Semigroup C*-algebras. The independence condition, nuclearity and amenability

Xin Li

Queen Mary University of London (QMUL)

Recall that for a discrete group G, TFAE:

- ► G is amenable;
- ► C^{*}(G) is nuclear;
- ► C^{*}_λ(G) is nuclear;
- ▶ the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- there is a character on $C^*_{\lambda}(G)$.

Recall that for a discrete group G, TFAE:

- G is amenable;
- ► C^{*}(G) is nuclear;
- ► C^{*}_λ(G) is nuclear;
- ▶ the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- there is a character on $C^*_{\lambda}(G)$.

Do we have an analogue for semigroups?

Recall that for a discrete group G, TFAE:

- G is amenable;
- ► C^{*}(G) is nuclear;
- ► C^{*}_λ(G) is nuclear;
- ▶ the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- there is a character on $C^*_{\lambda}(G)$.

Do we have an analogue for semigroups?

Why not consider all isometric representations in the construction of full semigroup C*-algebras?

Recall that for a discrete group G, TFAE:

- G is amenable;
- ► C^{*}(G) is nuclear;
- ► C^{*}_λ(G) is nuclear;
- ▶ the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- there is a character on $C^*_{\lambda}(G)$.

Do we have an analogue for semigroups?

Why not consider all isometric representations in the construction of full semigroup C*-algebras?

Let $P = \mathbb{N} \times \mathbb{N}$. This is an abelian semigroup, so it is amenable.

Recall that for a discrete group G, TFAE:

- ► G is amenable;
- ► C^{*}(G) is nuclear;
- ► C^{*}_λ(G) is nuclear;
- ▶ the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- there is a character on $C^*_{\lambda}(G)$.

Do we have an analogue for semigroups?

Why not consider all isometric representations in the construction of full semigroup C*-algebras?

Let $P = \mathbb{N} \times \mathbb{N}$. This is an abelian semigroup, so it is amenable. The C*-algebra universal for all isometric representations of $\mathbb{N} \times \mathbb{N}$ is

$$C^*(v_a, v_b \mid v_a^* v_a = 1, \ v_b^* v_b = 1, \ v_a v_b = v_b v_a).$$

Recall that for a discrete group G, TFAE:

- ► G is amenable;
- ► C^{*}(G) is nuclear;
- ► C^{*}_λ(G) is nuclear;
- ▶ the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- there is a character on $C^*_{\lambda}(G)$.

Do we have an analogue for semigroups?

Why not consider all isometric representations in the construction of full semigroup C*-algebras?

Let $P = \mathbb{N} \times \mathbb{N}$. This is an abelian semigroup, so it is amenable. The C*-algebra universal for all isometric representations of $\mathbb{N} \times \mathbb{N}$ is

$$C^*(v_a, v_b \mid v_a^* v_a = 1, \ v_b^* v_b = 1, \ v_a v_b = v_b v_a).$$

Murphy showed that this C*-algebra is not nuclear.

Now consider $P = \mathbb{N} * \mathbb{N}$.

► This semigroup is not amenable.

- This semigroup is not amenable.
- But $C^*_{\lambda}(\mathbb{N}*\mathbb{N}) \cong \mathcal{T}_2$. Hence $C^*_{\lambda}(\mathbb{N}*\mathbb{N})$ is nuclear.

- This semigroup is not amenable.
- But $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong \mathcal{T}_2$. Hence $C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear.
- ► Moreover, $\mathcal{T}_2 \cong C^*(v_a, v_b \mid v_a^* v_a = 1, v_b^* v_b = 1, v_a v_a^* v_b v_b^* = 0)$. So $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong C^*(\mathbb{N} * \mathbb{N})$.

- This semigroup is not amenable.
- But $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong \mathcal{T}_2$. Hence $C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear.
- ► Moreover, $\mathcal{T}_2 \cong C^*(v_a, v_b \mid v_a^* v_a = 1, v_b^* v_b = 1, v_a v_a^* v_b v_b^* = 0)$. So $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong C^*(\mathbb{N} * \mathbb{N})$.

This looks strange compared to the group case.

