Semigroup C*-algebras. The Toeplitz condition and K-theory

Xin Li

Queen Mary University of London (QMUL)

-
- -
	- -

Definition

 $P \subseteq \mathit{G}$ is Toeplitz if for every $g \,\in\, \mathit{G}$ with $P \cap g^{-1}P \,\neq\, \emptyset$, the partial bijection $P \cap g^{-1}P \to gP \cap P,$ $x \mapsto gx$ lies in $\mathit{I_l(P)}.$

Definition

 $P \subseteq \mathit{G}$ is Toeplitz if for every $g \,\in\, \mathit{G}$ with $P \cap g^{-1}P \,\neq\, \emptyset$, the partial bijection $P \cap g^{-1}P \to gP \cap P,$ $x \mapsto gx$ lies in $\mathit{I_l(P)}.$

Equivalent formulation: Let λ be the left regular representation of G on ℓ^2G , and write 1_P for the orthogonal projection $\ell^2G \twoheadrightarrow \ell^2P \subseteq \ell^2G$.

Definition

 $P \subseteq \mathit{G}$ is Toeplitz if for every $g \,\in\, \mathit{G}$ with $P \cap g^{-1}P \,\neq\, \emptyset$, the partial bijection $P \cap g^{-1}P \to gP \cap P,$ $x \mapsto gx$ lies in $\mathit{I_l(P)}.$

Equivalent formulation: Let λ be the left regular representation of G on ℓ^2G , and write 1_P for the orthogonal projection $\ell^2G \twoheadrightarrow \ell^2P \subseteq \ell^2G$. $P \subseteq G$ satisfies the Toeplitz condition if for every $g \in G$ with $1_P\lambda_g 1_P \neq 0$, $1_P\lambda_g 1_P = V_{p_1}V_{q_1}^*\cdots V_{p_n}V_{q_n}^*$ for some $p_i, q_i \in P$.

Definition

 $P \subseteq \mathit{G}$ is Toeplitz if for every $g \,\in\, \mathit{G}$ with $P \cap g^{-1}P \,\neq\, \emptyset$, the partial bijection $P \cap g^{-1}P \to gP \cap P,$ $x \mapsto gx$ lies in $\mathit{I_l(P)}.$

Equivalent formulation: Let λ be the left regular representation of G on ℓ^2G , and write 1_P for the orthogonal projection $\ell^2G \twoheadrightarrow \ell^2P \subseteq \ell^2G$. $P \subseteq G$ satisfies the Toeplitz condition if for every $g \in G$ with $1_P\lambda_g 1_P \neq 0$, $1_P\lambda_g 1_P = V_{p_1}V_{q_1}^*\cdots V_{p_n}V_{q_n}^*$ for some $p_i, q_i \in P$.

Theorem (L)

If $P \subseteq G$ is Toeplitz, then $C^*_{\lambda}(P) \sim_M D_{P \subseteq G} \rtimes_r G \cong C_0(\Omega_{P \subseteq G}) \rtimes_r$ G.

Definition

 $P \subseteq \mathit{G}$ is Toeplitz if for every $g \,\in\, \mathit{G}$ with $P \cap g^{-1}P \,\neq\, \emptyset$, the partial bijection $P \cap g^{-1}P \to gP \cap P,$ $x \mapsto gx$ lies in $\mathit{I_l(P)}.$

Equivalent formulation: Let λ be the left regular representation of G on ℓ^2G , and write 1_P for the orthogonal projection $\ell^2G \twoheadrightarrow \ell^2P \subseteq \ell^2G$. $P \subseteq G$ satisfies the Toeplitz condition if for every $g \in G$ with $1_P\lambda_g 1_P \neq 0$, $1_P\lambda_g 1_P = V_{p_1}V_{q_1}^*\cdots V_{p_n}V_{q_n}^*$ for some $p_i, q_i \in P$.

Theorem (L)

If $P \subseteq G$ is Toeplitz, then $C^*_{\lambda}(P) \sim_M D_{P \subseteq G} \rtimes_r G \cong C_0(\Omega_{P \subseteq G}) \rtimes_r$ G. Here $D_{P\subseteq G}$ is the smallest G-invariant subalgebra of $\ell^{\infty}(G)$ containing 1_P , and $\Omega_{P \subset G} = \text{Spec} (D_{P \subset G})$.

