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Semigroup C*-algebras. The construction

Let P be a left cancellative semigroup.
Left cancellation means that for all p, x , y ∈ P, px = py implies x = y .

For p ∈ P, define Vp : `2P → `2P, δx 7→ δpx .

A C*-algebra is an algebra of bounded linear operators on a Hilbert
space, invariant under adjoints, closed in the norm topology.

Definition

C∗λ(P) := C∗({Vp: p ∈ P}) ⊆ L(`2P)



Semigroup C*-algebras. The construction

Let P be a left cancellative semigroup.
Left cancellation means that for all p, x , y ∈ P, px = py implies x = y .

For p ∈ P, define Vp : `2P → `2P, δx 7→ δpx .

A C*-algebra is an algebra of bounded linear operators on a Hilbert
space, invariant under adjoints, closed in the norm topology.

Definition

C∗λ(P) := C∗({Vp: p ∈ P}) ⊆ L(`2P)



Semigroup C*-algebras. The construction

Let P be a left cancellative semigroup.
Left cancellation means that for all p, x , y ∈ P, px = py implies x = y .

For p ∈ P, define Vp : `2P → `2P, δx 7→ δpx .

A C*-algebra is an algebra of bounded linear operators on a Hilbert
space, invariant under adjoints, closed in the norm topology.

Definition

C∗λ(P) := C∗({Vp: p ∈ P}) ⊆ L(`2P)



Semigroup C*-algebras. The construction

Let P be a left cancellative semigroup.
Left cancellation means that for all p, x , y ∈ P, px = py implies x = y .

For p ∈ P, define Vp : `2P → `2P, δx 7→ δpx .

A C*-algebra is an algebra of bounded linear operators on a Hilbert
space, invariant under adjoints, closed in the norm topology.

Definition

C∗λ(P) := C∗({Vp: p ∈ P}) ⊆ L(`2P)



Semigroup C*-algebras. Examples

I Positive cones:
P = {x ∈ G : x ≥ e} in a left-ordered group (G ,≥), where ≥ is a
total order on G with y ≥ x ⇒ gy ≥ gx for all y , x , g ∈ G .

First example N ⊆ Z: C∗λ(N) is the Toeplitz algebra [Coburn].

For G ⊆ (R,+), P = G ∩ [0,∞): C∗λ(P) determines P [Douglas].

What about positive cones in general left-ordered groups?
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Semigroup C*-algebras. Examples

I Right-angled Artin monoids [Crisp-Laca]:
Let Γ = (V ,E ) be a graph with E ⊆ V × V .
A+

Γ := 〈{σv : v ∈ V } | σvσw = σwσv ∀ (v ,w) ∈ E 〉+.

e.g. N× N: C∗λ(N× N) ∼= C∗λ(N)⊗ C∗λ(N).
e.g. N ∗ N: C∗λ(N ∗ N) ∼= T2, where T2 is the Toeplitz extension of
the Cuntz algebra O2, 0→ K → T2 → O2 → 0.

What about general graph products?
What about general Artin monoids?
e.g. Braid monoids, e.g. B+

3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉+

I Baumslag-Solitar monoid [Spielberg]:〈
a, b | abc = bda

〉+
or
〈
a, b | a = bdabc

〉+

What about general graphs of semigroups?

I Thompson monoid 〈x0, x1, x2, . . . | xnxk = xkxn+1 for k < n〉+
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Semigroup C*-algebras. Examples

I R× or R o R× for an integral domain R.
R× = R \ {0}, R o R× = R × R× as sets, multiplication given by
(d , c)(b, a) = (d + cb, ca).

e.g. R ring of algebraic integers in number field,
e.g. Z[i ] or Z[ζ] (ζ: root of unity)

I P ⊆ Zn finitely generated.
e.g. numerical semigroups: P ⊆ Z finitely generated, e.g.
P = N \ {1} = {0, 2, 3, 4, . . .}.

I P * G , e.g. Zappa-Szép products, e.g. from self-similar groups
[Nekrashevych, Brownlowe-Ramagge-Robertson-Whittaker]
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Inverse semigroups

To construct full semigroup C*-algebras, we first need to isolate a class
of isometric representations. We need the notion of inverse semigroups.

