C*-algebras arising from integral and rational dynamics

Tron "James" Omland¹

(based on joint work with Selçuk Barlak² and Nicolai Stammeier¹)

¹University of Oslo, ²University of Southern Denmark

Newcastle, Australia July 25, 2017 Cuntz (2008) introduces $Q_{\mathbb{N}}$ as the universal C^* -algebra generated by isometries $\{s_n\}_{n\in\mathbb{N}}$ and a unitary u satisfying

$$s_m s_n = s_{mn}, \quad s_n u = u^n s_n, \quad \text{and} \quad \sum_{k=0}^{n-1} u^k s_n s_n^* u^{-k} = 1.$$

Larsen and Li (2012) define Q_2 as the universal C^{*}-algebra generated by an isometry s_2 and a unitary u satisfying

$$s_2 u = u^2 s_2$$
 and $s_2 s_2^* + u s_2 s_2^* u^* = 1$.

We think of Q_N as coming from the set $S = \{a | primes\}$, and Q_2 as coming from $S = \{2\}$. It is computed that

$$\mathcal{K}_0(\mathcal{Q}_{\mathbb{N}})\cong\mathbb{Z}^{\infty}\cong\mathcal{K}_1(\mathcal{Q}_{\mathbb{N}}) \quad \text{and} \quad \mathcal{K}_0(\mathcal{Q}_2)\cong\mathbb{Z}\cong\mathcal{K}_1(\mathcal{Q}_2).$$

The more general versions can have torsion in their K-groups.

Definition

Let S be a set of mutually relatively prime numbers ≥ 2 . Define the algebra Q_S as the universal C*-algebra generated by a unitary u and isometries $\{s_p\}_{p\in S}$ satisfying

(i)
$$s_p^* s_q = s_q s_p^*$$
,
(ii) $s_p u = u^p s_p$, and
(iii) $\sum_{k=0}^{p-1} e_{k+p\mathbb{Z}} = 1$
for all $p, q \in S$, where $e_{k+p\mathbb{Z}} := u^k s_p s_p^* u^{-k}$.

Let $(\xi_n)_{n\in\mathbb{Z}}$ denote the standard orthonormal basis for $\ell^2(\mathbb{Z})$. If we define

$$U\xi_n = \xi_{n+1}$$
 and $S_p\xi_n = \xi_{pn}$,

then U and $\{S_p\}_{p\in S}$ satisfy (i)–(iii). This representation on $\ell^2(\mathbb{Z})$ is faithful, so we can also think of \mathcal{Q}_S as a subalgebra of $B(\ell^2(\mathbb{Z}))$.

Crossed product description

Let H^+ be the submonoid of \mathbb{N}^{\times} generated by *S*. Then

$$\mathcal{Q}_{S} \cong (\mathcal{D}_{S} \rtimes \mathbb{Z}) \rtimes^{e} H^{+} \cong \mathcal{D}_{S} \rtimes^{e} (\mathbb{Z} \rtimes H^{+}),$$

where

$$\mathcal{D}_{S} = C^{*} \{ e_{k+q\mathbb{Z}} : q \in S, k \in \mathbb{Z} \}.$$

Set $N = \mathbb{Z}[\{\frac{1}{p} : p \in S\}] \subseteq \mathbb{Q}$ and let H be the subgroup of \mathbb{Q}_+^{\times} generated by S. Then it follows from the dilation theory of Laca that

$$\mathcal{Q}_{S} \sim_{M} C_{0}(\Omega) \rtimes N \rtimes H,$$

where Ω is the completion of N w.r.t. to the subgroup topology generated by $\{h\mathbb{Z} : h \in H\}$, and the action is the natural ax + b-action. Let Δ be the closure of \mathbb{Z} in Ω , then $\mathcal{D}_S \cong C(\Delta)$. Moreover, \mathcal{Q}_S is isomorphic to the full corner of $C_0(\Omega) \rtimes N \rtimes H$ cut down by the projection $\chi_\Delta \in C_0(\Omega)$. If $P = \{p \in \mathbb{N}^{\times} : p \text{ prime and } p | q \text{ for some } q \in S\}$, then $\Delta \simeq \prod_{p \in P} \mathbb{Z}_p$ and $\Omega \simeq \prod'_{p \in P} \mathbb{Q}_p$.