- This semigroup is not amenable.
- But $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong \mathcal{T}_2$. Hence $C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear.
- ► Moreover, $\mathcal{T}_2 \cong C^*(v_a, v_b \mid v_a^* v_a = 1, v_b^* v_b = 1, v_a v_a^* v_b v_b^* = 0)$. So $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong C^*(\mathbb{N} * \mathbb{N})$.

This looks strange compared to the group case.

▶ Goal: Find an explanation!

The independence condition

• Embed P into S sending $p \in P$ to the partial bijection $P \rightarrow pP$, $x \mapsto px$, which is an element in S.

- Embed P into S sending $p \in P$ to the partial bijection $P \rightarrow pP, x \mapsto px$, which is an element in S.
- ▶ So we may view $\ell^2 P$ as a subspace of $\ell^2 S$ (or $\ell^2 S^{\times}$ if $0 \in S$).

- Embed P into S sending $p \in P$ to the partial bijection $P \rightarrow pP, x \mapsto px$, which is an element in S.
- ▶ So we may view $\ell^2 P$ as a subspace of $\ell^2 S$ (or $\ell^2 S^{\times}$ if $0 \in S$).
- ▶ Cutting down by the corresponding orthogonal projection, we get a homomorphism $C^*_{\lambda}(S) \twoheadrightarrow C^*_{\lambda}(P)$.

- Embed *P* into *S* sending $p \in P$ to the partial bijection $P \rightarrow pP, x \mapsto px$, which is an element in *S*.
- ► So we may view $\ell^2 P$ as a subspace of $\ell^2 S$ (or $\ell^2 S^{\times}$ if $0 \in S$).
- Cutting down by the corresponding orthogonal projection, we get a homomorphism C^{*}_λ(S) → C^{*}_λ(P).

When is this map an isomorphism?

Definition

P satisfies the independence condition if for every $X, X_1, \ldots, X_n \in \mathcal{J}_P$, $X = \bigcup_{i=1}^n X_i$ implies that $X = X_i$ for some $1 \le i \le n$.

Definition

P satisfies the independence condition if for every $X, X_1, \ldots, X_n \in \mathcal{J}_P$, $X = \bigcup_{i=1}^n X_i$ implies that $X = X_i$ for some $1 \le i \le n$.

Theorem (Norling)

For a subsemigroup P of a group, $C^*_{\lambda}(S) \to C^*_{\lambda}(P)$ is an isomorphism if and only if P satisfies independence.

Every right LCM monoid P (i.e., $\mathcal{J}_P^{\times} = \{pP\}$) satisfies independence: Let $pP = \bigcup_{i=1}^{n} p_i P$. Then $p = p \cdot e \in pP$, so $p \in p_i P$ for some $1 \le i \le n$. But $p_i P$ is a right ideal, so $p \in p_i P$ implies $pP \subseteq p_i P$. Hence $pP = p_i P$. Every right LCM monoid P (i.e., $\mathcal{J}_P^{\times} = \{pP\}$) satisfies independence: Let $pP = \bigcup_{i=1}^{n} p_i P$. Then $p = p \cdot e \in pP$, so $p \in p_i P$ for some $1 \le i \le n$. But $p_i P$ is a right ideal, so $p \in p_i P$ implies $pP \subseteq p_i P$. Hence $pP = p_i P$.

Examples:

- Positive cones;
- Right-angled Artin monoids;
- R^{\times} and $R \rtimes R^{\times}$ if R is a principal ideal domain.

Every right LCM monoid P (i.e., $\mathcal{J}_{P}^{\times} = \{pP\}$) satisfies independence: Let $pP = \bigcup_{i=1}^{n} p_i P$. Then $p = p \cdot e \in pP$, so $p \in p_i P$ for some $1 \le i \le n$. But $p_i P$ is a right ideal, so $p \in p_i P$ implies $pP \subseteq p_i P$. Hence $pP = p_i P$.

Examples:

- Positive cones;
- Right-angled Artin monoids;
- R^{\times} and $R \rtimes R^{\times}$ if R is a principal ideal domain.

For a ring *R* of algebraic integers in a number field, $R \rtimes R^{\times}$ always satisfies independence (because *R* is a Dedekind domain).

 $P = \mathbb{N} \setminus \{1\}$ does not satisfy independence:

 $P = \mathbb{N} \setminus \{1\}$ does not satisfy independence: $2 + P = \{2, 4, 5, \ldots\}$ and $3 + P = \{3, 5, 6, \ldots\}$ are constructible ideals.

