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Semigroup C*-algebras. The boundary quotient

Motivating example: C∗λ(N ∗ N) ∼= T2. How can we go from T2 to O2?

Let the two generators of N ∗ N be a and b. Their isometries Va and Vb

satisfy VaV
∗
a ⊥ VbV

∗
b . To get O2, we must have VaV

∗
a + VbV

∗
b = 1.

For P = N ∗ N, ΩP can be identified with the space of all finite and
infinite words in a and b. VaV

∗
a is the characteristic function on the

subspace of all words starting with a, and similarly for VbV
∗
b .

VaV
∗
a + VbV

∗
b = 1 would mean that every word starts with either a or b.

But: There is the empty word.

Idea: Remove the empty word. To obtain a quotient, we have to remove
an invariant subspace, i.e., all finite words. We end up with the subspace
of all infinite words. This is ∂ΩP .



Semigroup C*-algebras. The boundary quotient

Motivating example: C∗λ(N ∗ N) ∼= T2. How can we go from T2 to O2?

Let the two generators of N ∗ N be a and b. Their isometries Va and Vb

satisfy VaV
∗
a ⊥ VbV

∗
b . To get O2, we must have VaV

∗
a + VbV

∗
b = 1.

For P = N ∗ N, ΩP can be identified with the space of all finite and
infinite words in a and b. VaV

∗
a is the characteristic function on the

subspace of all words starting with a, and similarly for VbV
∗
b .

VaV
∗
a + VbV

∗
b = 1 would mean that every word starts with either a or b.

But: There is the empty word.

Idea: Remove the empty word. To obtain a quotient, we have to remove
an invariant subspace, i.e., all finite words. We end up with the subspace
of all infinite words. This is ∂ΩP .



Semigroup C*-algebras. The boundary quotient

Motivating example: C∗λ(N ∗ N) ∼= T2. How can we go from T2 to O2?

Let the two generators of N ∗ N be a and b. Their isometries Va and Vb

satisfy VaV
∗
a ⊥ VbV

∗
b . To get O2, we must have VaV

∗
a + VbV

∗
b = 1.

For P = N ∗ N, ΩP can be identified with the space of all finite and
infinite words in a and b. VaV

∗
a is the characteristic function on the

subspace of all words starting with a, and similarly for VbV
∗
b .

VaV
∗
a + VbV

∗
b = 1 would mean that every word starts with either a or b.

But: There is the empty word.

Idea: Remove the empty word. To obtain a quotient, we have to remove
an invariant subspace, i.e., all finite words. We end up with the subspace
of all infinite words. This is ∂ΩP .



Semigroup C*-algebras. The boundary quotient

Motivating example: C∗λ(N ∗ N) ∼= T2. How can we go from T2 to O2?

Let the two generators of N ∗ N be a and b. Their isometries Va and Vb

satisfy VaV
∗
a ⊥ VbV

∗
b . To get O2, we must have VaV

∗
a + VbV

∗
b = 1.

For P = N ∗ N, ΩP can be identified with the space of all finite and
infinite words in a and b.

VaV
∗
a is the characteristic function on the

subspace of all words starting with a, and similarly for VbV
∗
b .

VaV
∗
a + VbV

∗
b = 1 would mean that every word starts with either a or b.

But: There is the empty word.

Idea: Remove the empty word. To obtain a quotient, we have to remove
an invariant subspace, i.e., all finite words. We end up with the subspace
of all infinite words. This is ∂ΩP .



Semigroup C*-algebras. The boundary quotient

Motivating example: C∗λ(N ∗ N) ∼= T2. How can we go from T2 to O2?

Let the two generators of N ∗ N be a and b. Their isometries Va and Vb

satisfy VaV
∗
a ⊥ VbV

∗
b . To get O2, we must have VaV

∗
a + VbV

∗
b = 1.

For P = N ∗ N, ΩP can be identified with the space of all finite and
infinite words in a and b. VaV

∗
a is the characteristic function on the

subspace of all words starting with a, and similarly for VbV
∗
b .

VaV
∗
a + VbV

∗
b = 1 would mean that every word starts with either a or b.

But: There is the empty word.

Idea: Remove the empty word. To obtain a quotient, we have to remove
an invariant subspace, i.e., all finite words. We end up with the subspace
of all infinite words. This is ∂ΩP .