Boundary quotients of semigroup C^* -algebras

 Q_S can also be constructed from either $\mathbb{N} \rtimes H^+$ or $\mathbb{Z} \rtimes H^+$ using the theory of boundary quotients of semigroup C^* -algebras.

Relatively primeness of *S* gives that $\mathbb{N} \rtimes H^+$ and $\mathbb{Z} \rtimes H^+$ are right LCM. Both are also left Ore semigroups with enveloping group $N \rtimes H \subseteq \mathbb{Q} \rtimes \mathbb{Q}_+^{\times}$, where still $N = \mathbb{Z}[\{\frac{1}{p} : p \in S\}]$.

First, note that $(\mathbb{N} \rtimes H^+, N \rtimes H)$ forms a quasi-lattice ordered group. Hence we can form the Toeplitz algebra $\mathcal{T}(\mathbb{N} \rtimes H^+, N \rtimes H)$ using the work of Nica, which coincides with $C^*(\mathbb{N} \rtimes H^+)$.

To define $C^*(\mathbb{Z} \rtimes H^+)$, we use Xin Li's theory of semigroup C^* -algebras, which generalizes Nica's approach.

Boundary quotients were introduced by Crisp and Laca for quasi-lattice ordered groups, and later generalized to right LCM semigroups by several people. In this setting

$$BQ(\mathbb{N} \rtimes H^+) = BQ(\mathbb{Z} \rtimes H^+) = \mathcal{Q}_S.$$

Theorem

For every set S of relatively prime numbers, the algebra Q_S is a unital Kirchberg algebra in the UCT class.

Consequently, the K-theory is a complete isomorphism invariant for Q_S (Kirchberg-Phillips).

We can use that Q_S is a full corner of $C_0(\Omega) \rtimes N \rtimes H$ to see this: The ax + b-action of $N \rtimes H$ on Ω is minimal, locally contractive, and topologically free, implying that $C_0(\Omega) \rtimes N \rtimes H$ is purely infinite and simple (Archbold-Spielberg, Laca-Spielberg).

Separability, nuclearity, UCT hold because: $N \rtimes H$ is discrete countable amenable, $C_0(\Omega)$ is commutative separable, and the transformation groupoid of $(\Omega, N \rtimes H)$ is amenable (Tu).

Main theorem

Let S be a set of mutually relatively prime numbers. Define

$$g = \gcd\{p-1: p \in S\} = \max\{q \in \mathbb{N}^{ imes}: q | p-1 ext{ for all } p \in S\}.$$

If $2 \in S$, then g = 1.

Theorem

$$K_i(\mathcal{Q}_S) \cong \mathbb{Z}^{2^{|S|-1}} \oplus T_i, \quad i = 0, 1,$$

where T_0 and T_1 are torsion groups, which are finite if S is finite. Moreover, if g = 1, then T_0 and T_1 are both trivial.

Case |S| = 1, i.e., $S = \{r\}$ is previously studied (Hirshberg, Katsura). These are graph C^* -algebras and their K-theory is given by

$$\mathcal{K}_0(\mathcal{Q}_S)\cong\mathbb{Z}\oplus\mathbb{Z}/(r-1), \quad [1]_0=(0,1), \quad \mathcal{K}_1(\mathcal{Q}_S)=\mathbb{Z}.$$

Hence, $\mathcal{Q}_{\{r\}} \cong \mathcal{Q}_{\{q\}}$ if and only if r = q.

