C ∗ -algebras arising from integral and rational dynamics

Tron "James" Omland¹

(based on joint work with Selçuk Barlak 2 and Nicolai Stammeier $^1)$

 1 University of Oslo, 2 University of Southern Denmark

Newcastle, Australia July 25, 2017

Cuntz (2008) introduces $\mathcal{Q}_{\mathbb{N}}$ as the universal C*-algebra generated by isometries $\{s_n\}_{n\in\mathbb{N}}$ and a unitary u satisfying

$$
s_m s_n = s_{mn}
$$
, $s_n u = u^n s_n$, and $\sum_{k=0}^{n-1} u^k s_n s_n^* u^{-k} = 1$.

Larsen and Li (2012) define \mathcal{Q}_2 as the universal \mathcal{C}^* -algebra generated by an isometry s_2 and a unitary u satisfying

$$
s_2 u = u^2 s_2
$$
 and $s_2 s_2^* + u s_2 s_2^* u^* = 1$.

We think of \mathcal{Q}_N as coming from the set $S = \{$ all primes}, and \mathcal{Q}_2 as coming from $S = \{2\}$. It is computed that

$$
\mathcal{K}_0(\mathcal{Q}_{\mathbb{N}}) \cong \mathbb{Z}^\infty \cong \mathcal{K}_1(\mathcal{Q}_{\mathbb{N}}) \quad \text{and} \quad \mathcal{K}_0(\mathcal{Q}_2) \cong \mathbb{Z} \cong \mathcal{K}_1(\mathcal{Q}_2).
$$

The more general versions can have torsion in their K -groups.

Definition

Let S be a set of mutually relatively prime numbers > 2 . Define the algebra $\mathcal{Q}_\mathcal{S}$ as the universal \mathcal{C}^* -algebra generated by a unitary u and isometries $\{s_p\}_{p\in S}$ satisfying

\n- (i)
$$
s_p^* s_q = s_q s_p^*
$$
,
\n- (ii) $s_p u = u^p s_p$, and
\n- (iii) $\sum_{k=0}^{p-1} e_{k+p\mathbb{Z}} = 1$ for all $p, q \in S$, where $e_{k+p\mathbb{Z}} := u^k s_p s_p^* u^{-k}$.
\n

Let $(\xi_n)_{n\in\mathbb{Z}}$ denote the standard orthonormal basis for $\ell^2(\mathbb{Z})$. If we define

$$
U\xi_n = \xi_{n+1}
$$
 and $S_p\xi_n = \xi_{pn}$,

then U and $\{S_p\}_{p\in S}$ satisfy (i)—(iii). This representation on $\ell^2(\mathbb{Z})$ is faithful, so we can also think of \mathcal{Q}_S as a subalgebra of $B(\ell^2(\mathbb{Z}))$.

Crossed product description

Let H^+ be the submonoid of \mathbb{N}^\times generated by S. Then

$$
\mathcal{Q}_S \cong (\mathcal{D}_S \rtimes \mathbb{Z}) \rtimes^e H^+ \cong \mathcal{D}_S \rtimes^e (\mathbb{Z} \rtimes H^+),
$$

where

$$
\mathcal{D}_S = C^* \{ e_{k+q\mathbb{Z}} : q \in S, k \in \mathbb{Z} \}.
$$

Set $N=\mathbb{Z}[\{\frac{1}{p}:p\in \mathcal{S}\}]\subseteq \mathbb{Q}$ and let H be the subgroup of \mathbb{Q}^{\times}_{+} generated by S. Then it follows from the dilation theory of Laca that

$$
Q_S \sim_M C_0(\Omega) \rtimes N \rtimes H,
$$

where Ω is the completion of N w.r.t. to the subgroup topology generated by $\{h\mathbb{Z} : h \in H\}$, and the action is the natural $ax + b$ -action. Let Δ be the closure of $\mathbb Z$ in Ω , then $\mathcal D_S \cong C(\Delta)$. Moreover, Q_S is isomorphic to the full corner of $C_0(\Omega) \rtimes N \rtimes H$ cut down by the projection $\chi_{\Delta} \in C_0(\Omega)$. If $P = \{p \in \mathbb{N}^\times : p \text{ prime and } p | q \text{ for some } q \in S\},\$ then $\Delta \simeq \prod_{\rho \in P} \mathbb{Z}_\rho$ and $\Omega \simeq \prod_{\rho \in P}' \mathbb{Q}_\rho$.

