Semigroup C*-algebras. The Toeplitz condition and K-theory

Xin Li

Queen Mary University of London (QMUL)

Definition

 $P \subseteq G$ is Toeplitz if for every $g \in G$ with $P \cap g^{-1}P \neq \emptyset$, the partial bijection $P \cap g^{-1}P \rightarrow gP \cap P$, $x \mapsto gx$ lies in $I_l(P)$.

Definition

 $P \subseteq G$ is Toeplitz if for every $g \in G$ with $P \cap g^{-1}P \neq \emptyset$, the partial bijection $P \cap g^{-1}P \rightarrow gP \cap P$, $x \mapsto gx$ lies in $I_l(P)$.

Equivalent formulation: Let λ be the left regular representation of G on $\ell^2 G$, and write 1_P for the orthogonal projection $\ell^2 G \twoheadrightarrow \ell^2 P \subseteq \ell^2 G$.

Definition

 $P \subseteq G$ is Toeplitz if for every $g \in G$ with $P \cap g^{-1}P \neq \emptyset$, the partial bijection $P \cap g^{-1}P \rightarrow gP \cap P$, $x \mapsto gx$ lies in $I_l(P)$.

Equivalent formulation: Let λ be the left regular representation of G on $\ell^2 G$, and write 1_P for the orthogonal projection $\ell^2 G \twoheadrightarrow \ell^2 P \subseteq \ell^2 G$. $P \subseteq G$ satisfies the Toeplitz condition if for every $g \in G$ with $1_P \lambda_g 1_P \neq 0$, $1_P \lambda_g 1_P = V_{p_1} V_{q_1}^* \cdots V_{p_n} V_{q_n}^*$ for some $p_i, q_i \in P$.

Definition

 $P \subseteq G$ is Toeplitz if for every $g \in G$ with $P \cap g^{-1}P \neq \emptyset$, the partial bijection $P \cap g^{-1}P \rightarrow gP \cap P$, $x \mapsto gx$ lies in $I_l(P)$.

Equivalent formulation: Let λ be the left regular representation of G on $\ell^2 G$, and write 1_P for the orthogonal projection $\ell^2 G \twoheadrightarrow \ell^2 P \subseteq \ell^2 G$. $P \subseteq G$ satisfies the Toeplitz condition if for every $g \in G$ with $1_P \lambda_g 1_P \neq 0$, $1_P \lambda_g 1_P = V_{p_1} V_{q_1}^* \cdots V_{p_n} V_{q_n}^*$ for some $p_i, q_i \in P$.

Theorem (L)

If $P \subseteq G$ is Toeplitz, then $C^*_{\lambda}(P) \sim_M D_{P \subseteq G} \rtimes_r G \cong C_0(\Omega_{P \subseteq G}) \rtimes_r G$.

Definition

 $P \subseteq G$ is Toeplitz if for every $g \in G$ with $P \cap g^{-1}P \neq \emptyset$, the partial bijection $P \cap g^{-1}P \rightarrow gP \cap P$, $x \mapsto gx$ lies in $I_l(P)$.

Equivalent formulation: Let λ be the left regular representation of G on $\ell^2 G$, and write 1_P for the orthogonal projection $\ell^2 G \twoheadrightarrow \ell^2 P \subseteq \ell^2 G$. $P \subseteq G$ satisfies the Toeplitz condition if for every $g \in G$ with $1_P \lambda_g 1_P \neq 0$, $1_P \lambda_g 1_P = V_{p_1} V_{q_1}^* \cdots V_{p_n} V_{q_n}^*$ for some $p_i, q_i \in P$.

Theorem (L)

If $P \subseteq G$ is Toeplitz, then $C^*_{\lambda}(P) \sim_M D_{P \subseteq G} \rtimes_r G \cong C_0(\Omega_{P \subseteq G}) \rtimes_r G$. Here $D_{P \subseteq G}$ is the smallest *G*-invariant subalgebra of $\ell^{\infty}(G)$ containing 1_P , and $\Omega_{P \subseteq G} = \text{Spec}(D_{P \subseteq G})$.

