Semigroup C*-algebras. The independence condition, nuclearity and amenability

Xin Li

Queen Mary University of London (QMUL)

Recall that for a discrete group G, TFAE:

- \blacktriangleright G is amenable:
- \blacktriangleright $C^*(G)$ is nuclear;
- ► $C_{\lambda}^{*}(G)$ is nuclear;
- ► the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- ► there is a character on $C^*_{\lambda}(G)$.

Recall that for a discrete group G, TFAE:

- \blacktriangleright G is amenable:
- \blacktriangleright $C^*(G)$ is nuclear;
- ► $C_{\lambda}^{*}(G)$ is nuclear;
- ► the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- ► there is a character on $C^*_{\lambda}(G)$.

Do we have an analogue for semigroups?

Recall that for a discrete group G, TFAE:

- \blacktriangleright G is amenable:
- \blacktriangleright $C^*(G)$ is nuclear;
- ► $C_{\lambda}^{*}(G)$ is nuclear;
- ► the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- ► there is a character on $C^*_{\lambda}(G)$.

Do we have an analogue for semigroups?

Why not consider all isometric representations in the construction of full semigroup C*-algebras?

Recall that for a discrete group G, TFAE:

- \blacktriangleright G is amenable:
- \blacktriangleright $C^*(G)$ is nuclear;
- ► $C^*_{\lambda}(G)$ is nuclear;
- ► the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- ► there is a character on $C^*_{\lambda}(G)$.

Do we have an analogue for semigroups?

Why not consider all isometric representations in the construction of full semigroup C*-algebras?

Let $P = N \times N$. This is an abelian semigroup, so it is amenable.

Recall that for a discrete group G, TFAE:

- \blacktriangleright G is amenable:
- \blacktriangleright $C^*(G)$ is nuclear;
- ► $C^*_{\lambda}(G)$ is nuclear;
- ► the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- ► there is a character on $C^*_{\lambda}(G)$.

Do we have an analogue for semigroups?

Why not consider all isometric representations in the construction of full semigroup C*-algebras?

Let $P = N \times N$. This is an abelian semigroup, so it is amenable. The C*-algebra universal for all isometric representations of $N \times N$ is

$$
C^{\ast} \left(v_a, v_b \ | \ v_a^{\ast} v_a = 1, \ v_b^{\ast} v_b = 1, \ v_a v_b = v_b v_a \right).
$$

Recall that for a discrete group G, TFAE:

- \blacktriangleright G is amenable:
- \blacktriangleright $C^*(G)$ is nuclear;
- ► $C^*_{\lambda}(G)$ is nuclear;
- ► the left regular representation $C^*(G) \to C^*_\lambda(G)$ is an isomorphism;
- ► there is a character on $C^*_{\lambda}(G)$.

Do we have an analogue for semigroups?

Why not consider all isometric representations in the construction of full semigroup C*-algebras?

Let $P = N \times N$. This is an abelian semigroup, so it is amenable. The C*-algebra universal for all isometric representations of $N \times N$ is

$$
C^{\ast} \left(v_a, v_b \ | \ v_a^{\ast} v_a = 1, \ v_b^{\ast} v_b = 1, \ v_a v_b = v_b v_a \right).
$$

Murphy showed that this C*-algebra is not nuclear.

Now consider $P = N * N$.

 \blacktriangleright This semigroup is not amenable.

Now consider $P = N * N$.

- \blacktriangleright This semigroup is not amenable.
- ► But $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong \mathcal{T}_2$. Hence $C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear.

- \blacktriangleright This semigroup is not amenable.
- ► But $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong \mathcal{T}_2$. Hence $C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear.
- ► Moreover, $\mathcal{T}_2 \cong C^* \left(v_a, v_b \mid v_a^* v_a = 1, v_b^* v_b = 1, v_a v_a^* v_b v_b^* = 0\right)$. So $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong C^*(\mathbb{N} * \mathbb{N}).$

- \blacktriangleright This semigroup is not amenable.
- ► But $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong \mathcal{T}_2$. Hence $C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear.
- ► Moreover, $\mathcal{T}_2 \cong C^* \left(v_a, v_b \mid v_a^* v_a = 1, v_b^* v_b = 1, v_a v_a^* v_b v_b^* = 0\right)$. So $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong C^*(\mathbb{N} * \mathbb{N}).$

This looks strange compared to the group case.