 $P = \mathbb{N} \setminus \{1\}$ does not satisfy independence: $2 + P = \{2, 4, 5, \ldots\}$ and $3 + P = \{3, 5, 6, \ldots\}$ are constructible ideals. So $5 + \mathbb{N} = \{5, 6, 7, \ldots\} = (2 + P) \cap (3 + P)$ is also a constructible ideal.

$$\begin{split} P &= \mathbb{N} \setminus \{1\} \text{ does not satisfy independence:} \\ 2 + P &= \{2,4,5,\ldots\} \text{ and } 3 + P = \{3,5,6,\ldots\} \text{ are constructible ideals.} \\ \text{So } 5 + \mathbb{N} &= \{5,6,7,\ldots\} = (2+P) \cap (3+P) \text{ is also a constructible ideal.} \\ \text{We have } 5 + \mathbb{N} &= (5+P) \cup (6+P). \end{split}$$

$$\begin{split} & P = \mathbb{N} \setminus \{1\} \text{ does not satisfy independence:} \\ & 2 + P = \{2,4,5,\ldots\} \text{ and } 3 + P = \{3,5,6,\ldots\} \text{ are constructible ideals.} \\ & \text{So } 5 + \mathbb{N} = \{5,6,7,\ldots\} = (2 + P) \cap (3 + P) \text{ is also a constructible ideal.} \\ & \text{We have } 5 + \mathbb{N} = (5 + P) \cup (6 + P). \\ & \text{But } 5 + P \subsetneq 5 + \mathbb{N} \text{ and } 6 + P \subsetneq 5 + \mathbb{N}. \end{split}$$

$$\begin{split} P &= \mathbb{N} \setminus \{1\} \text{ does not satisfy independence:} \\ 2 + P &= \{2,4,5,\ldots\} \text{ and } 3 + P = \{3,5,6,\ldots\} \text{ are constructible ideals.} \\ \text{So } 5 + \mathbb{N} &= \{5,6,7,\ldots\} = (2+P) \cap (3+P) \text{ is also a constructible ideal.} \\ \text{We have } 5 + \mathbb{N} = (5+P) \cup (6+P). \\ \text{But } 5 + P \subsetneq 5 + \mathbb{N} \text{ and } 6 + P \subsetneq 5 + \mathbb{N}. \\ \text{Thus } P \text{ does not satisfy independence.} \end{split}$$

$$\begin{split} P &= \mathbb{N} \setminus \{1\} \text{ does not satisfy independence:} \\ 2 + P &= \{2, 4, 5, \ldots\} \text{ and } 3 + P &= \{3, 5, 6, \ldots\} \text{ are constructible ideals.} \\ \text{So } 5 + \mathbb{N} &= \{5, 6, 7, \ldots\} = (2 + P) \cap (3 + P) \text{ is also a constructible ideal.} \\ \text{We have } 5 + \mathbb{N} &= (5 + P) \cup (6 + P). \\ \text{But } 5 + P \subsetneq 5 + \mathbb{N} \text{ and } 6 + P \subsetneq 5 + \mathbb{N}. \\ \text{Thus } P \text{ does not satisfy independence.} \end{split}$$

A similar argument shows that for every numerical semigroup of the form $\mathbb{N} \setminus F$, where $\emptyset \neq F$ is finite, the independence condition does not hold.

Theorem (L)

Let ${\it P}$ be a cancellative semigroup which satisfies independence. TFAE

- ► *P* is left amenable.
- ► C^{*}(P) is nuclear.
- $C^*_{\lambda}(P)$ is nuclear.
- The left regular representation $C^*(P) \to C^*_{\lambda}(P)$ is an isomorphism.
- There is a character on $C^*_{\lambda}(P)$.

Theorem (L)

Let ${\it P}$ be a cancellative semigroup which satisfies independence. TFAE

- ► *P* is left amenable.
- $C^*(P)$ is nuclear and there is a character on $C^*(P)$.
- $C^*_{\lambda}(P)$ is nuclear and there is a character on $C^*(P)$.
- The left regular representation C^{*}(P) → C^{*}_λ(P) is an isomorphism and there is a character on C^{*}(P).
- There is a character on $C^*_{\lambda}(P)$.