Theorem

Assume
$$|S| = 2$$
, i.e., $S = \{q, r\}$ and $g = \gcd\{q - 1, r - 1\}$. Then

 $\mathcal{K}_0(\mathcal{Q}_S)\cong\mathbb{Z}^2\oplus\mathbb{Z}/g\mathbb{Z}, \hspace{0.3cm} [1]_0=(0,1), \hspace{0.3cm} \mathcal{K}_1(\mathcal{Q}_S)=\mathbb{Z}^2\oplus\mathbb{Z}/g\mathbb{Z}.$

 $\mathsf{E.g.}\ \mathcal{Q}_{\{4,13\}}\cong \mathcal{Q}_{\{7,10\}}.$

When $|S| \ge 3$ and g > 1, we can only show that $|T_i|$ divides $g^{2^{|S|-2}}$.

Conjecture

For $|S| \ge 2$ we have

$$T_0 \cong \left(\mathbb{Z}/g\mathbb{Z}\right)^{2^{|S|-2}} \cong T_1,$$

and consequently, $\mathcal{Q}_S \cong \mathcal{Q}_{S'}$ if and only if |S| = |S'| and g = g'.

Definition

Let $H \subseteq \mathbb{Q}^{\times}$. Define the algebra \mathcal{Q}_H as the universal C^* -algebra generated by a unitary u and partial isometries $\{s_h\}_{h \in H}$ satisfying

(i)
$$s_h^* = s_{h^{-1}}$$
 and $s_h^* s_h s_g = s_h^* s_{hg}$ for all $g, h \in H$.
(ii) $s_h u^q = u^p s_h$ when $h = p/q$.
(iii) $\sum_{k=0}^{p-1} e_{k+p\mathbb{Z}} = 1$,
where $e_{k+p\mathbb{Z}} := u^k s_h s_h^* u^{-k}$ and $h = p/q$.

Let $(\xi_n)_{n\in\mathbb{Z}}$ denote the standard orthonormal basis for $\ell^2(\mathbb{Z})$. If we define

$$U\xi_n = \xi_{n+1}$$
 and $S_h\xi_n = \xi_{hn}$ if $hn \in \mathbb{Z}$ and 0 else.

then U and $\{S_h\}_{h\in H}$ satisfy (i)–(iii). This representation on $\ell^2(\mathbb{Z})$ is faithful, so we can also think of \mathcal{Q}_H as a subalgebra of $B(\ell^2(\mathbb{Z}))$. Moreover, if h = p/q with gcd(p,q) = 1, then $S_h = S_p S_q^*$ so that $S_h^* S_h = E_{q\mathbb{Z}}$ and $S_h S_h^* = E_{p\mathbb{Z}}$. Set $N = \mathbb{Z}[\{h : h \in H\}] \subseteq \mathbb{Q}$ and let Ω be the completion of N w.r.t. to the subgroup topology generated by $\{h\mathbb{Z} : h \in H\}$, i.e., N is dense in Ω . Let Δ be the closure of \mathbb{Z} in Ω .

Proposition

The algebra \mathcal{Q}_H embeds into $C_0(\Omega) \rtimes N \rtimes H$ as a full corner, cut down by the projection $\chi_{\Delta} \in C_0(\Omega)$. Thus, when H is infinite, \mathcal{Q}_H is a UCT Kirchberg algebra, and its K-theory is a complete isomorphism invariant (Kirchberg-Phillips).

Definition

A partial action of a group G on a set X is a collection $\{D_g\}_{g\in G}$ of subsets of X, and a collection of maps $\{\theta_g\}_{g\in G}$, $\theta_g: D_{g^{-1}} \to D_g$ such that

$$D_e = X, \quad \theta_e = \mathrm{id}_X$$

$$\theta_{gh}$$
 is an extension of $\theta_g \circ \theta_h$

Example

Every $H \subseteq \mathbb{Q}^{\times}$ acts partially on \mathbb{Z} as follows: For $h = p/q \in H$ with gcd(p,q) = 1, set $D_h = p\mathbb{Z}$, and define $\theta_h \colon q\mathbb{Z} \to p\mathbb{Z}$ by $qn \to pn$.

Let \mathcal{B}_H be the C^* -subalgebra of \mathcal{Q}_H generated by u and projections $\{e_{k+q\mathbb{Z}}: k \in \mathbb{Z}, 1/q \in N\}$. Recall that $\mathcal{B}_H \cong \mathcal{D}_H \rtimes \mathbb{Z}$ is a Bunce-Deddens algebra.