- \blacktriangleright This semigroup is not amenable.
- ► But $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong \mathcal{T}_2$. Hence $C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear.
- ► Moreover, $\mathcal{T}_2 \cong C^* \left(v_a, v_b \mid v_a^* v_a = 1, v_b^* v_b = 1, v_a v_a^* v_b v_b^* = 0\right)$. So $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong C^*(\mathbb{N} * \mathbb{N}).$

This looks strange compared to the group case.

 \triangleright Goal: Find an explanation!

The independence condition

Embed P into S sending $p \in P$ to the partial bijection $P \rightarrow pP$, $x \mapsto px$, which is an element in S.

- ► Embed P into S sending $p \in P$ to the partial bijection $P \rightarrow pP$, $x \mapsto px$, which is an element in S.
- ► So we may view $\ell^2 P$ as a subspace of $\ell^2 S$ (or $\ell^2 S^{\times}$ if $0 \in S$).

- \triangleright Embed P into S sending $p \in P$ to the partial bijection $P \rightarrow pP$, $x \mapsto px$, which is an element in S.
- ► So we may view $\ell^2 P$ as a subspace of $\ell^2 S$ (or $\ell^2 S^{\times}$ if $0 \in S$).
- \triangleright Cutting down by the corresponding orthogonal projection, we get a homomorphism $C^*_{\lambda}(S) \twoheadrightarrow C^*_{\lambda}(P)$.

- \triangleright Embed P into S sending $p \in P$ to the partial bijection $P \rightarrow pP$, $x \mapsto px$, which is an element in S.
- ► So we may view $\ell^2 P$ as a subspace of $\ell^2 S$ (or $\ell^2 S^{\times}$ if $0 \in S$).
- \triangleright Cutting down by the corresponding orthogonal projection, we get a homomorphism $C^*_{\lambda}(S) \twoheadrightarrow C^*_{\lambda}(P)$.

When is this map an isomorphism?

Definition

P satisfies the independence condition if for every $X, X_1, \ldots, X_n \in$ \mathcal{J}_P , $X = \bigcup_{i=1}^n X_i$ implies that $X = X_i$ for some $1 \leq i \leq n$.

Definition

P satisfies the independence condition if for every $X, X_1, \ldots, X_n \in$ \mathcal{J}_P , $X = \bigcup_{i=1}^n X_i$ implies that $X = X_i$ for some $1 \leq i \leq n$.

Theorem (Norling)

For a subsemigroup P of a group, $\, \mathcal{C}_{\lambda}^{*}(S) \to \, \mathcal{C}_{\lambda}^{*}(P)$ is an isomorphism if and only if P satisfies independence.

Every right LCM monoid P (i.e., $\mathcal{J}_P^{\times} = \{pP\}$) satisfies independence: Let $pP = \bigcup_{i=1}^n p_i P$. Then $p = p \cdot e \in pP$, so $p \in p_i P$ for some $1 \leq i \leq n$. But p_iP is a right ideal, so $p \in p_iP$ implies $pP \subset p_iP$. Hence $pP = p_iP$.

Every right LCM monoid P (i.e., $\mathcal{J}_P^{\times} = \{pP\}$) satisfies independence: Let $pP = \bigcup_{i=1}^n p_i P$. Then $p = p \cdot e \in pP$, so $p \in p_i P$ for some $1 \leq i \leq n$. But p_iP is a right ideal, so $p \in p_iP$ implies $pP \subset p_iP$. Hence $pP = p_iP$.

Examples:

- \blacktriangleright Positive cones:
- \triangleright Right-angled Artin monoids;
- \blacktriangleright R[×] and $R \rtimes R^{\times}$ if R is a principal ideal domain.