Theorem (L)

Let ${\it P}$ be a cancellative semigroup which satisfies independence. TFAE

- ► *P* is left amenable.
- $C^*(P)$ is nuclear and there is a character on $C^*(P)$.
- $C^*_{\lambda}(P)$ is nuclear and there is a character on $C^*(P)$.
- The left regular representation C^{*}(P) → C^{*}_λ(P) is an isomorphism and there is a character on C^{*}(P).

• There is a character on $C^*_{\lambda}(P)$.

What about $P = \mathbb{N} * \mathbb{N}$?

Theorem (L)

Let ${\it P}$ be a cancellative semigroup which satisfies independence. TFAE

- ► *P* is left amenable.
- $C^*(P)$ is nuclear and there is a character on $C^*(P)$.
- $C^*_{\lambda}(P)$ is nuclear and there is a character on $C^*(P)$.
- The left regular representation C^{*}(P) → C^{*}_λ(P) is an isomorphism and there is a character on C^{*}(P).

• There is a character on $C^*_{\lambda}(P)$.

What about $P = \mathbb{N} * \mathbb{N}$? There is no character on $C^*(\mathbb{N} * \mathbb{N})$:

Theorem (L)

Let ${\cal P}$ be a cancellative semigroup which satisfies independence. TFAE

- ► *P* is left amenable.
- $C^*(P)$ is nuclear and there is a character on $C^*(P)$.
- $C^*_{\lambda}(P)$ is nuclear and there is a character on $C^*(P)$.
- The left regular representation C^{*}(P) → C^{*}_λ(P) is an isomorphism and there is a character on C^{*}(P).

• There is a character on $C^*_{\lambda}(P)$.

What about $P = \mathbb{N} * \mathbb{N}$? There is no character on $C^*(\mathbb{N} * \mathbb{N})$:

$$\begin{split} & \mathsf{v}_a^* \mathsf{v}_a = \mathsf{v}_b^* \mathsf{v}_b = 1 \Rightarrow \chi(\mathsf{v}_a) = \chi(\mathsf{v}_b) \in \mathbb{T}. \\ & \text{But then, } 0 = \chi(\mathsf{v}_a \mathsf{v}_a^* \mathsf{v}_b \mathsf{v}_b^*) = |\chi(\mathsf{v}_a)|^2 |\chi(\mathsf{v}_b)|^2 = 1 \end{split}$$

A partial dynamical system consists of a locally compact Hausdorff space Ω , a group G, open subsets $U_g \subseteq \Omega$, $g \in G$, and local homeomorphisms α_g : $U_{g^{-1}} \cong U_g$ such that

A partial dynamical system consists of a locally compact Hausdorff space Ω , a group G, open subsets $U_g \subseteq \Omega$, $g \in G$, and local homeomorphisms α_g : $U_{g^{-1}} \cong U_g$ such that

• $U_e = \Omega$, $\alpha_e = id_{\Omega}$;

A partial dynamical system consists of a locally compact Hausdorff space Ω , a group G, open subsets $U_g \subseteq \Omega$, $g \in G$, and local homeomorphisms α_g : $U_{g^{-1}} \cong U_g$ such that

•
$$U_e = \Omega$$
, $\alpha_e = id_{\Omega}$;

• $\alpha_{g}\alpha_{h} = \alpha_{gh}$ whenever this makes sense.

A partial dynamical system consists of a locally compact Hausdorff space Ω , a group G, open subsets $U_g \subseteq \Omega$, $g \in G$, and local homeomorphisms α_g : $U_{g^{-1}} \cong U_g$ such that

- $U_e = \Omega$, $\alpha_e = id_{\Omega}$;
- $\alpha_{g}\alpha_{h} = \alpha_{gh}$ whenever this makes sense.

Now let $P \subseteq G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$.

A partial dynamical system consists of a locally compact Hausdorff space Ω , a group G, open subsets $U_g \subseteq \Omega$, $g \in G$, and local homeomorphisms $\alpha_g : U_{g^{-1}} \cong U_g$ such that

• $U_e = \Omega$, $\alpha_e = id_{\Omega}$;

• $\alpha_{g}\alpha_{h} = \alpha_{gh}$ whenever this makes sense.