The group H acts partially by α on \mathcal{B}_H , where each α_h is a *-isomorphism from its domain $D_{h^{-1}} = e_{q\mathbb{Z}}\mathcal{B}_H e_{q\mathbb{Z}}$ to its range $D_h = e_{p\mathbb{Z}}\mathcal{B}_H e_{p\mathbb{Z}}$. In terms of the generators u and e_X , the map α_h for h = p/q with gcd(p, q) = 1 is defined by

(i) for
$$X \subseteq q\mathbb{Z}$$
 by $\alpha_h(e_X) := e_{hX}$, and

(ii) for
$$n\in q\mathbb{Z}$$
 by $lpha_h(u^n)=u^{hn}$

Remark

In Exel's definition of a partial C^* -dynamical systems, the domains are required to be ideals, which is not the case here. We would still like to think about our Q_H as a partial crossed product $\mathcal{B}_H \rtimes_{\alpha}^{\text{part}} H$.

Main theorem

Let $H \subseteq \mathbb{Q}_+^{\times}$ be nontrivial and choose a minimal generating set $\{p_i/q_i\}_{i \in I}$ such that $gcd(p_i, q_i) = 1$ and $p_i > q_i$ for all $i \in I$. Define

$$g= \gcd\{p_i-q_i: i\in I\} = \max\{r\in \mathbb{N}^ imes: r|(p_i-q_i) ext{ for all } i\in I\}.$$

Theorem

Let $H \subseteq \mathbb{Q}_+^{\times}$ be nontrivial of rank $m \ge 1$, i.e., $H \cong \mathbb{Z}^m$. Then

$$K_i(\mathcal{Q}_H)\cong\mathbb{Z}^{2^{m-1}}\oplus T_i,\quad i=0,1,$$

where T_0 and T_1 are torsion groups, which are finite if H is finitely-generated. If g = 1, then $T_0 = T_1 = 0$. Moreover, there is a C^* -subalgebra \mathcal{A}_H of \mathcal{Q}_H such that

 $K_i(\mathcal{A}_H) = T_i$ for i = 1, 2.

Remark (one-generator case)

Let
$$H = \langle p/q \rangle$$
, with $gcd(p,q) = 1$ and $p > q$.
Then $T_0 = \mathbb{Z}/(p-q)\mathbb{Z}$ and $T_1 = 0$.

Theorem (two-generator case)

Assume $H = \langle p_1/q_1, p_2/q_2 \rangle \cong \mathbb{Z}^2$, and set $g = \gcd\{p_1 - q_1, p_2 - q_2\}$. Then

 $\mathcal{K}_0(\mathcal{Q}_H)\cong\mathbb{Z}^2\oplus\mathbb{Z}/g\mathbb{Z}, \hspace{1em} [1]_0=(0,1), \hspace{1em} \mathcal{K}_1(\mathcal{Q}_H)=\mathbb{Z}^2\oplus\mathbb{Z}/g\mathbb{Z}.$

Conjecture

When the rank m of H is at least 2, we have

$$K_i(\mathcal{A}_H) = T_i \cong \left(\mathbb{Z}/g\mathbb{Z}\right)^{2^{m-2}}$$
 for $i = 1, 2,$

and consequently, $\mathcal{Q}_H \cong \mathcal{Q}_{H'}$ if and only if m = m' and g = g'.

Step 1 (comparing with real dynamics)

Again, let H be the subgroup of \mathbb{Q}^{\times} . Recall that $N = \mathbb{Z}[\{h : h \in H\}]$ and Ω is a completion of N, and that $\mathcal{Q}_H \sim_M C_0(\Omega) \rtimes N \rtimes H$. Then we apply a "duality theorem" (Kaliszewski-O.-Quigg, 14):

$$C_0(\Omega) \rtimes_{ax+b} (N \rtimes H) \sim_M C_0(\mathbb{R}) \rtimes_{ax+b} (N \rtimes H)$$

Hence, the problem is to compute the *K*-theory of $C_0(\mathbb{R}) \rtimes N \rtimes H$.