Every right LCM monoid P (i.e., $\mathcal{J}_P^{\times} = \{pP\}$) satisfies independence: Let $pP = \bigcup_{i=1}^n p_i P$. Then $p = p \cdot e \in pP$, so $p \in p_i P$ for some $1 \leq i \leq n$. But p_iP is a right ideal, so $p \in p_iP$ implies $pP \subset p_iP$. Hence $pP = p_iP$.

Examples:

- \blacktriangleright Positive cones:
- \triangleright Right-angled Artin monoids;
- \blacktriangleright R[×] and $R \rtimes R^{\times}$ if R is a principal ideal domain.

For a ring R of algebraic integers in a number field, $R \rtimes R^\times$ always satisfies independence (because R is a Dedekind domain).

 $P = \mathbb{N} \setminus \{1\}$ does not satisfy independence:

Let $R=\mathbb{Z}[i\sqrt{3}]$. R is not integrally closed in $\mathbb{Q}[i\sqrt{3}]$ 3]. Its integral closure is $\mathbb{Z}[\frac{1}{2}(1+i)]$ $\sqrt{3}$]. A is not integrally closed in $\sqrt{2}$ [$\sqrt{3}$]. Its integral $\sqrt{3}$]. And $R \rtimes R^{\times}$ does not satisfy independence.

 $P = \mathbb{N} \setminus \{1\}$ does not satisfy independence: $2 + P = \{2, 4, 5, ...\}$ and $3 + P = \{3, 5, 6, ...\}$ are constructible ideals.

 $P = \mathbb{N} \setminus \{1\}$ does not satisfy independence: $2 + P = \{2, 4, 5, ...\}$ and $3 + P = \{3, 5, 6, ...\}$ are constructible ideals. So $5 + N = \{5, 6, 7, ...\} = (2 + P) \cap (3 + P)$ is also a constructible ideal.

 $P = \mathbb{N} \setminus \{1\}$ does not satisfy independence: $2 + P = \{2, 4, 5, \ldots\}$ and $3 + P = \{3, 5, 6, \ldots\}$ are constructible ideals. So $5 + N = \{5, 6, 7, ...\} = (2 + P) \cap (3 + P)$ is also a constructible ideal. We have $5 + N = (5 + P) \cup (6 + P)$.

 $P = \mathbb{N} \setminus \{1\}$ does not satisfy independence: $2 + P = \{2, 4, 5, \ldots\}$ and $3 + P = \{3, 5, 6, \ldots\}$ are constructible ideals. So $5 + N = \{5, 6, 7, ...\} = (2 + P) \cap (3 + P)$ is also a constructible ideal. We have $5 + N = (5 + P) \cup (6 + P)$. But $5 + P \subseteq 5 + N$ and $6 + P \subseteq 5 + N$.

 $P = \mathbb{N} \setminus \{1\}$ does not satisfy independence: $2 + P = \{2, 4, 5, \ldots\}$ and $3 + P = \{3, 5, 6, \ldots\}$ are constructible ideals. So $5 + N = \{5, 6, 7, ...\} = (2 + P) \cap (3 + P)$ is also a constructible ideal. We have $5 + N = (5 + P) \cup (6 + P)$. But $5 + P \subseteq 5 + N$ and $6 + P \subseteq 5 + N$. Thus P does not satisfy independence.

 $P = \mathbb{N} \setminus \{1\}$ does not satisfy independence: $2 + P = \{2, 4, 5, \ldots\}$ and $3 + P = \{3, 5, 6, \ldots\}$ are constructible ideals. So $5 + N = \{5, 6, 7, ...\} = (2 + P) \cap (3 + P)$ is also a constructible ideal. We have $5 + N = (5 + P) \cup (6 + P)$. But $5 + P \subseteq 5 + N$ and $6 + P \subseteq 5 + N$. Thus P does not satisfy independence.

A similar argument shows that for every numerical semigroup of the form $\mathbb{N} \setminus F$, where $\emptyset \neq F$ is finite, the independence condition does not hold.

Theorem (L)

Let P be a cancellative semigroup which satisfies independence. TFAE

- \blacktriangleright P is left amenable.
- \blacktriangleright $C^*(P)$ is nuclear.
- ► $C_{\lambda}^{*}(P)$ is nuclear.
- ► The left regular representation $C^*(P)\to C^*_\lambda(P)$ is an isomorphism.
- ► There is a character on $C^*_{\lambda}(P)$.