Boundary quotients of semigroup C^* -algebras

 $\mathcal{Q}_\mathcal{S}$ can also be constructed from either $\mathbb{N} \rtimes H^+$ or $\mathbb{Z} \rtimes H^+$ using the theory of boundary quotients of semigroup C^* -algebras.

Relatively primeness of S gives that $\mathbb{N} \rtimes H^+$ and $\mathbb{Z} \rtimes H^+$ are right LCM. Both are also left Ore semigroups with enveloping group $N \rtimes H \subseteq \mathbb{Q} \rtimes \mathbb{Q}_+^{\times}$, where still $N = \mathbb{Z}[\{\frac{1}{p} : p \in S\}].$

First, note that $(N \rtimes H^+, N \rtimes H)$ forms a quasi-lattice ordered group. Hence we can form the Toeplitz algebra $\mathcal{T}(\mathbb{N} \rtimes H^+, N \rtimes H)$ using the work of Nica, which coincides with $C^*(\mathbb{N} \rtimes H^+)$.

To define $C^*(\mathbb{Z} \rtimes H^+)$, we use Xin Li's theory of semigroup C^* -algebras, which generalizes Nica's approach.

Boundary quotients were introduced by Crisp and Laca for quasi-lattice ordered groups, and later generalized to right LCM semigroups by several people. In this setting

$$
BQ(N \rtimes H^+) = BQ(\mathbb{Z} \rtimes H^+) = \mathcal{Q}_S.
$$

Theorem

For every set S of relatively prime numbers, the algebra \mathcal{Q}_S is a unital Kirchberg algebra in the UCT class.

Consequently, the K-theory is a complete isomorphism invariant for \mathcal{Q}_S (Kirchberg-Phillips).

We can use that Q_S is a full corner of $C_0(\Omega) \rtimes N \rtimes H$ to see this: The $ax + b$ -action of $N \times H$ on Ω is minimal, locally contractive, and topologically free, implying that $C_0(\Omega) \rtimes N \rtimes H$ is purely infinite and simple (Archbold-Spielberg, Laca-Spielberg).

Separability, nuclearity, UCT hold because: $N \rtimes H$ is discrete countable amenable, $C_0(\Omega)$ is commutative separable, and the transformation groupoid of $(\Omega, N \times H)$ is amenable (Tu).

Main theorem

Let S be a set of mutually relatively prime numbers. Define

$$
g = \gcd\{p-1 : p \in S\} = \max\{q \in \mathbb{N}^\times : q|p-1 \text{ for all } p \in S\}.
$$

If $2 \in S$, then $g = 1$.

Theorem

$$
K_i(\mathcal{Q}_S) \cong \mathbb{Z}^{2^{|S|-1}} \oplus \mathcal{T}_i, \quad i=0,1,
$$

where T_0 and T_1 are torsion groups, which are finite if S is finite. Moreover, if $g = 1$, then T_0 and T_1 are both trivial.

Case $|S| = 1$, i.e., $S = \{r\}$ is previously studied (Hirshberg, Katsura). These are graph C^* -algebras and their K-theory is given by

$$
\mathcal{K}_0(\mathcal{Q}_S) \cong \mathbb{Z} \oplus \mathbb{Z}/(r-1), \quad [1]_0 = (0,1), \quad \mathcal{K}_1(\mathcal{Q}_S) = \mathbb{Z}.
$$

Hence, $\mathcal{Q}_{\{r\}} \cong \mathcal{Q}_{\{q\}}$ if and only if $r = q$.