The Toeplitz condition. Examples

Let P be cancellative and right reversible (i.e., $Pp \cap Pq \neq \emptyset$ for all $p, q \in P$). Then $P \subseteq G = P^{-1}P$ is Toeplitz:

The Toeplitz condition. Examples

Let P be cancellative and right reversible (i.e., $Pp \cap Pq \neq \emptyset$ for all $p, q \in P$). Then $P \subseteq G = P^{-1}P$ is Toeplitz: Take $g \in G$, and write $g = q^{-1}p$ for some $p, q \in P$.

Let *P* be cancellative and right reversible (i.e., $Pp \cap Pq \neq \emptyset$ for all $p, q \in P$). Then $P \subseteq G = P^{-1}P$ is Toeplitz: Take $g \in G$, and write $g = q^{-1}p$ for some $p, q \in P$. Then $g^{-1}P \cap P \to P \cap gP$, $x \mapsto gx$ is the composition of q^{-1} : $qP \to P$, $qx \mapsto x$ and $p : P \to pP$, $x \mapsto px$.

Let *P* be cancellative and right reversible (i.e., $Pp \cap Pq \neq \emptyset$ for all $p, q \in P$). Then $P \subseteq G = P^{-1}P$ is Toeplitz: Take $g \in G$, and write $g = q^{-1}p$ for some $p, q \in P$. Then $g^{-1}P \cap P \to P \cap gP$, $x \mapsto gx$ is the composition of q^{-1} : $qP \to P$, $qx \mapsto x$ and $p : P \to pP$, $x \mapsto px$. This is because

$$g^{-1}P \cap P = p^{-1}qP \cap P = p^{-1}(qP) = p^{-1}(\operatorname{dom}(q^{-1})) = \operatorname{dom}(q^{-1}p),$$

and we have $gx = q^{-1}px = (q^{-1}p)(x).$

Let *P* be cancellative and right reversible (i.e., $Pp \cap Pq \neq \emptyset$ for all $p, q \in P$). Then $P \subseteq G = P^{-1}P$ is Toeplitz: Take $g \in G$, and write $g = q^{-1}p$ for some $p, q \in P$. Then $g^{-1}P \cap P \to P \cap gP$, $x \mapsto gx$ is the composition of $q^{-1} : qP \to P$, $qx \mapsto x$ and $p : P \to pP$, $x \mapsto px$. This is because

$$g^{-1}P \cap P = p^{-1}qP \cap P = p^{-1}(qP) = p^{-1}(\operatorname{dom}(q^{-1})) = \operatorname{dom}(q^{-1}p),$$

and we have $gx = q^{-1}px = (q^{-1}p)(x).$

In particular, given an integral domain R, let K be its quotient field. Then the canonical embedding R ⋊ R[×] ⊆ K ⋊ K[×] is Toeplitz. Let *P* be cancellative and right reversible (i.e., $Pp \cap Pq \neq \emptyset$ for all $p, q \in P$). Then $P \subseteq G = P^{-1}P$ is Toeplitz: Take $g \in G$, and write $g = q^{-1}p$ for some $p, q \in P$. Then $g^{-1}P \cap P \to P \cap gP$, $x \mapsto gx$ is the composition of $q^{-1} : qP \to P$, $qx \mapsto x$ and $p : P \to pP$, $x \mapsto px$. This is because

 $g^{-1}P \cap P = p^{-1}qP \cap P = p^{-1}(qP) = p^{-1}(\operatorname{dom}(q^{-1})) = \operatorname{dom}(q^{-1}p),$ and we have $gx = q^{-1}px = (q^{-1}p)(x).$

- In particular, given an integral domain R, let K be its quotient field. Then the canonical embedding R ⋊ R[×] ⊆ K ⋊ K[×] is Toeplitz.
- A right-angled Artin monoid embeds into its right-angled Artin group, and this embedding is Toeplitz. More generally, the Toeplitz condition is preserved under graph products.