Step 2 (decomposition)

The embedding $C_0(\mathbb{R}) \rtimes H \hookrightarrow C_0(\mathbb{R}) \rtimes N \rtimes H$ induces an injection in *K*-theory onto the free abelian part of $K_*(C_0(\mathbb{R}) \rtimes N \rtimes H) = K_*(\mathcal{Q}_H)$. The action of *H* is homotopic to the trivial action, so

$$K_*(C_0(\mathbb{R}) \rtimes H) = K_*(C_0(\mathbb{R}) \otimes C^*(H)) = K_*(C_0(\mathbb{R}) \otimes C^*(\mathbb{Z}^m)) = \mathbb{Z}^{2^{m-1}}$$

There is a certain *H*-invariant subalgebra $A \subset C_0(\mathbb{R}) \rtimes N$ such that

$$K_*(C_0(\mathbb{R}) \rtimes N \rtimes H) \cong K_*(C_0(\mathbb{R}) \rtimes H) \oplus K_*(A \rtimes H),$$

where $K_*(A \rtimes H)$ is a torsion group.

(for this, one first shows that $K_*(C_0(\mathbb{R}) \rtimes N) \cong K_*(C_0(\mathbb{R})) \oplus K_*(A))$

Step 3 (the torsion part) The algebra \mathcal{A}_H can be described as follows: Consider $M_H \subset \mathcal{B}_H \cong C(\Delta) \rtimes \mathbb{Z} = \chi_{\Delta}(C_0(\Omega) \rtimes N)\chi_{\Delta}$.

There is an *H*-invariant C^* -subalgebra *B* of $C_0(\Omega) \rtimes N$, such that M_H is a full corner of *B* cut down by χ_{Δ} .

Since \mathcal{Q}_H embeds as a full corner of $C_0(\Omega) \rtimes N \rtimes H$ cut down by χ_{Δ} , we can find a C^* -subalgebra \mathcal{A}_H of \mathcal{Q}_H that embeds as a full corner of $B \rtimes H$ cut down by χ_{Δ} .

There exists an *H*-equivariant isomorphism $C_0(\Omega) \rtimes N \cong C_0(\mathbb{R}) \rtimes N$, and then the *A* above is defined as the image of *B* under this map.

The partial action of H on \mathcal{B}_H restricts to a partial action on $M_H \subset \mathcal{B}_H$, where the domains become $D_h = e_{q\mathbb{Z}}M_He_{q\mathbb{Z}}$. One might then think of \mathcal{A}_H as $M_H \rtimes_{\alpha}^{\text{part}} H$.

Other descriptions of \mathcal{A}_S

In general, it remains to find good descriptions of A_H , but in the original case where H is generated by a set S of mutually relatively prime numbers, we have that

Define
$$\mathcal{A}_S = C^* \{ u^m s_p \mid p \in S, 0 \le m \le p-1 \} \subset \mathcal{Q}_S.$$

Moreover, recall that

$$\mathcal{Q}_{\mathcal{S}}\cong(\mathcal{D}_{\mathcal{S}}\rtimes\mathbb{Z})\rtimes^{e}H^{+},$$

and the UHF-algebra $M_{d^{\infty}}$, for $d = \prod_{p \in S} p$, is a subalgebra of $\mathcal{D}_S \rtimes \mathbb{Z}$ invariant under H^+ , so

$$\mathcal{A}_{\mathcal{S}}\cong M_{d^{\infty}}\rtimes^{e}H^{+},$$

and we can show that \mathcal{A}_S is a UCT Kirchberg algebra. For $|S| \ge 2$, both K-groups of $\bigotimes_{p \in S} \mathcal{O}_p$ are $(\mathbb{Z}/g\mathbb{Z})^{2^{|S|-2}}$. Hence, our conjecture about $\mathcal{K}_*(\mathcal{Q}_S)$ is equivalent with the following:

Conjecture (restated for Q_S)

The algebra \mathcal{A}_S is isomorphic to $\bigotimes_{p \in S} \mathcal{O}_p$.