Theorem

Assume
$$
|S| = 2
$$
, i.e., $S = \{q, r\}$ and $g = \gcd\{q - 1, r - 1\}$. Then

 $\mathcal{K}_0(\mathcal{Q}_\mathcal{S}) \cong \mathbb{Z}^2 \oplus \mathbb{Z}/g\mathbb{Z}, \quad [1]_0 = (0,1), \quad \mathcal{K}_1(\mathcal{Q}_\mathcal{S}) = \mathbb{Z}^2 \oplus \mathbb{Z}/g\mathbb{Z}.$

E.g. $\mathcal{Q}_{4,13} \cong \mathcal{Q}_{4,7,10}$.

When $|S|\geq 3$ and $g>1$, we can only show that $|\mathcal{T}_i|$ divides $g^{2^{|S|-2}}.$

Conjecture

For $|S| \geq 2$ we have

$$
T_0\cong \left(\mathbb{Z}/g\mathbb{Z}\right)^{2^{|S|-2}}\cong T_1,
$$

and consequently, $Q_S \cong Q_{S'}$ if and only if $|S| = |S'|$ and $g = g'.$

Definition

Let $H\subseteq \mathbb{Q}^{\times}$. Define the algebra \mathcal{Q}_{H} as the universal C^{*} -algebra generated by a unitary u and partial isometries $\{s_h\}_{h\in H}$ satisfying

\n- (i)
$$
s_h^* = s_{h^{-1}}
$$
 and $s_h^* s_h s_g = s_h^* s_{hg}$ for all $g, h \in H$.
\n- (ii) $s_h u^q = u^p s_h$ when $h = p/q$.
\n- (iii) $\sum_{k=0}^{p-1} e_{k+p\mathbb{Z}} = 1$, where $e_{k+p\mathbb{Z}} := u^k s_h s_h^* u^{-k}$ and $h = p/q$.
\n

Let $(\xi_n)_{n\in\mathbb{Z}}$ denote the standard orthonormal basis for $\ell^2(\mathbb{Z})$. If we define

$$
U\xi_n = \xi_{n+1}
$$
 and $S_h\xi_n = \xi_{hn}$ if $hn \in \mathbb{Z}$ and 0 else,

then U and $\{S_h\}_{h\in H}$ satisfy (i)—(iii). This representation on $\ell^2(\Z)$ is faithful, so we can also think of \mathcal{Q}_H as a subalgebra of $B(\ell^2(\mathbb{Z}))$. Moreover, if $h = p/q$ with $gcd(p, q) = 1$, then $S_h = S_p S_q^*$ so that $S_h^* S_h = E_{q\mathbb{Z}}$ and $S_h S_h^* = E_{p\mathbb{Z}}$.

Set $N = \mathbb{Z}[\{h : h \in H\}] \subseteq \mathbb{Q}$ and let Ω be the completion of N w.r.t. to the subgroup topology generated by $\{h\mathbb{Z} : h \in H\}$, i.e., N is dense in Ω . Let Δ be the closure of $\mathbb Z$ in Ω .

Proposition

The algebra \mathcal{Q}_H embeds into $C_0(\Omega) \rtimes N \rtimes H$ as a full corner, cut down by the projection $\chi_{\Delta} \in C_0(\Omega)$. Thus, when H is infinite, \mathcal{Q}_H is a UCT Kirchberg algebra, and its K-theory is a complete isomorphism invariant (Kirchberg-Phillips).

Definition

A partial action of a group G on a set X is a collection $\{D_{\varepsilon}\}_{{\varepsilon} \in G}$ of subsets of X, and a collection of maps $\{\theta_g\}_{g\in G}$, $\theta_g: D_{g^{-1}} \to D_g$ such that

$$
D_e = X, \quad \theta_e = \mathsf{id}_X
$$

$$
\theta_{gh}
$$
 is an extension of $\theta_g \circ \theta_h$

Example

Every $H \subseteq \mathbb{Q}^{\times}$ acts partially on $\mathbb Z$ as follows: For $h = p/q \in H$ with $gcd(p, q) = 1$, set $D_h = p\mathbb{Z}$, and define $\theta_h: q\mathbb{Z} \to p\mathbb{Z}$ by $qn \to pn$.

Let \mathcal{B}_H be the C*-subalgebra of \mathcal{Q}_H generated by u and projections ${e_{k+q\mathbb{Z}}: k \in \mathbb{Z}, 1/q \in N}$. Recall that $\mathcal{B}_H \cong \mathcal{D}_H \rtimes \mathbb{Z}$ is a Bunce-Deddens algebra.