Semigroup C*-algebras. The boundary quotient

Motivating example: C∗λ(N ∗ N) ∼= T2. How can we go from T2 to O2?

Let the two generators of N ∗ N be a and b. Their isometries Va and Vb

satisfy VaV
∗
a ⊥ VbV

∗
b . To get O2, we must have VaV

∗
a + VbV

∗
b = 1.

For P = N ∗ N, ΩP can be identified with the space of all finite and
infinite words in a and b. VaV

∗
a is the characteristic function on the

subspace of all words starting with a, and similarly for VbV
∗
b .

VaV
∗
a + VbV

∗
b = 1 would mean that every word starts with either a or b.

But: There is the empty word.

Idea: Remove the empty word. To obtain a quotient, we have to remove
an invariant subspace, i.e., all finite words. We end up with the subspace
of all infinite words. This is ∂ΩP .



Semigroup C*-algebras. The boundary quotient

Motivating example: C∗λ(N ∗ N) ∼= T2. How can we go from T2 to O2?

Let the two generators of N ∗ N be a and b. Their isometries Va and Vb

satisfy VaV
∗
a ⊥ VbV

∗
b . To get O2, we must have VaV

∗
a + VbV

∗
b = 1.

For P = N ∗ N, ΩP can be identified with the space of all finite and
infinite words in a and b. VaV

∗
a is the characteristic function on the

subspace of all words starting with a, and similarly for VbV
∗
b .

VaV
∗
a + VbV

∗
b = 1 would mean that every word starts with either a or b.

But: There is the empty word.

Idea: Remove the empty word. To obtain a quotient, we have to remove
an invariant subspace, i.e., all finite words. We end up with the subspace
of all infinite words. This is ∂ΩP .



Semigroup C*-algebras. The boundary quotient

Motivating example: C∗λ(N ∗ N) ∼= T2. How can we go from T2 to O2?

Let the two generators of N ∗ N be a and b. Their isometries Va and Vb

satisfy VaV
∗
a ⊥ VbV

∗
b . To get O2, we must have VaV

∗
a + VbV

∗
b = 1.

For P = N ∗ N, ΩP can be identified with the space of all finite and
infinite words in a and b. VaV

∗
a is the characteristic function on the

subspace of all words starting with a, and similarly for VbV
∗
b .

VaV
∗
a + VbV

∗
b = 1 would mean that every word starts with either a or b.

But: There is the empty word.

Idea: Remove the empty word. To obtain a quotient, we have to remove
an invariant subspace, i.e., all finite words. We end up with the subspace
of all infinite words. This is ∂ΩP .



Semigroup C*-algebras. The boundary quotient

For general P ⊆ G , ∂ΩP = ΩP,max where ΩP,max are the maximal filters.
These are all characters χ : JP → {0, 1} for which χ−1(1) is maximal.

Definition

The boundary quotient of C∗λ(P) is given by

∂C∗λ(P) := C∗λ(G n ∂ΩP) ∼= C (∂ΩP) or G .

∂ΩP is the smallest G -invariant closed subspace of ΩP , in particular
minimal, and G y ∂ΩP is purely infinite if ∂ΩP is not trivial.

Hence if G y ∂ΩP is topologically free, then ∂C∗λ(P) will be a purely
infinite simple C*-algebra.
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The boundary quotient. Examples

Let A+
Γ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v ,w) ∈ E 〉+ be the

RAAM for the graph Γ = (V ,E ).

Γ is co-irreducible, if we cannot find a non-trivial decomposition
V = V1 t V2 such that V1 × V2 ∈ E . If Γ is co-irreducible and not a
singleton, ∂C∗λ(A+

Γ ) is a unital UCT Kirchberg algebra.

Let R be an integral domain, and P = R o R×. What is the boundary
quotient of C∗λ(R o R×)?

On `2R, define Ubδx = δb+x for b ∈ R, Saδx = δax for a ∈ R×. Set
Ar [R] := C∗(

{
Ub,Sa: b ∈ R, a ∈ R×

}
⊆ L(`2R).

