t) if sSNtS = (). Here is a small dictionary we shall need:
core subsemigroup: S.:={a € S |aSNsS #0forall se S}

core relation: s ~ t if sa = tb for some a,b € S,.

(accurate) foundation set: a finite set F' C S such that for all s € S there
is f € F with fSNsS # (. The set F is accurate if its elements are
mutually orthogonal.

property (AR): For every foundation set F', there exists an accurate foun-
dation set I, C F'S.

Definition (Afsar—Brownlowe-Larsen-S.)

A nontrivial homomorphism N: S — N* is a generalised scale if for all
n € N(S), every transversal for N=1(n)/~ is an accurate foundation set
of size n.
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Proposition (Afsar-Brownlowe—Larsen-S.)

Let N: S — N* be a generalised scale on a right LCM semigroup S.
(i) The kernel of N is S.. In particular, S, # S.
(ii) If s,t € S satisfy Ny = Ny, then either s ~t ors L t.
(iii) If sSNtS = rS, then the LCM of Ny and Ny in N (S) is given by N,.
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(i) The kernel of N is S.. In particular, S, # S.
(ii) If s,t € S satisfy Ny = Ny, then either s ~t ors L t.
(iii) If sSNtS = rS, then the LCM of Ny and Ny in N (S) is given by N,.

Thus if S is a group or a free abelian monoid, it cannot admit a generalised
scale because S, = S. Also, the free monoid in infinitely many generators
F does not admit a generalised scale.

Let F;" := ({a; | 1 <i < n}) be the free monoid in 2 < n < oo
generators. Then ;' admits a unique generalised scale given by a; — n.

Sketch of proof: The core of IF;\ is trivial. The generators a; are mutually
orthogonal and irreducible. Thus they need to be mapped to the same value,

which has to be n to meet the size constraint.
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foundation set of size p. Thus we get N(,,, ,y = p for all (m,p) € N x N*,

With the following tool, we gain insights into more examples:

Proposition (Afsar-Brownlowe—Larsen-S.)

Suppose S is a Zappa-Szép product S = U <1 A of two right LCM
monoids U and A such that for all (u,a), (v,b) € S

wU NoU = wU = (u,a)S N (v,b)S = (w,c)S

for some c € A.
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Proposition (Afsar-Brownlowe—Larsen-S.)

Suppose S is a Zappa-Szép product S = U <1 A of two right LCM
monoids U and A such that for all (u,a), (v,b) € S

wU NoU = wU = (u,a)S N (v,b)S = (w,c)S

for some ¢ € A. Then the restriction N — N|i; defines a one-to-one
correspondence between generalised scales N on S and generalised scales
M on U with My, = M, foralla€ A;ueU.

v
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The crux of generalised scales Existence and uniqueness | — a child’s play

The Baumslag—Solitar monoid BS(c,d)* = (a,b | ab® = bla) for
c,d € N* admits a generalised scale if and only if d > 1. For d > 1, the
unique generalised scale IV is determined by N, = d and N, = 1.

Sketch of proof: BS(c,d)* 2 F} s N with Fl = ({bFa |0 < k <d—1}),
N 2 (b), together with the natural action and restriction maps.

For every self-similar action (G, X) (with the standing assumption

2 <|X| < 00), the right LCM monoid X* b G admits a unique
generalised scale given by (w, g) — | X|“®), where £: X* — N denotes the
length function for the generating set X of X*.
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The crux of generalised scales Existence and uniqueness || — new challenges ahead
Theorem (S.)

The right-angled Artin monoid Aff admits a generalised scale N if and
only if

(i) T is not the complete graph on V;
(ii) all coconnected components I'; are finite and edge-free; and

(iii) D;er,|Vil is rationally independent, where Iy C I contains all indices
whose coconnected components have at least two vertices.

In this case, N is unique.
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The crux of generalised scales Existence and uniqueness Il — new challenges ahead

The central reason behind this rigidity is the absence of property (AR) for
the vast majority of right-angled Artin monoids:

For a graph T, the right-angled Artin monoid A{ has property (AR) if and
only if every finite coconnected component I'; of I' is edge-free, that is,
every finitely generated direct summand of AF is free.
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The central reason behind this rigidity is the absence of property (AR) for
the vast majority of right-angled Artin monoids:

For a graph T, the right-angled Artin monoid A{ has property (AR) if and
only if every finite coconnected component I'; of I' is edge-free, that is,
every finitely generated direct summand of A;“ is free.

Fix a nonempty set J. We call m € @ ek € N2 <k < oo} rationally
independent if H]EJm ' # H]EJm ' for all distinct k, k' € @, ; N.

Proposition (S.)