The group H acts partially by α on \mathcal{B}_H , where each α_h is a * -isomorphism from its domain $D_{h^{-1}} = e_{a\mathbb{Z}} B_H e_{a\mathbb{Z}}$ to its range $D_h = e_{b\mathbb{Z}} B_H e_{b\mathbb{Z}}$. In terms of the generators u and e_X , the map α_h for $h = p/q$ with $gcd(p, q) = 1$ is defined by

(i) for
$$
X \subseteq q\mathbb{Z}
$$
 by $\alpha_h(e_X) := e_{hX}$, and

(ii) for
$$
n \in q\mathbb{Z}
$$
 by $\alpha_h(u^n) = u^{hn}$.

Remark

In Exel's definition of a partial C^* -dynamical systems, the domains are required to be ideals, which is not the case here. We would still like to think about our \mathcal{Q}_H as a partial crossed product $\mathcal{B}_H\rtimes_\alpha^{\mathsf{part}}H.$

Main theorem

Let $H\subseteq \mathbb{Q}^{\times}_+$ be nontrivial and choose a minimal generating set $\{p_i/q_i\}_{i\in I}$ such that $\gcd(p_i,q_i)=1$ and $p_i>q_i$ for all $i\in I$. Define

$$
g = \gcd\{p_i - q_i : i \in I\} = \max\{r \in \mathbb{N}^\times : r | (p_i - q_i) \text{ for all } i \in I\}.
$$

Theorem

Let $H\subseteq \mathbb{Q}_+^{\times}$ be nontrivial of rank $m\geq 1$, i.e., $H\cong \mathbb{Z}^m$. Then

$$
K_i(\mathcal{Q}_H) \cong \mathbb{Z}^{2^{m-1}} \oplus T_i, \quad i=0,1,
$$

where T_0 and T_1 are torsion groups, which are finite if H is finitely-generated. If $g = 1$, then $T_0 = T_1 = 0$. Moreover, there is a C^{*}-subalgebra A_H of \mathcal{Q}_H such that

 $K_i(\mathcal{A}_H) = T_i$ for $i = 1, 2$.

Remark (one-generator case)

Let
$$
H = \langle p/q \rangle
$$
, with $gcd(p, q) = 1$ and $p > q$.
Then $T_0 = \mathbb{Z}/(p - q)\mathbb{Z}$ and $T_1 = 0$.

Theorem (two-generator case)

Assume $H = \langle p_1/q_1, p_2/q_2 \rangle \cong \mathbb{Z}^2$, and set $g = \gcd\{p_1-q_1, p_2-q_2\}.$ Then

 $\mathcal{K}_0(\mathcal{Q}_H) \cong \mathbb{Z}^2 \oplus \mathbb{Z}/g\mathbb{Z}, \quad [1]_0 = (0,1), \quad \mathcal{K}_1(\mathcal{Q}_H) = \mathbb{Z}^2 \oplus \mathbb{Z}/g\mathbb{Z}.$

Conjecture

When the rank m of H is at least 2, we have

$$
K_i(\mathcal{A}_H) = T_i \cong \left(\mathbb{Z}/g\mathbb{Z}\right)^{2^{m-2}}
$$
 for $i = 1, 2$,

and consequently, $\mathcal{Q}_H \cong \mathcal{Q}_{H'}$ if and only if $m = m'$ and $g = g'$.

Step 1 (comparing with real dynamics)

Again, let H be the subgroup of \mathbb{Q}^{\times} . Recall that $N = \mathbb{Z}[\{h : h \in H\}]$ and Ω is a completion of N, and that $Q_H \sim_M C_0(\Omega) \rtimes N \rtimes H$. Then we apply a "duality theorem" (Kaliszewski-O.-Quigg, 14):

$$
C_0(\Omega)\rtimes_{ax+b}(N\rtimes H)\sim_M C_0(\mathbb{R})\rtimes_{ax+b}(N\rtimes H)
$$

Hence, the problem is to compute the K-theory of $C_0(\mathbb{R}) \rtimes N \rtimes H$.