• The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.

• The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.

► For the Thompson group $F = \langle x_0, x_1, x_2, \dots | x_n x_k = x_k x_{n+1} \text{ for } k < n \rangle$, the homomorphism $\mathbb{N} * \mathbb{N} \to F$, $a \mapsto x_0$, $b \mapsto x_1$ is an embedding which is not Toeplitz.

- The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.
- ▶ For the Thompson group $F = \langle x_0, x_1, x_2, ... | x_n x_k = x_k x_{n+1} \text{ for } k < n \rangle$, the homomorphism $\mathbb{N} * \mathbb{N} \to F$, $a \mapsto x_0$, $b \mapsto x_1$ is an embedding which is not Toeplitz.

In general, if P embeds into a group, then there is a universal embedding $P \hookrightarrow G_{\text{univ}}$. It turns out that if there is a group embedding $P \hookrightarrow G$ which is Toeplitz, then $P \hookrightarrow G_{\text{univ}}$ must be Toeplitz.

- The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.
- ▶ For the Thompson group $F = \langle x_0, x_1, x_2, ... | x_n x_k = x_k x_{n+1} \text{ for } k < n \rangle$, the homomorphism $\mathbb{N} * \mathbb{N} \to F$, $a \mapsto x_0$, $b \mapsto x_1$ is an embedding which is not Toeplitz.

In general, if P embeds into a group, then there is a universal embedding $P \hookrightarrow G_{\text{univ}}$. It turns out that if there is a group embedding $P \hookrightarrow G$ which is Toeplitz, then $P \hookrightarrow G_{\text{univ}}$ must be Toeplitz.

▶ Let
$$P = \langle a, b \mid a = b^d a b^c \rangle^+$$
. Then $G_{univ} = \langle a, b \mid a = b^d a b^c \rangle$.

- The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.
- ▶ For the Thompson group $F = \langle x_0, x_1, x_2, ... | x_n x_k = x_k x_{n+1} \text{ for } k < n \rangle$, the homomorphism $\mathbb{N} * \mathbb{N} \to F$, $a \mapsto x_0$, $b \mapsto x_1$ is an embedding which is not Toeplitz.

In general, if P embeds into a group, then there is a universal embedding $P \hookrightarrow G_{\text{univ}}$. It turns out that if there is a group embedding $P \hookrightarrow G$ which is Toeplitz, then $P \hookrightarrow G_{\text{univ}}$ must be Toeplitz.

▶ Let $P = \langle a, b \mid a = b^d a b^c \rangle^+$. Then $G_{univ} = \langle a, b \mid a = b^d a b^c \rangle$. For c > 1, $P \hookrightarrow G_{univ}$ is not Toeplitz [Spielberg].

- The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.
- ▶ For the Thompson group $F = \langle x_0, x_1, x_2, ... | x_n x_k = x_k x_{n+1} \text{ for } k < n \rangle$, the homomorphism $\mathbb{N} * \mathbb{N} \to F$, $a \mapsto x_0$, $b \mapsto x_1$ is an embedding which is not Toeplitz.

In general, if P embeds into a group, then there is a universal embedding $P \hookrightarrow G_{\text{univ}}$. It turns out that if there is a group embedding $P \hookrightarrow G$ which is Toeplitz, then $P \hookrightarrow G_{\text{univ}}$ must be Toeplitz.

▶ Let $P = \langle a, b \mid a = b^d a b^c \rangle^+$. Then $G_{univ} = \langle a, b \mid a = b^d a b^c \rangle$. For c > 1, $P \hookrightarrow G_{univ}$ is not Toeplitz [Spielberg]. Hence there is no embedding $P \hookrightarrow G$ which is Toeplitz.

K-theory

Let $P \subseteq G$.