The Toeplitz condition. Examples

Let P be cancellative and right reversible (i.e., $Pp \cap Pq \neq \emptyset$ for all $p,q\in P$). Then $P\subseteq G=P^{-1}P$ is Toeplitz:

The Toeplitz condition. Examples

Let P be cancellative and right reversible (i.e., $Pp \cap Pq \neq \emptyset$ for all $\rho, q\in P)$. Then $P\subseteq G=P^{-1}P$ is Toeplitz: Take $g\in G$, and write $\displaystyle{\mathop{g}} = \displaystyle{\mathop{q}^{-1}} \displaystyle{\mathop{p}}$ for some $\displaystyle{\mathop{p}} \displaystyle{,\mathop{q} \in \mathop{P}}$.

Let P be cancellative and right reversible (i.e., $Pp \cap Eq \neq \emptyset$ for all $\rho, q\in P)$. Then $P\subseteq G=P^{-1}P$ is Toeplitz: Take $g\in G$, and write $\mathbb{g} = \mathbb{q}^{-1} \mathbb{\rho}$ for some $\mathbb{\rho}, \mathbb{q} \in P$. Then $\mathbb{g}^{-1} P \cap P \to P \cap \mathbb{g} P,$ $\mathbb{x} \mapsto \mathbb{g} \mathbb{x}$ is the composition of $q^{-1}:\ qP\to P,\ qx\mapsto x$ and $p:\ P\to pP,\ x\mapsto px.$

Let P be cancellative and right reversible (i.e., $Pp \cap Eq \neq \emptyset$ for all $\rho, q\in P)$. Then $P\subseteq G=P^{-1}P$ is Toeplitz: Take $g\in G$, and write $\mathbb{g} = \mathbb{q}^{-1} \mathbb{\rho}$ for some $\mathbb{\rho}, \mathbb{q} \in P$. Then $\mathbb{g}^{-1} P \cap P \to P \cap \mathbb{g} P,$ $\mathbb{x} \mapsto \mathbb{g} \mathbb{x}$ is the composition of $q^{-1}:\ qP\to P,\ qx\mapsto x$ and $p:\ P\to pP,\ x\mapsto px.$ This is because

$$
g^{-1}P \cap P = p^{-1}qP \cap P = p^{-1}(qP) = p^{-1}(\text{dom}(q^{-1})) = \text{dom}(q^{-1}p),
$$

and we have $gx = q^{-1}px = (q^{-1}p)(x)$.

Let P be cancellative and right reversible (i.e., $Pp \cap Eq \neq \emptyset$ for all $\rho, q\in P)$. Then $P\subseteq G=P^{-1}P$ is Toeplitz: Take $g\in G$, and write $\mathbb{g} = \mathbb{q}^{-1} \mathbb{\rho}$ for some $\mathbb{\rho}, \mathbb{q} \in P$. Then $\mathbb{g}^{-1} P \cap P \to P \cap \mathbb{g} P,$ $\mathbb{x} \mapsto \mathbb{g} \mathbb{x}$ is the composition of $q^{-1}:\ qP\to P,\ qx\mapsto x$ and $p:\ P\to pP,\ x\mapsto px.$ This is because

$$
g^{-1}P \cap P = p^{-1}qP \cap P = p^{-1}(qP) = p^{-1}(\text{dom}(q^{-1})) = \text{dom}(q^{-1}p),
$$

and we have $gx = q^{-1}px = (q^{-1}p)(x)$.

In particular, given an integral domain R , let K be its quotient field. Then the canonical embedding $R \rtimes R^{\times} \subseteq K \rtimes K^{\times}$ is Toeplitz.

Let P be cancellative and right reversible (i.e., $Pp \cap Pq \neq \emptyset$ for all $\rho, q\in P)$. Then $P\subseteq G=P^{-1}P$ is Toeplitz: Take $g\in G$, and write $\mathbb{g} = \mathbb{q}^{-1} \mathbb{\rho}$ for some $\mathbb{\rho}, \mathbb{q} \in P$. Then $\mathbb{g}^{-1} P \cap P \to P \cap \mathbb{g} P,$ $\mathbb{x} \mapsto \mathbb{g} \mathbb{x}$ is the composition of $q^{-1}:\ qP\to P,\ qx\mapsto x$ and $p:\ P\to pP,\ x\mapsto px.$ This is because

 $\mathsf{g}^{-1}P\cap P=\mathsf{p}^{-1}\mathsf{q}P\cap P=\mathsf{p}^{-1}(\mathsf{q}P)=\mathsf{p}^{-1}(\mathrm{dom}(\mathsf{q}^{-1}))=\mathrm{dom}(\mathsf{q}^{-1}\mathsf{p}),$ and we have $gx = q^{-1}px = (q^{-1}p)(x)$.