Theorem (L)

Let P be a cancellative semigroup which satisfies independence. TFAE

- \blacktriangleright P is left amenable.
- ► $C^*(P)$ is nuclear and there is a character on $C^*(P)$.
- ► $C_{\lambda}^{*}(P)$ is nuclear and there is a character on $C^{*}(P)$.
- ► The left regular representation $C^*(P)\to C^*_\lambda(P)$ is an isomorphism and there is a character on $C^*(P)$.
- ► There is a character on $C^*_{\lambda}(P)$.

Theorem (L)

Let P be a cancellative semigroup which satisfies independence. TFAE

- \blacktriangleright P is left amenable.
- ► $C^*(P)$ is nuclear and there is a character on $C^*(P)$.
- ► $C_{\lambda}^{*}(P)$ is nuclear and there is a character on $C^{*}(P)$.
- ► The left regular representation $C^*(P)\to C^*_\lambda(P)$ is an isomorphism and there is a character on $C^*(P)$.

► There is a character on $C^*_{\lambda}(P)$.

What about $P = N * N?$

Theorem (L)

Let P be a cancellative semigroup which satisfies independence. TFAE

- \blacktriangleright P is left amenable.
- ► $C^*(P)$ is nuclear and there is a character on $C^*(P)$.
- ► $C_{\lambda}^{*}(P)$ is nuclear and there is a character on $C^{*}(P)$.
- ► The left regular representation $C^*(P)\to C^*_\lambda(P)$ is an isomorphism and there is a character on $C^*(P)$.

► There is a character on $C^*_{\lambda}(P)$.

What about $P = \mathbb{N} * \mathbb{N}$? There is no character on $C^*(\mathbb{N} * \mathbb{N})$:

Theorem (L)

Let P be a cancellative semigroup which satisfies independence. TFAE

- \blacktriangleright P is left amenable.
- ► $C^*(P)$ is nuclear and there is a character on $C^*(P)$.
- ► $C_{\lambda}^{*}(P)$ is nuclear and there is a character on $C^{*}(P)$.
- ► The left regular representation $C^*(P)\to C^*_\lambda(P)$ is an isomorphism and there is a character on $C^*(P)$.

• There is a character on
$$
C_{\lambda}^*(P)
$$
.

What about $P = \mathbb{N} * \mathbb{N}$? There is no character on $C^*(\mathbb{N} * \mathbb{N})$:

$$
v_a^* v_a = v_b^* v_b = 1 \Rightarrow \chi(v_a) = \chi(v_b) \in \mathbb{T}.
$$

But then, $0 = \chi(v_a v_a^* v_b v_b^*) = |\chi(v_a)|^2 |\chi(v_b)|^2 = 1.$

A partial dynamical system consists of a locally compact Hausdorff space $Ω$, a group *G*, open subsets $U_g ⊆ Ω$, $g ∈ G$, and local homeomorphisms α_g : $U_{g^{-1}} \cong U_g$ such that

A partial dynamical system consists of a locally compact Hausdorff space $Ω$, a group *G*, open subsets $U_g ⊆ Ω$, $g ∈ G$, and local homeomorphisms α_g : $U_{g^{-1}} \cong U_g$ such that

 $U_e = \Omega$, $\alpha_e = \text{id}_\Omega$;

A partial dynamical system consists of a locally compact Hausdorff space $Ω$, a group *G*, open subsets $U_g ⊆ Ω$, $g ∈ G$, and local homeomorphisms α_g : $U_{g^{-1}} \cong U_g$ such that

$$
\blacktriangleright \ U_e = \Omega, \ \alpha_e = \mathrm{id}_{\Omega};
$$

 \bullet $\alpha_{\mathbf{g}}\alpha_{\mathbf{h}} = \alpha_{\mathbf{g}\mathbf{h}}$ whenever this makes sense.