Suppose m € @ ;{k € N|2 <k < oo} and M is a free abelian monoid.
Then S =M & @jEJ]F:;Lj admits a generalised scale N: S — N* if and
only if m is rationally independent. In this case, N restricts to the unique
generalised scale on F;CL],, and is therefore unique.
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Another interesting example comes from symbolic dynamics:

Example (Ledrappier’s shift)

Consider the two-sided subshift of finite type
Xy = {z € {0,1}” | 2 + Tmi1.n = Tmns1(mod 2)}

equipped with the shift action of Z2. The elements in X, are describable
as pavings of the plane using the four tiles

0 0 1 1
0/0 11 1|0 01
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v

This example was constructed by Ledrappier in 1978 to show that a strongly
mixing Z2-action need not be strongly 3-mixing, thus providing a negative
answer to Rohlin's problem for Z2. lts intriguing features have since then
been studied by various authors.
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Example (Ledrappier’s shift)

Consider the two-sided subshift of finite type
Xp = {2 € {0,1}* | Zmn + Tmi1n = Tni1(mod 2)}

equipped with the shift action of Z2. The elements in X, are describable
as pavings of the plane using the four tiles

0 0 1 1
0/0 11 1|0 01

v

This example was constructed by Ledrappier in 1978 to show that a strongly
mixing Z2-action need not be strongly 3-mixing, thus providing a negative
answer to Rohlin's problem for Z2. lts intriguing features have since then
been studied by various authors.

Wait! — Where is the semigroup?
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Another interesting example comes from symbolic dynamics:

Example (Ledrappier’s shift)
Consider the one-sided subshift of finite type

2
X ={z € (Z/)22)" | Tmp + Tmi1n = Tmps1(mod 2)}

equipped with the shift action ¥ of N2. The elements in X are describable
as pavings of the positive cone of the plane using the four tiles

0 0 1 1
0/0 11 1|0 01
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Consider the one-sided subshift of finite type

2
X={ze (Z/ZZ)N | Zmn + Tmt1n = Tmopt1(mod 2)}

equipped with the shift action ¥ of N2. The elements in X are describable
as pavings of the positive cone of the plane using the four tiles

0 0 1 1
00 1]1] 10 01

v

The projection onto the horizontal axis yields a conjugacy between the dy-
namical system (X, (1)) and the Bernoulli shift 6: N ~ (2/2Z)"
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equipped with the shift action ¥ of N2. The elements in X are describable
as pavings of the positive cone of the plane using the four tiles
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The projection onto the horizontal axis yields a conjugacy between the dy-
namical system (X,% ¢)) and the Bernoulli shift 5: N ~ (Z/QZ)N. Via
this conjugacy, ¥(g,1) corresponds to the group homomorphism id +& of
(2/22)". ~~ right LCM monoid (B Z/2Z) X4 +o N2
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scale because it has too many accurate foundation sets of the same kind:
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So if N: S — N* is a homomorphism with ker N D S. = G x {0}, then
No,p) = Ney,¢)- But {(0,0),(e1,9)} is already an accurate foundation
set, so N(0,¢>) = N(el,(ﬁ) = 2 if N was a generalised scale. However, we
cannot match the two accurate foundation sets F; := {(0,0), (e1,0)} and
F5 := {(0,id +0), (e1,id +0)}, that is, there is no bijection 7: F} — F
such that f ~ 7(f) for all f € Fy.
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The right LCM monoid S = (@yZ/2Z) Xojd+s N? has no generalised
scale because it has too many accurate foundation sets of the same kind:
The injective group endomorphisms ¢ and id 4o both have index 2, more
precisely,

G =¢(G)Uer+¢(G)
for G := @y Z/2Z and ¢ € {o,id+0}.

So if N: S — N* is a homomorphism with ker N D S. = G x {0}, then
No,p) = Ney,¢)- But {(0,0),(e1,9)} is already an accurate foundation
set, so N(07¢) = N(eh(ﬁ) = 2 if N was a generalised scale. However, we
cannot match the two accurate foundation sets F; := {(0,0), (e1,0)} and
F5 := {(0,id +0), (e1,id +0)}, that is, there is no bijection 7: F} — F
such that f ~ 7(f) for all f € Fy.

NB: This simple observation sheds light on the existence and uniqueness
problem of generalised scales for right LCM monoid of the form G xg P
built from algebraic dynamical systems (G, P, ).

10 / 10



Facets of Irreversibility: Inverse Semigroups,
Groupoids, and Operator Algebras

December 4-8, 2017  www.mn.uio.no/facets Oslo, Norway



	Examples of right LCM monoids
	A dabbler's working definition
	Existence and uniqueness I — a child's play
	Existence and uniqueness II — new challenges ahead