- In particular, given an integral domain R, let K be its quotient field. Then the canonical embedding $R \rtimes R^{\times} \subseteq K \rtimes K^{\times}$ is Toeplitz.
- \triangleright A right-angled Artin monoid embeds into its right-angled Artin group, and this embedding is Toeplitz. More generally, the Toeplitz condition is preserved under graph products.

▶ The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.

- ▶ The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.
- \blacktriangleright For the Thompson group $F = \langle x_0, x_1, x_2, \dots | x_n x_k = x_k x_{n+1}$ for $k < n \rangle$, the homomorphism $N * N \rightarrow F$, $a \mapsto x_0$, $b \mapsto x_1$ is an embedding which is not Toeplitz.

- ▶ The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.
- \blacktriangleright For the Thompson group $F = \langle x_0, x_1, x_2, \dots | x_n x_k = x_k x_{n+1}$ for $k < n \rangle$, the homomorphism $N * N \rightarrow F$, $a \mapsto x_0$, $b \mapsto x_1$ is an embedding which is not Toeplitz.

In general, if P embeds into a group, then there is a universal embedding $P \hookrightarrow G_{\text{univ}}$. It turns out that if there is a group embedding $P \hookrightarrow G$ which is Toeplitz, then $P \hookrightarrow G_{\text{univ}}$ must be Toeplitz.

- ▶ The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.
- \blacktriangleright For the Thompson group $F = \langle x_0, x_1, x_2, \dots | x_n x_k = x_k x_{n+1}$ for $k < n \rangle$, the homomorphism $N * N \rightarrow F$, $a \mapsto x_0$, $b \mapsto x_1$ is an embedding which is not Toeplitz.

In general, if P embeds into a group, then there is a universal embedding $P \hookrightarrow G_{\text{univ}}$. It turns out that if there is a group embedding $P \hookrightarrow G$ which is Toeplitz, then $P \hookrightarrow G_{\text{univ}}$ must be Toeplitz.

Let
$$
P = \langle a, b | a = b^d a b^c \rangle^+
$$
. Then $G_{\text{univ}} = \langle a, b | a = b^d a b^c \rangle$.

- ▶ The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.
- \blacktriangleright For the Thompson group $F = \langle x_0, x_1, x_2, \dots | x_n x_k = x_k x_{n+1}$ for $k < n \rangle$, the homomorphism $N \times N \rightarrow F$, $a \mapsto x_0$, $b \mapsto x_1$ is an embedding which is not Toeplitz.

In general, if P embeds into a group, then there is a universal embedding $P \hookrightarrow G_{\text{univ}}$. It turns out that if there is a group embedding $P \hookrightarrow G$ which is Toeplitz, then $P \hookrightarrow G_{\text{univ}}$ must be Toeplitz.

Let $P = \left\langle a, b \mid a = b^d a b^c \right\rangle^+$. Then $G_{\text{univ}} = \left\langle a, b \mid a = b^d a b^c \right\rangle$. For $c > 1$, $P \hookrightarrow G_{\text{univ}}$ is not Toeplitz [Spielberg].

- ▶ The embedding $\mathbb{N} * \mathbb{N} \hookrightarrow \mathbb{F}_2/\mathbb{F}_2''$ is not Toeplitz.
- \blacktriangleright For the Thompson group $F = \langle x_0, x_1, x_2, \dots | x_n x_k = x_k x_{n+1}$ for $k < n \rangle$, the homomorphism $N \times N \rightarrow F$, $a \mapsto x_0$, $b \mapsto x_1$ is an embedding which is not Toeplitz.

In general, if P embeds into a group, then there is a universal embedding $P \hookrightarrow G_{\text{univ}}$. It turns out that if there is a group embedding $P \hookrightarrow G$ which is Toeplitz, then $P \hookrightarrow G_{\text{univ}}$ must be Toeplitz.

Let $P = \left\langle a, b \mid a = b^d a b^c \right\rangle^+$. Then $G_{\text{univ}} = \left\langle a, b \mid a = b^d a b^c \right\rangle$. For $c > 1$, $P \hookrightarrow G_{\text{univ}}$ is not Toeplitz [Spielberg]. Hence there is no embedding $P \hookrightarrow G$ which is Toeplitz.