Definition

An inverse semigroup is a semigroup S with the property that for
every x ∈ S , there is a unique y ∈ S with x = xyx and y = yxy .
We write y = x−1 (or y = x∗).

Every inverse semigroup can be realized ...

I ... as partial bijections on a fixed set, where multiplication is given
by composition (wherever it makes sense);

I ... as partial isometries on a Hilbert space whose source and range
projections commute, where multiplication is composition.
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The left inverse hull

Let P be a left cancellative semigroup with identity e.

Definition

The left inverse hull Il(P) of P is the inverse semigroup generated
by the partial bijections P → pP, x 7→ px .

So Il(P) is the smallest semigroup of partial bijections on P which is
closed under inverses and contains {P → pP, x 7→ px : p ∈ P}.

Alternatively, Il(P) is the smallest semigroup of partial isometries on `2P
which is closed under adjoints and contains {Vp: p ∈ P}.
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Idempotents in inverse semigroups

Let S be an inverse semigroup.

Definition

E :=
{
x−1x : x ∈ S

}
=
{
xx−1: x ∈ S

}
=
{
e ∈ S : e = e2

}
is the

semilattice of idempotents of S . For e, f ∈ E , set e ≤ f if e = ef .

For Il(P), E =
{
q−1
n pn · · · q−1

1 p1P: qi , pi ∈ P
}

=: JP .
JP always contains all principal right ideals pP, p ∈ P, and if we have
JP \ {∅} = {pP: p ∈ P}, then we say that P is right LCM.

Ê = {χ : E → {0, 1} non-zero semigroup homomorphism}, with the
topology of pointwise convergence, is the spectrum of E .
Ê can be identified with the space of filters via χ↔ χ−1(1).

Exercise: Work out JP and ĴP for P = N ∗ N.
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C*-algebras of inverse semigroups

Let S be an inverse semigroup. For s ∈ S , define λs : `2S → `2S by
δx 7→ δsx if s−1s ≥ xx−1 and δx 7→ 0 otherwise.

Definition

C∗λ(S) := C∗({λs : s ∈ S}) ⊆ L(`2S).

(If 0 ∈ S , replace `2S by `2S×, where S× = S \ {0}.)

The full inverse semigroup C*-algebra is given by

Definition

C∗(S) := C∗
(
{vs}s∈S vsvt = vst , v

∗
s = vs−1 (and v0 = 0 if 0 ∈ S)

)
.

By construction, there is a homomorphism C∗(S)→ C∗λ(S), vs 7→ λs .
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Full semigroup C*-algebras

Let P be a left cancellative semigroup. Its full semigroup C*-algebra is

Definition

C∗(P) := C∗(Il(P)).

Note: We say that 0 ∈ Il(P) if ∅ → ∅ lies in Il(P), i.e., ∅ ∈ JP .

By universal property, there is a canonical homomorphism
C∗(P)→ C∗λ(P) called the left regular representation.

Examples:

I C∗(N) ∼= C∗(v | v∗v = 1).

I C∗(N×N) ∼= C∗(va, vb | v∗a va = 1 = v∗b vb, vavb = vbva, v
∗
a vb = vbv

∗
a ).

I C∗(N ∗ N) ∼= C∗(va, vb | v∗a va = 1 = v∗b vb, vav
∗
a vbv

∗
b = 0).
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Full semigroup C*-algebras

If P is right reversible, i.e., Pp ∩ Pq 6= ∅ for all p, q ∈ P,
or if P is right LCM, then

C∗(P) ∼= C∗

 {eX : X ∈ JP}
∪ {vp: p ∈ P}

e∗X = eX = e2
X ; v∗p vp = 1;

e∅ = 0 if ∅ ∈ JP , eP = 1,
eX∩Y = eX · eY ;

vpq = vpvq;
vpeX v

∗
p = epX



So C∗(P) ∼= D(P) oα P, where D(P) = C∗({eX : X ∈ JP}) ⊆ C∗(P),
and αp : D(P)→ D(P), eX 7→ epX .
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