Let $P \subseteq G$. Consider $\mathcal{J}_{P \subseteq G} := \{\bigcap_{i=1}^n g_i P : g_i \in G\}$,

Let $P \subseteq G$. Consider $\mathcal{J}_{P \subseteq G} := \{\bigcap_{i=1}^{n} g_i P : g_i \in G\}$, and let $\mathcal{J}_{P \subseteq G}^{\times} = \mathcal{J}_{P \subseteq G} \setminus \{\emptyset\}$.

Let $P \subseteq G$. Consider $\mathcal{J}_{P\subseteq G} := \{\bigcap_{i=1}^{n} g_i P : g_i \in G\}$, and let $\mathcal{J}_{P\subseteq G}^{\times} = \mathcal{J}_{P\subseteq G} \setminus \{\emptyset\}$. G acts on $\mathcal{J}_{P\subseteq G}^{\times}$ by left translations, and we form the set of orbits $G \setminus \mathcal{J}_{P\subseteq G}^{\times}$.

Let $P \subseteq G$. Consider $\mathcal{J}_{P \subseteq G} := \{\bigcap_{i=1}^{n} g_i P : g_i \in G\}$, and let $\mathcal{J}_{P \subseteq G}^{\times} = \mathcal{J}_{P \subseteq G} \setminus \{\emptyset\}$. G acts on $\mathcal{J}_{P \subseteq G}^{\times}$ by left translations, and we form the set of orbits $G \setminus \mathcal{J}_{P \subseteq G}^{\times}$. For $X \in \mathcal{J}_{P \subseteq G}^{\times}$, let $G_X = \{g \in G : gX = X\}$.

Let $P \subseteq G$. Consider $\mathcal{J}_{P \subseteq G} := \{\bigcap_{i=1}^{n} g_i P: g_i \in G\}$, and let $\mathcal{J}_{P \subseteq G}^{\times} = \mathcal{J}_{P \subseteq G} \setminus \{\emptyset\}$. *G* acts on $\mathcal{J}_{P \subseteq G}^{\times}$ by left translations, and we form the set of orbits $G \setminus \mathcal{J}_{P \subseteq G}^{\times}$. For $X \in \mathcal{J}_{P \subseteq G}^{\times}$, let $G_X = \{g \in G: gX = X\}$.

Theorem (Cuntz-Echterhoff-L)

Let $P \subseteq G$. Assume that P satisfies independence, $P \subseteq G$ is Toeplitz, and that G satisfies the Baum-Connes conjecture with coefficients. Then

$$K_*(C^*_{\lambda}(P)) \cong \bigoplus_{[X] \in G \setminus \mathcal{J}^{\times}_{P \subseteq G}} K_*(C^*_{\lambda}(G_X)).$$

• Let P be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz.

▶ Let *P* be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P \subset G}^{\times} = \{gP: g \in G\}$. Hence $G \setminus \mathcal{J}_{P \subset G}^{\times} = \{[P]\}$.

▶ Let *P* be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P\subseteq G}^{\times} = \{gP: g \in G\}$. Hence $G \setminus \mathcal{J}_{P\subseteq G}^{\times} = \{[P]\}$. Moreover, $G_P = P^*$.

▶ Let *P* be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P\subseteq G}^{\times} = \{gP: g \in G\}$. Hence $G \setminus \mathcal{J}_{P\subseteq G}^{\times} = \{[P]\}$. Moreover, $G_P = P^*$. So if *G* satisfies the Baum-Connes conjecture with coefficients, then $K_*(C_{\lambda}^{\times}(P)) \cong K_*(C_{\lambda}^{\times}(P^*))$.