K-theory

Let $P \subseteq G$.

Let $P \subseteq G$. Consider $\mathcal{J}_{P \subseteq G} := \bigcap_{i=1}^{n} g_i P: g_i \in G \big\}$,

Let $P \subseteq G$. Consider $\mathcal{J}_{P \subseteq G} := \bigl\{ \bigcap_{i=1}^n g_i P : g_i \in G \bigr\}$, and let $\mathcal{J}_{P \subseteq G}^{\times} = \mathcal{J}_{P \subseteq G} \setminus \{\emptyset\}.$

Let $P \subseteq G$. Consider $\mathcal{J}_{P \subseteq G} := \bigl\{ \bigcap_{i=1}^n g_i P : g_i \in G \bigr\}$, and let $\mathcal{J}^{\times}_{P \subseteq G} = \mathcal{J}_{P \subseteq G} \setminus \{\emptyset\}.$ G acts on $\mathcal{J}^{\times}_{P \subseteq G}$ by left translations, and we form the set of orbits $G\backslash \mathcal{J}_{P\subseteq G}^{\times}$.

Let $P \subseteq G$. Consider $\mathcal{J}_{P \subseteq G} := \bigl\{ \bigcap_{i=1}^n g_i P : g_i \in G \bigr\}$, and let $\mathcal{J}^{\times}_{P \subseteq G} = \mathcal{J}_{P \subseteq G} \setminus \{\emptyset\}.$ G acts on $\mathcal{J}^{\times}_{P \subseteq G}$ by left translations, and we form the set of orbits $G \backslash \mathcal{J}^{\times}_{P \subseteq G}$. For $X \in \mathcal{J}^{\times}_{P \subseteq G}$, let $G_X = \{g \in G: gX = X\}$. Let $P \subseteq G$. Consider $\mathcal{J}_{P \subseteq G} := \bigl\{ \bigcap_{i=1}^n g_i P : g_i \in G \bigr\}$, and let $\mathcal{J}^{\times}_{P \subseteq G} = \mathcal{J}_{P \subseteq G} \setminus \{\emptyset\}.$ G acts on $\mathcal{J}^{\times}_{P \subseteq G}$ by left translations, and we form the set of orbits $G \backslash \mathcal{J}^{\times}_{P \subseteq G}$. For $X \in \mathcal{J}^{\times}_{P \subseteq G}$, let $G_X = \{g \in G: gX = X\}$.

Theorem (Cuntz-Echterhoff-L)

Let $P \subseteq G$. Assume that P satisfies independence, $P \subseteq G$ is Toeplitz, and that G satisfies the Baum-Connes conjecture with coefficients. Then

$$
K_*(C_\lambda^*(P)) \cong \bigoplus_{[X]\in G\setminus \mathcal{J}_{P\subseteq G}^\times} K_*(C_\lambda^*(G_X)).
$$

In Let P be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz.

In Let P be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P \subseteq G}^{\times} = \{ gP: g \in G \}$. Hence $G \backslash \mathcal{J}_{P \subseteq G}^{\times} = \{ [P] \}.$

In Let P be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P\subseteq G}^{\times} = \{ gP: g \in G \}$. Hence $G \backslash \mathcal{J}_{P\subseteq G}^{\times} = \{ [P] \}$. Moreover, $G_P = P^*$.

Exect P be a right LCM monoid, and assume that $P \subseteq G$ is Toeplitz. Then $\mathcal{J}_{P \subseteq G}^{\times} = \{ gP : g \in G \}$. Hence $G \backslash \mathcal{J}_{P \subseteq G}^{\times} = \{ [P] \}$. Moreover, $G_P = P^*$. So if G satisfies the Baum-Connes conjecture with coefficients, then $K_*(C^*_\lambda(P)) \cong K_*(C^*_\lambda(P^*)).$

Exect P be a right LCM monoid, and assume that $P \subset G$ is Toeplitz. Then $\mathcal{J}_{P \subseteq G}^{\times} = \{ gP : g \in G \}$. Hence $G \backslash \mathcal{J}_{P \subseteq G}^{\times} = \{ [P] \}$. Moreover, $G_P = P^*$. So if G satisfies the Baum-Connes conjecture with coefficients, then $K_*(C^*_\lambda(P)) \cong K_*(C^*_\lambda(P^*)).$