A partial dynamical system consists of a locally compact Hausdorff space $Ω$, a group *G*, open subsets $U_g ⊆ Ω$, $g ∈ G$, and local homeomorphisms α_g : $U_{g^{-1}} \cong U_g$ such that

 $U_e = \Omega$, $\alpha_e = \text{id}_\Omega$;

 \bullet $\alpha_{\mathbf{g}}\alpha_{\mathbf{h}} = \alpha_{\mathbf{g}\mathbf{h}}$ whenever this makes sense.

Now let $P \subseteq G$. Let $\Omega_P := \widehat{\mathcal{J}}_P$.

A partial dynamical system consists of a locally compact Hausdorff space $Ω$, a group *G*, open subsets $U_g ⊆ Ω$, $g ∈ G$, and local homeomorphisms $\alpha_{\mathbf{g}}$: $U_{\mathbf{g}^{-1}} \cong U_{\mathbf{g}}$ such that

 $U_e = \Omega$, $\alpha_e = \text{id}_\Omega$;

 \bullet $\alpha_{\mathbf{g}}\alpha_{\mathbf{h}} = \alpha_{\mathbf{g}\mathbf{h}}$ whenever this makes sense.

Now let $P \subset G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense). A partial dynamical system consists of a locally compact Hausdorff space $Ω$, a group *G*, open subsets $U_g ⊆ Ω$, $g ∈ G$, and local homeomorphisms $\alpha_{\mathbf{g}}$: $U_{\mathbf{g}^{-1}} \cong U_{\mathbf{g}}$ such that

 $U_e = \Omega$, $\alpha_e = \text{id}_\Omega$;

 \bullet $\alpha_{\mathbf{g}}\alpha_{\mathbf{h}} = \alpha_{\mathbf{g}\mathbf{h}}$ whenever this makes sense.

Now let $P \subset G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense).

Given a partial dynamical system $G \cap \Omega$, we construct its transformation groupoid $G = G \ltimes \Omega$:

A partial dynamical system consists of a locally compact Hausdorff space $Ω$, a group *G*, open subsets $U_g ⊆ Ω$, $g ∈ G$, and local homeomorphisms $\alpha_{\mathbf{g}}$: $U_{\mathbf{g}^{-1}} \cong U_{\mathbf{g}}$ such that

- $U_e = \Omega$, $\alpha_e = \text{id}_\Omega$;
- \bullet $\alpha_{\mathbf{g}}\alpha_{\mathbf{h}} = \alpha_{\mathbf{g}\mathbf{h}}$ whenever this makes sense.

Now let $P \subset G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense).

Given a partial dynamical system $G \cap \Omega$, we construct its transformation groupoid $\mathcal{G} = G \ltimes \Omega$: Let $\mathcal{G} = \big\{ (g, \chi) \in G \times \Omega \colon \chi \in U_{g^{-1}} \big\}$, with the subspace topology from $G \times \Omega$.

A partial dynamical system consists of a locally compact Hausdorff space $Ω$, a group *G*, open subsets $U_g ⊆ Ω$, $g ∈ G$, and local homeomorphisms $\alpha_{\mathbf{g}}$: $U_{\mathbf{g}^{-1}} \cong U_{\mathbf{g}}$ such that

 $U_e = \Omega$, $\alpha_e = \text{id}_\Omega$;

 \bullet $\alpha_{\mathbf{g}}\alpha_{\mathbf{h}} = \alpha_{\mathbf{g}\mathbf{h}}$ whenever this makes sense.

Now let $P \subset G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense).

Given a partial dynamical system $G \cap \Omega$, we construct its transformation groupoid $\mathcal{G} = G \ltimes \Omega$: Let $\mathcal{G} = \big\{ (g, \chi) \in G \times \Omega \colon \chi \in U_{g^{-1}} \big\}$, with the subspace topology from $G \times \Omega$. Its units are $\Omega \cong \{e\} \times \Omega \subseteq \mathcal{G}$. Define $s: \mathcal{G} \to \Omega$, $(g, \chi) \mapsto \chi$ and $r: \mathcal{G} \to \Omega$, $(g, \chi) \mapsto \alpha_g(\chi)$.