- ▶ Let *P* be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P\subseteq G}^{\times} = \{gP: g \in G\}$. Hence $G \setminus \mathcal{J}_{P\subseteq G}^{\times} = \{[P]\}$. Moreover, $G_P = P^*$. So if *G* satisfies the Baum-Connes conjecture with coefficients, then $K_*(C_{\lambda}^*(P)) \cong K_*(C_{\lambda}^*(P^*))$.
- ▶ In particular, for right-angled Artin monoids, $K_*(C^*_{\lambda}(A^+_{\Gamma})) \cong K_*(\mathbb{C})$.

- ▶ Let *P* be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P\subseteq G}^{\times} = \{gP: g \in G\}$. Hence $G \setminus \mathcal{J}_{P\subseteq G}^{\times} = \{[P]\}$. Moreover, $G_P = P^*$. So if *G* satisfies the Baum-Connes conjecture with coefficients, then $K_*(C_{\lambda}^*(P)) \cong K_*(C_{\lambda}^*(P^*))$.
- ▶ In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A^+_\Gamma)) \cong K_*(\mathbb{C})$.
- Let P = R ⋊ R[×], where R is the ring of algebraic integers in a number field K.

- ▶ Let *P* be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P\subseteq G}^{\times} = \{gP: g \in G\}$. Hence $G \setminus \mathcal{J}_{P\subseteq G}^{\times} = \{[P]\}$. Moreover, $G_P = P^*$. So if *G* satisfies the Baum-Connes conjecture with coefficients, then $K_*(C_{\lambda}^*(P)) \cong K_*(C_{\lambda}^*(P^*))$.
- ▶ In particular, for right-angled Artin monoids, $K_*(C^*_{\lambda}(A^+_{\Gamma})) \cong K_*(\mathbb{C})$.
- Let P = R ⋊ R[×], where R is the ring of algebraic integers in a number field K. P embeds into G = K ⋊ K[×], and this embedding is Toeplitz.

- ▶ Let *P* be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P\subseteq G}^{\times} = \{gP: g \in G\}$. Hence $G \setminus \mathcal{J}_{P\subseteq G}^{\times} = \{[P]\}$. Moreover, $G_P = P^*$. So if *G* satisfies the Baum-Connes conjecture with coefficients, then $K_*(C_{\lambda}^*(P)) \cong K_*(C_{\lambda}^*(P^*))$.
- ▶ In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A^+_\Gamma)) \cong K_*(\mathbb{C})$.
- Let P = R ⋊ R[×], where R is the ring of algebraic integers in a number field K. P embeds into G = K ⋊ K[×], and this embedding is Toeplitz. G is amenable, hence satisfies the Baum-Connes conjecture with coefficients.

- ▶ Let *P* be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P\subseteq G}^{\times} = \{gP: g \in G\}$. Hence $G \setminus \mathcal{J}_{P\subseteq G}^{\times} = \{[P]\}$. Moreover, $G_P = P^*$. So if *G* satisfies the Baum-Connes conjecture with coefficients, then $K_*(C_{\lambda}^*(P)) \cong K_*(C_{\lambda}^*(P^*))$.
- ▶ In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A^+_\Gamma)) \cong K_*(\mathbb{C})$.
- Let P = R ⋊ R[×], where R is the ring of algebraic integers in a number field K. P embeds into G = K ⋊ K[×], and this embedding is Toeplitz. G is amenable, hence satisfies the Baum-Connes conjecture with coefficients. Moreover, we have G \ J[×]_{P⊂G} ≅ Cl_K, [a × a[×]] ↔ [a],

- ▶ Let *P* be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P\subseteq G}^{\times} = \{gP: g \in G\}$. Hence $G \setminus \mathcal{J}_{P\subseteq G}^{\times} = \{[P]\}$. Moreover, $G_P = P^*$. So if *G* satisfies the Baum-Connes conjecture with coefficients, then $K_*(C_{\lambda}^*(P)) \cong K_*(C_{\lambda}^*(P^*))$.
- ▶ In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A^+_\Gamma)) \cong K_*(\mathbb{C})$.
- Let P = R ⋊ R[×], where R is the ring of algebraic integers in a number field K. P embeds into G = K ⋊ K[×], and this embedding is Toeplitz. G is amenable, hence satisfies the Baum-Connes conjecture with coefficients. Moreover, we have G \ J[×]_{P⊂G} ≅ Cl_K, [a × a[×]] ↔ [a], and G_{a×a[×]} = a ⋊ R^{*}.