► In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A_\Gamma^+)) \cong K_*(\mathbb{C}).$

- Exect P be a right LCM monoid, and assume that $P \subset G$ is Toeplitz. Then $\mathcal{J}_{P \subseteq G}^{\times} = \{ gP : g \in G \}$. Hence $G \backslash \mathcal{J}_{P \subseteq G}^{\times} = \{ [P] \}$. Moreover, $G_P = P^*$. So if G satisfies the Baum-Connes conjecture with coefficients, then $K_*(C^*_\lambda(P)) \cong K_*(C^*_\lambda(P^*)).$
- ► In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A_\Gamma^+)) \cong K_*(\mathbb{C}).$
- Let $P = R \rtimes R^{\times}$, where R is the ring of algebraic integers in a number field K.

- Exect P be a right LCM monoid, and assume that $P \subset G$ is Toeplitz. Then $\mathcal{J}_{P \subseteq G}^{\times} = \{ gP : g \in G \}$. Hence $G \backslash \mathcal{J}_{P \subseteq G}^{\times} = \{ [P] \}$. Moreover, $G_P = P^*$. So if G satisfies the Baum-Connes conjecture with coefficients, then $K_*(C^*_\lambda(P)) \cong K_*(C^*_\lambda(P^*)).$
- ► In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A_\Gamma^+)) \cong K_*(\mathbb{C}).$
- Let $P = R \rtimes R^{\times}$, where R is the ring of algebraic integers in a number field K. P embeds into $G = K \rtimes K^\times$, and this embedding is Toeplitz.

- Exect P be a right LCM monoid, and assume that $P \subset G$ is Toeplitz. Then $\mathcal{J}_{P \subseteq G}^{\times} = \{ gP : g \in G \}$. Hence $G \backslash \mathcal{J}_{P \subseteq G}^{\times} = \{ [P] \}$. Moreover, $G_P = P^*$. So if G satisfies the Baum-Connes conjecture with coefficients, then $K_*(C^*_\lambda(P)) \cong K_*(C^*_\lambda(P^*)).$
- ► In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A_\Gamma^+)) \cong K_*(\mathbb{C}).$
- Let $P = R \rtimes R^{\times}$, where R is the ring of algebraic integers in a number field K. P embeds into $G = K \rtimes K^\times$, and this embedding is Toeplitz. G is amenable, hence satisfies the Baum-Connes conjecture with coefficients.

- In Let P be a right LCM monoid, and assume that $P \subset G$ is Toeplitz. Then $\mathcal{J}_{P \subseteq G}^{\times} = \{ gP : g \in G \}$. Hence $G \backslash \mathcal{J}_{P \subseteq G}^{\times} = \{ [P] \}$. Moreover, $G_P = P^*$. So if G satisfies the Baum-Connes conjecture with coefficients, then $K_*(C^*_\lambda(P)) \cong K_*(C^*_\lambda(P^*)).$
- ► In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A_\Gamma^+)) \cong K_*(\mathbb{C}).$
- Let $P = R \rtimes R^{\times}$, where R is the ring of algebraic integers in a number field K. P embeds into $G = K \rtimes K^\times$, and this embedding is Toeplitz. G is amenable, hence satisfies the Baum-Connes conjecture with coefficients. Moreover, we have $G\backslash \mathcal{J}_{P\subseteq G}^{\times}\cong Cl_{K}, [\mathfrak{a}\times\mathfrak{a}^{\times}]\leftrightarrow [\mathfrak{a}],$

- In Let P be a right LCM monoid, and assume that $P \subset G$ is Toeplitz. Then $\mathcal{J}_{P \subseteq G}^{\times} = \{ gP : g \in G \}$. Hence $G \backslash \mathcal{J}_{P \subseteq G}^{\times} = \{ [P] \}$. Moreover, $G_P = P^*$. So if G satisfies the Baum-Connes conjecture with coefficients, then $K_*(C^*_\lambda(P)) \cong K_*(C^*_\lambda(P^*)).$
- ► In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A_\Gamma^+)) \cong K_*(\mathbb{C}).$
- Let $P = R \rtimes R^{\times}$, where R is the ring of algebraic integers in a number field K. P embeds into $G = K \rtimes K^\times$, and this embedding is Toeplitz. G is amenable, hence satisfies the Baum-Connes conjecture with coefficients. Moreover, we have $G\backslash \mathcal{J}_{P\subseteq G}^{\times}\cong Cl_{K}, \ [\mathfrak{a}\times\mathfrak{a}^{\times}]\leftrightarrow [\mathfrak{a}],$ and $G_{\mathfrak{a}\times\mathfrak{a}^{\times}}=\mathfrak{a}\rtimes R^{*}.$