Now let $P \subseteq G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense).

- $U_e = \Omega$, $\alpha_e = id_{\Omega}$;
- $\alpha_{g}\alpha_{h} = \alpha_{gh}$ whenever this makes sense.

Now let $P \subseteq G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense).

Given a partial dynamical system $G \curvearrowright \Omega$, we construct its transformation groupoid $\mathcal{G} = G \ltimes \Omega$:

- $U_e = \Omega$, $\alpha_e = id_{\Omega}$;
- $\alpha_{g}\alpha_{h} = \alpha_{gh}$ whenever this makes sense.

Now let $P \subseteq G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense).

Given a partial dynamical system $G \curvearrowright \Omega$, we construct its transformation groupoid $\mathcal{G} = G \ltimes \Omega$: Let $\mathcal{G} = \{(g, \chi) \in G \times \Omega: \chi \in U_{g^{-1}}\}$, with the subspace topology from $G \times \Omega$.

- $U_e = \Omega$, $\alpha_e = id_{\Omega}$;
- $\alpha_{g}\alpha_{h} = \alpha_{gh}$ whenever this makes sense.

Now let $P \subseteq G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense).

Given a partial dynamical system $G \cap \Omega$, we construct its transformation groupoid $\mathcal{G} = G \ltimes \Omega$: Let $\mathcal{G} = \{(g, \chi) \in G \times \Omega: \chi \in U_{g^{-1}}\}$, with the subspace topology from $G \times \Omega$. Its units are $\Omega \cong \{e\} \times \Omega \subseteq \mathcal{G}$. Define $s: \mathcal{G} \to \Omega, (g, \chi) \mapsto \chi$ and $r: \mathcal{G} \to \Omega, (g, \chi) \mapsto \alpha_g(\chi)$.

- $U_e = \Omega$, $\alpha_e = id_{\Omega}$;
- $\alpha_{g}\alpha_{h} = \alpha_{gh}$ whenever this makes sense.

Now let $P \subseteq G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense).

Given a partial dynamical system $G \curvearrowright \Omega$, we construct its transformation groupoid $\mathcal{G} = G \ltimes \Omega$: Let $\mathcal{G} = \{(g, \chi) \in G \times \Omega: \chi \in U_{g^{-1}}\}$, with the subspace topology from $G \times \Omega$. Its units are $\Omega \cong \{e\} \times \Omega \subseteq \mathcal{G}$. Define $s : \mathcal{G} \to \Omega, (g, \chi) \mapsto \chi$ and $r : \mathcal{G} \to \Omega, (g, \chi) \mapsto \alpha_g(\chi)$. Multiplication is given by $(h, \omega)(g, \chi) = (hg, \chi)$ if $\omega = \alpha_g(\chi)$. Inversion is given by $(g, \chi)^{-1} = (g^{-1}, \alpha_g(\chi))$.

- $U_e = \Omega$, $\alpha_e = id_{\Omega}$;
- $\alpha_{g}\alpha_{h} = \alpha_{gh}$ whenever this makes sense.

Now let $P \subseteq G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense).

Given a partial dynamical system $G \curvearrowright \Omega$, we construct its transformation groupoid $\mathcal{G} = G \ltimes \Omega$: Let $\mathcal{G} = \{(g, \chi) \in G \times \Omega: \chi \in U_{g^{-1}}\}$, with the subspace topology from $G \times \Omega$. Its units are $\Omega \cong \{e\} \times \Omega \subseteq \mathcal{G}$. Define $s: \mathcal{G} \to \Omega, (g, \chi) \mapsto \chi$ and $r: \mathcal{G} \to \Omega, (g, \chi) \mapsto \alpha_g(\chi)$. Multiplication is given by $(h, \omega)(g, \chi) = (hg, \chi)$ if $\omega = \alpha_g(\chi)$. Inversion is given by $(g, \chi)^{-1} = (g^{-1}, \alpha_g(\chi))$. $G \ltimes \Omega$ is an étale locally compact groupoid.

Theorem

Let $P \subseteq G$, and let P satisfy independence. Then $C^*_{\lambda}(P) \cong C^*_{\lambda}(I_l(P)) \cong C^*_{\lambda}(G \ltimes \Omega_P)$ and $C^*(P) = C^*(I_l(P)) \cong C^*(G \ltimes \Omega_P)$.