- ▶ Let *P* be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P\subseteq G}^{\times} = \{gP: g \in G\}$. Hence $G \setminus \mathcal{J}_{P\subseteq G}^{\times} = \{[P]\}$. Moreover, $G_P = P^*$. So if *G* satisfies the Baum-Connes conjecture with coefficients, then $K_*(C^*_{\lambda}(P)) \cong K_*(C^*_{\lambda}(P^*))$.
- ▶ In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A^+_\Gamma)) \cong K_*(\mathbb{C})$.
- Let P = R ⋊ R[×], where R is the ring of algebraic integers in a number field K. P embeds into G = K ⋊ K[×], and this embedding is Toeplitz. G is amenable, hence satisfies the Baum-Connes conjecture with coefficients. Moreover, we have G \ J[×]_{P⊆G} ≅ Cl_K, [a × a[×]] ↔ [a], and G_{a×a[×]} = a ⋊ R^{*}. So

$$\mathcal{K}_*(C^*_\lambda(R\rtimes R^{\times}))\cong \bigoplus_{[\mathfrak{a}]\in Cl_{\mathcal{K}}}\mathcal{K}_*(C^*_\lambda(\mathfrak{a}\rtimes R^*)).$$

Let $\Gamma \curvearrowright \Omega$ be a topological dynamical system, Ω totally disconnected.

Let $\Gamma \curvearrowright \Omega$ be a topological dynamical system, Ω totally disconnected.

Definition

 $\Gamma \curvearrowright \Omega$ satisfies independence if there is a Γ -invariant, linearly independent, (up to 0) multiplicatively closed set of projections E in $C_0(\Omega)$ such that $C_0(\Omega) = C^*(E)$.

Let $\Gamma \curvearrowright \Omega$ be a topological dynamical system, Ω totally disconnected.

Definition

 $\Gamma \curvearrowright \Omega$ satisfies independence if there is a Γ -invariant, linearly independent, (up to 0) multiplicatively closed set of projections E in $C_0(\Omega)$ such that $C_0(\Omega) = C^*(E)$.

Theorem (Cuntz-Echterhoff-L)

Let $\Gamma \curvearrowright \Omega$ satisfy independence. If Γ satisfies the Baum-Connes conjecture with coefficients, then

$$\mathcal{K}_*(\mathcal{C}_0(\Omega) \rtimes_r \Gamma) \cong \bigoplus_{[e] \in \Gamma \setminus E} \mathcal{K}_*(\mathcal{C}_r^*(\Gamma_e)).$$

Here Γ_e is the stabilizer group of $e \in E$.

Let $\Gamma \curvearrowright \Omega$ be a topological dynamical system, Ω totally disconnected.

Definition

 $\Gamma \curvearrowright \Omega$ satisfies independence if there is a Γ -invariant, linearly independent, (up to 0) multiplicatively closed set of projections E in $C_0(\Omega)$ such that $C_0(\Omega) = C^*(E)$.

Theorem (Cuntz-Echterhoff-L)

Let $\Gamma \curvearrowright \Omega$ satisfy independence. If Γ satisfies the Baum-Connes conjecture with coefficients, then

$$\mathcal{K}_*(\mathcal{C}_0(\Omega) \rtimes_r \Gamma) \cong \bigoplus_{[e] \in \Gamma \setminus E} \mathcal{K}_*(\mathcal{C}^*_r(\Gamma_e)).$$

Here Γ_e is the stabilizer group of $e \in E$.

For instance, Bernoulli shifts $\Gamma \curvearrowright \{0, \ldots, N\}^{\Gamma}$ satisfy independence.