Step 2 (decomposition)

The embedding $C_0(\mathbb{R}) \rtimes H \hookrightarrow C_0(\mathbb{R}) \rtimes N \rtimes H$ induces an injection in K-theory onto the free abelian part of $K_*(C_0(\mathbb{R}) \rtimes N \rtimes H) = K_*(Q_H)$. The action of H is homotopic to the trivial action, so

$$
\mathcal{K}_*(\mathcal{C}_0(\mathbb{R})\rtimes H)=\mathcal{K}_*(\mathcal{C}_0(\mathbb{R})\otimes C^*(H))=\mathcal{K}_*(\mathcal{C}_0(\mathbb{R})\otimes C^*(\mathbb{Z}^m))=\mathbb{Z}^{2^{m-1}}
$$

There is a certain H-invariant subalgebra $A \subset C_0(\mathbb{R}) \rtimes N$ such that

$$
K_*(C_0(\mathbb{R}) \rtimes N \rtimes H) \cong K_*(C_0(\mathbb{R}) \rtimes H) \oplus K_*(A \rtimes H),
$$

where $K_*(A \rtimes H)$ is a torsion group.

(for this, one first shows that $K_*(C_0(\mathbb{R}) \rtimes N) \cong K_*(C_0(\mathbb{R})) \oplus K_*(A)$)

Step 3 (the torsion part) The algebra A_H can be described as follows: Consider $M_H \subset \mathcal{B}_H \cong C(\Delta) \rtimes \mathbb{Z} = \chi_{\Delta}(\mathcal{C}_0(\Omega) \rtimes N)\chi_{\Delta}$.

There is an H-invariant C^* -subalgebra B of $C_0(\Omega) \rtimes N$, such that M_H is a full corner of B cut down by *χ*∆.

Since \mathcal{Q}_H embeds as a full corner of $C_0(\Omega) \rtimes N \rtimes H$ cut down by χ_{Δ} , we can find a C^* -subalgebra \mathcal{A}_H of \mathcal{Q}_H that embeds as a full corner of $B\rtimes H$ cut down by *χ*∆.

There exists an H-equivariant isomorphism $C_0(\Omega) \rtimes N \cong C_0(\mathbb{R}) \rtimes N$, and then the A above is defined as the image of B under this map.

The partial action of H on \mathcal{B}_H restricts to a partial action on $M_H \subset \mathcal{B}_H$, where the domains become $D_h = e_{qZ} M_H e_{qZ}$. One might then think of \mathcal{A}_H as $M_H \rtimes_{\alpha}^{\text{part}} H$.

Other descriptions of A_5

In general, it remains to find good descriptions of A_H , but in the original case where H is generated by a set S of mutually relatively prime numbers, we have that

Define
$$
A_S = C^* \{ u^m s_p \mid p \in S, 0 \le m \le p-1 \} \subset \mathcal{Q}_S
$$
.

Moreover, recall that

$$
\mathcal{Q}_S \cong (\mathcal{D}_S \rtimes \mathbb{Z}) \rtimes^e H^+,
$$

and the UHF-algebra $M_{d^{\infty}}$, for $d = \prod_{\rho \in S} \rho$, is a subalgebra of $\mathcal{D}_S \rtimes \mathbb{Z}$ invariant under H^+ , so

$$
\mathcal{A}_\mathcal{S} \cong \mathcal{M}_{d^\infty} \rtimes^e H^+,
$$

and we can show that A_S is a UCT Kirchberg algebra. For $|S|\geq$ 2, both K-groups of $\bigotimes_{\rho\in S} \mathcal{O}_{\rho}$ are $\left(\mathbb{Z}/\mathsf{g}\mathbb{Z}\right)^{2^{|S|-2}}$. Hence, our conjecture about $K_*(\mathcal{Q}_S)$ is equivalent with the following:

Conjecture (restated for \mathcal{Q}_5)

The algebra $\mathcal{A}_\mathcal{S}$ is isomorphic to $\bigotimes_{p\in\mathcal{S}}\mathcal{O}_p$.