Theorem

Let $P \subseteq G$, and let P satisfy independence. Then $C^*_{\lambda}(P) \cong C^*_{\lambda}(I_l(P)) \cong C^*_{\lambda}(G \ltimes \Omega_P)$ and $C^*(P) = C^*(I_l(P)) \cong C^*(G \ltimes \Omega_P)$.

Theorem

Let $P \subseteq G$. Assume that P satisfies independence. Consider

- (i) $C^*(P)$ is nuclear.
- (ii) $C^*_{\lambda}(P)$ is nuclear.
- (iii) $G \ltimes \Omega_P$ is amenable.
- (iv) The left regular representation $C^*(P) \to C^*_{\lambda}(P)$ is an isomorphism.

Theorem

Let $P \subseteq G$, and let P satisfy independence. Then $C^*_{\lambda}(P) \cong C^*_{\lambda}(I_l(P)) \cong C^*_{\lambda}(G \ltimes \Omega_P)$ and $C^*(P) = C^*(I_l(P)) \cong C^*(G \ltimes \Omega_P)$.

Theorem

Let $P \subseteq G$. Assume that P satisfies independence. Consider

- (i) $C^*(P)$ is nuclear.
- (ii) $C^*_{\lambda}(P)$ is nuclear.
- (iii) $G \ltimes \Omega_P$ is amenable.
- (iv) The left regular representation $C^*(P) \to C^*_{\lambda}(P)$ is an isomorphism.

Then (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv).

Theorem

Let $P \subseteq G$, and let P satisfy independence. Then $C^*_{\lambda}(P) \cong C^*_{\lambda}(I_l(P)) \cong C^*_{\lambda}(G \ltimes \Omega_P)$ and $C^*(P) = C^*(I_l(P)) \cong C^*(G \ltimes \Omega_P)$.

Theorem

Let $P \subseteq G$. Assume that P satisfies independence. Consider

- (i) $C^*(P)$ is nuclear.
- (ii) $C^*_{\lambda}(P)$ is nuclear.
- (iii) $G \ltimes \Omega_P$ is amenable.
- (iv) The left regular representation $C^*(P) \to C^*_{\lambda}(P)$ is an isomorphism.

Then (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv). In particular, (i) – (iv) are true if G is amenable.

• This explains why $C^*(\mathbb{N} * \mathbb{N}) \cong C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear:

This explains why C*(N * N) ≃ C^{*}_λ(N * N) is nuclear: N * N embeds into an amenable group.

This explains why C*(N * N) ≅ C^{*}_λ(N * N) is nuclear: N * N embeds into an amenable group. The embedding N * N → Z * Z = F₂ induces an embedding N * N → F₂/F["]₂, and F₂/F["]₂ is solvable.

- This explains why C*(N * N) ≅ C^{*}_λ(N * N) is nuclear: N * N embeds into an amenable group. The embedding N * N → Z * Z = F₂ induces an embedding N * N → F₂/F["]₂, and F₂/F["]₂ is solvable.
- ► For every right-angled Artin monoid A_{Γ}^+ , $C_{\lambda}^*(A_{\Gamma}^+)$ is nuclear.

- This explains why C*(N * N) ≃ C^{*}_λ(N * N) is nuclear: N * N embeds into an amenable group. The embedding N * N → Z * Z = F₂ induces an embedding N * N → F₂/F["]₂, and F₂/F["]₂ is solvable.
- For every right-angled Artin monoid A⁺_Γ, C^{*}_λ(A⁺_Γ) is nuclear.
 Q: Do right-angled Artin monoids embed into amenable groups?

- This explains why C*(N * N) ≅ C^{*}_λ(N * N) is nuclear: N * N embeds into an amenable group. The embedding N * N → Z * Z = F₂ induces an embedding N * N → F₂/F["]₂, and F₂/F["]₂ is solvable.
- For every right-angled Artin monoid A⁺_Γ, C^{*}_λ(A⁺_Γ) is nuclear.
 Q: Do right-angled Artin monoids embed into amenable groups?
- C^{*}_λ(R ⋊ R[×]) is nuclear for every integral domain R: R ⋊ R[×] embeds into the amenable group K ⋊ K[×], where K is the quotient field of R.