- In Let P be a right LCM monoid, and assume that $P \subset G$ is Toeplitz. Then $\mathcal{J}_{P \subseteq G}^{\times} = \{ gP : g \in G \}$. Hence $G \backslash \mathcal{J}_{P \subseteq G}^{\times} = \{ [P] \}$. Moreover, $G_P = P^*$. So if G satisfies the Baum-Connes conjecture with coefficients, then $K_*(C^*_\lambda(P)) \cong K_*(C^*_\lambda(P^*)).$
- ► In particular, for right-angled Artin monoids, $K_*(C^*_\lambda(A_\Gamma^+)) \cong K_*(\mathbb{C}).$
- Let $P = R \rtimes R^{\times}$, where R is the ring of algebraic integers in a number field K. P embeds into $G = K \rtimes K^\times$, and this embedding is Toeplitz. G is amenable, hence satisfies the Baum-Connes conjecture with coefficients. Moreover, we have $G\backslash \mathcal{J}_{P\subseteq G}^{\times}\cong Cl_{K}, \, [\mathfrak{a}\times\mathfrak{a}^{\times}]\leftrightarrow [\mathfrak{a}],$ and $G_{\mathfrak{a}\times\mathfrak{a}^{\times}}=\mathfrak{a}\rtimes R^{*}.$ So

$$
K_*\left(\mathcal{C}_{\lambda}^*(R\rtimes R^{\times})\right)\cong \bigoplus_{[\mathfrak{a}]\in\mathcal{C}_{K}}K_*\left(\mathcal{C}_{\lambda}^*(\mathfrak{a}\rtimes R^*)\right).
$$

Let $\Gamma \curvearrowright \Omega$ be a topological dynamical system, Ω totally disconnected.

Let $\Gamma \curvearrowright \Omega$ be a topological dynamical system, Ω totally disconnected.

Definition

 $Γ$ \curvearrowright Ω satisfies independence if there is a Γ-invariant, linearly independent, (up to 0) multiplicatively closed set of projections E in $C_0(\Omega)$ such that $C_0(\Omega) = C^*(E)$.

Let $\Gamma \curvearrowright \Omega$ be a topological dynamical system, Ω totally disconnected.

Definition

 $\Gamma \curvearrowright \Omega$ satisfies independence if there is a Γ-invariant, linearly independent, (up to 0) multiplicatively closed set of projections E in $C_0(\Omega)$ such that $C_0(\Omega) = C^*(E)$.

Theorem (Cuntz-Echterhoff-L)

Let $\Gamma \curvearrowright \Omega$ satisfy independence. If Γ satisfies the Baum-Connes conjecture with coefficients, then

$$
\mathcal{K}_*(\mathcal{C}_0(\Omega) \rtimes_r \Gamma) \cong \bigoplus_{[e] \in \Gamma \setminus E} \mathcal{K}_*(\mathcal{C}_r^*(\Gamma_e)).
$$

Here Γ_e is the stabilizer group of $e \in E$.

Let $\Gamma \curvearrowright \Omega$ be a topological dynamical system, Ω totally disconnected.

Definition

 $\Gamma \curvearrowright \Omega$ satisfies independence if there is a Γ-invariant, linearly independent, (up to 0) multiplicatively closed set of projections E in $C_0(\Omega)$ such that $C_0(\Omega) = C^*(E)$.

Theorem (Cuntz-Echterhoff-L)

Let $\Gamma \curvearrowright \Omega$ satisfy independence. If Γ satisfies the Baum-Connes conjecture with coefficients, then

$$
K_*({\mathit{C}}_0(\Omega)\rtimes_r\Gamma)\cong \bigoplus_{[e]\in\Gamma\setminus E}K_*({\mathit{C}}_r^*(\Gamma_e)).
$$

Here Γ_e is the stabilizer group of $e \in E$. For instance, Bernoulli shifts Г \curvearrowright $\left\{0,\ldots,N\right\}^{\lceil}$ satisfy independence.