A partial dynamical system consists of a locally compact Hausdorff space $Ω$, a group *G*, open subsets $U_g ⊆ Ω$, $g ∈ G$, and local homeomorphisms α_{g} : $U_{g-1} \cong U_{g}$ such that

- $U_e = \Omega$, $\alpha_e = \text{id}_0$;
- \bullet $\alpha_{\mathbf{g}}\alpha_{\mathbf{h}} = \alpha_{\mathbf{g}\mathbf{h}}$ whenever this makes sense.

Now let $P \subset G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense).

Given a partial dynamical system $G \cap \Omega$, we construct its transformation groupoid $\mathcal{G} = G \ltimes \Omega$: Let $\mathcal{G} = \big\{ (g, \chi) \in G \times \Omega \colon \chi \in U_{g^{-1}} \big\}$, with the subspace topology from $G \times \Omega$. Its units are $\Omega \cong \{e\} \times \Omega \subseteq G$. Define $s: \mathcal{G} \to \Omega$, $(g, \chi) \mapsto \chi$ and $r: \mathcal{G} \to \Omega$, $(g, \chi) \mapsto \alpha_{g}(\chi)$. Multiplication is given by $(h, \omega)(g, \chi) = (hg, \chi)$ if $\omega = \alpha_g(\chi)$. Inversion is given by $(g, \chi)^{-1} = (g^{-1}, \alpha_g(\chi)).$

A partial dynamical system consists of a locally compact Hausdorff space $Ω$, a group *G*, open subsets $U_g ⊆ Ω$, $g ∈ G$, and local homeomorphisms α_{g} : $U_{g-1} \cong U_{g}$ such that

- $U_e = \Omega$, $\alpha_e = \text{id}_\Omega$;
- \bullet $\alpha_{\mathbf{g}}\alpha_{\mathbf{h}} = \alpha_{\mathbf{g}\mathbf{h}}$ whenever this makes sense.

Now let $P \subset G$. Let $\Omega_P := \widehat{\mathcal{J}_P}$. Construct a partial dynamical system $G \curvearrowright \Omega_P$ by setting " $\alpha_g(\chi)(X) = \chi(g^{-1}X)$ " (whenever it makes sense).

Given a partial dynamical system $G \cap \Omega$, we construct its transformation groupoid $\mathcal{G} = G \ltimes \Omega$: Let $\mathcal{G} = \big\{ (g, \chi) \in G \times \Omega \colon \chi \in U_{g^{-1}} \big\}$, with the subspace topology from $G \times \Omega$. Its units are $\Omega \cong \{e\} \times \Omega \subseteq G$. Define $s: \mathcal{G} \to \Omega$, $(g, \chi) \mapsto \chi$ and $r: \mathcal{G} \to \Omega$, $(g, \chi) \mapsto \alpha_{g}(\chi)$. Multiplication is given by $(h, \omega)(g, \chi) = (hg, \chi)$ if $\omega = \alpha_g(\chi)$. Inversion is given by $(g, \chi)^{-1} = (g^{-1}, \alpha_g(\chi))$. $G \ltimes \Omega$ is an étale locally compact groupoid.

Theorem

Let $P \subseteq G$, and let P satisfy independence. Then $C_{\lambda}^{*}(P) \cong$ $C^*_{\lambda}(I_1(P)) \cong C^*_{\lambda}(G \ltimes \Omega_P)$ and $C^*(P) = C^*(I_1(P)) \cong C^*(G \ltimes \Omega_P)$.

Theorem

Let $P \subseteq G$, and let P satisfy independence. Then $C_{\lambda}^{*}(P) \cong$ Let $P = 0$, and let P satisfy independence. Then $C_{\lambda}(P) = C^*(I_1(P)) \cong C^*(I_1(P)) \cong C^*(G \ltimes \Omega_P)$.

Theorem

Let $P \subseteq G$. Assume that P satisfies independence. Consider

- (i) $C^*(P)$ is nuclear.
- (ii) $C^*_{\lambda}(P)$ is nuclear.
- (iii) $G \ltimes \Omega_P$ is amenable.
- (iv) The left regular representation $C^*(P) \to C^*_\lambda(P)$ is an isomorphism.

Theorem

Let $P \subseteq G$, and let P satisfy independence. Then $C_{\lambda}^{*}(P) \cong$ $C^*_{\lambda}(I_1(P)) \cong C^*_{\lambda}(G \ltimes \Omega_P)$ and $C^*(P) = C^*(I_1(P)) \cong C^*(G \ltimes \Omega_P)$.

Theorem

Let $P \subset G$. Assume that P satisfies independence. Consider

- (i) $C^*(P)$ is nuclear.
- (ii) $C^*_{\lambda}(P)$ is nuclear.
- (iii) $G \ltimes \Omega_P$ is amenable.
- (iv) The left regular representation $C^*(P) \to C^*_\lambda(P)$ is an isomorphism.

Then (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv).

Theorem

Let $P \subseteq G$, and let P satisfy independence. Then $C_{\lambda}^{*}(P) \cong$ Let $P = 0$, and let P satisfy independence. Then $C_{\lambda}(P) = C^*(I_1(P)) \cong C^*(I_1(P)) \cong C^*(G \ltimes \Omega_P)$.

Theorem

Let $P \subseteq G$. Assume that P satisfies independence. Consider

- (i) $C^*(P)$ is nuclear.
- (ii) $C^*_{\lambda}(P)$ is nuclear.
- (iii) $G \ltimes \Omega_P$ is amenable.
- (iv) The left regular representation $C^*(P) \to C^*_\lambda(P)$ is an isomorphism.

Then (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv). In particular, $(i) - (iv)$ are true if G is amenable.

► This explains why $C^*(\mathbb{N} * \mathbb{N}) \cong C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear:

► This explains why $C^*(\mathbb{N} * \mathbb{N}) \cong C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear: $\mathbb{N} * \mathbb{N}$ embeds into an amenable group.

► This explains why $C^*(\mathbb{N} * \mathbb{N}) \cong C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear: $\mathbb{N} * \mathbb{N}$ embeds into an amenable group. The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{Z} * \mathbb{Z} = \mathbb{F}_2$ induces an embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$, and $\mathbb{F}_2/\mathbb{F}_2''$ is solvable.

- ► This explains why $C^*(\mathbb{N} * \mathbb{N}) \cong C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear: $\mathbb{N} * \mathbb{N}$ embeds into an amenable group. The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{Z} * \mathbb{Z} = \mathbb{F}_2$ induces an embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$, and $\mathbb{F}_2/\mathbb{F}_2''$ is solvable.
- ► For every right-angled Artin monoid A_{Γ}^{+} , $C_{\lambda}^{*}(A_{\Gamma}^{+})$ is nuclear.

- ► This explains why $C^*(\mathbb{N} * \mathbb{N}) \cong C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear: $\mathbb{N} * \mathbb{N}$ embeds into an amenable group. The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{Z} * \mathbb{Z} = \mathbb{F}_2$ induces an embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$, and $\mathbb{F}_2/\mathbb{F}_2''$ is solvable.
- ► For every right-angled Artin monoid A_{Γ}^{+} , $C_{\lambda}^{*}(A_{\Gamma}^{+})$ is nuclear. Q: Do right-angled Artin monoids embed into amenable groups?

- ► This explains why $C^*(\mathbb{N} * \mathbb{N}) \cong C^*_{\lambda}(\mathbb{N} * \mathbb{N})$ is nuclear: $\mathbb{N} * \mathbb{N}$ embeds into an amenable group. The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{Z} * \mathbb{Z} = \mathbb{F}_2$ induces an embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$, and $\mathbb{F}_2/\mathbb{F}_2''$ is solvable.
- ► For every right-angled Artin monoid A_{Γ}^{+} , $C_{\lambda}^{*}(A_{\Gamma}^{+})$ is nuclear. Q: Do right-angled Artin monoids embed into amenable groups?
- ► $C^*_\lambda(R \rtimes R^\times)$ is nuclear for every integral domain $R: R \rtimes R^\times$ embeds into the amenable group $K\rtimes K^\times$, where K is the quotient field of $R.$