We have a canonical isomorphism ∂C∗λ(R o R×) ∼= Ar [R] if R is not a
field, and in that case, these are again unital UCT Kirchberg algebras.
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Classification results

Let A+
Γ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v ,w) ∈ E 〉+ be the

RAAM for the graph Γ = (V ,E ). Let Γi = (Vi ,Ei ) be the co-irreducible
subgraphs of Γ.

Let t(Γ) be the number of those Γi with |Vi | = 1.
For fixed Γi , and n ∈ N, let Kn be the set of all complete subgraphs of Γi

with n + 1 vertices. Set χ(Γi ) := 1−
∑∞

n=0(−1)n|Kn|.
For k ∈ Z, let Nk(Γ) be the number of Γi with χ(Γi ) = k.

Theorem (Eilers-L-Ruiz)

Let Γ and Λ be finite graphs. The following are equivalent:

1. C∗λ(A+
Γ ) ∼= C∗λ(A+

Λ )

2. I t(Γ) = t(Λ)
I Nk(Γ) + N−k(Γ) = Nk(Λ) + N−k(Λ) for all k ∈ Z
I N0(Γ) > 0 or

∑
k>0 Nk(Γ) ≡

∑
k>0 Nk(Λ) mod 2.



Classification results

Let A+
Γ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v ,w) ∈ E 〉+ be the

RAAM for the graph Γ = (V ,E ).

Let Γi = (Vi ,Ei ) be the co-irreducible
subgraphs of Γ.

Let t(Γ) be the number of those Γi with |Vi | = 1.
For fixed Γi , and n ∈ N, let Kn be the set of all complete subgraphs of Γi

with n + 1 vertices. Set χ(Γi ) := 1−
∑∞

n=0(−1)n|Kn|.
For k ∈ Z, let Nk(Γ) be the number of Γi with χ(Γi ) = k.

Theorem (Eilers-L-Ruiz)

Let Γ and Λ be finite graphs. The following are equivalent:

1. C∗λ(A+
Γ ) ∼= C∗λ(A+

Λ )

2. I t(Γ) = t(Λ)
I Nk(Γ) + N−k(Γ) = Nk(Λ) + N−k(Λ) for all k ∈ Z
I N0(Γ) > 0 or

∑
k>0 Nk(Γ) ≡

∑
k>0 Nk(Λ) mod 2.



Classification results

Let A+
Γ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v ,w) ∈ E 〉+ be the

RAAM for the graph Γ = (V ,E ). Let Γi = (Vi ,Ei ) be the co-irreducible
subgraphs of Γ.

Let t(Γ) be the number of those Γi with |Vi | = 1.
For fixed Γi , and n ∈ N, let Kn be the set of all complete subgraphs of Γi

with n + 1 vertices. Set χ(Γi ) := 1−
∑∞

n=0(−1)n|Kn|.
For k ∈ Z, let Nk(Γ) be the number of Γi with χ(Γi ) = k.

Theorem (Eilers-L-Ruiz)

Let Γ and Λ be finite graphs. The following are equivalent:

1. C∗λ(A+
Γ ) ∼= C∗λ(A+

Λ )

2. I t(Γ) = t(Λ)
I Nk(Γ) + N−k(Γ) = Nk(Λ) + N−k(Λ) for all k ∈ Z
I N0(Γ) > 0 or

∑
k>0 Nk(Γ) ≡

∑
k>0 Nk(Λ) mod 2.



Classification results

Let A+
Γ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v ,w) ∈ E 〉+ be the

RAAM for the graph Γ = (V ,E ). Let Γi = (Vi ,Ei ) be the co-irreducible
subgraphs of Γ.

Let t(Γ) be the number of those Γi with |Vi | = 1.

For fixed Γi , and n ∈ N, let Kn be the set of all complete subgraphs of Γi

with n + 1 vertices. Set χ(Γi ) := 1−
∑∞

n=0(−1)n|Kn|.
For k ∈ Z, let Nk(Γ) be the number of Γi with χ(Γi ) = k.

Theorem (Eilers-L-Ruiz)

Let Γ and Λ be finite graphs. The following are equivalent:

1. C∗λ(A+
Γ ) ∼= C∗λ(A+

Λ )

2. I t(Γ) = t(Λ)
I Nk(Γ) + N−k(Γ) = Nk(Λ) + N−k(Λ) for all k ∈ Z
I N0(Γ) > 0 or

∑
k>0 Nk(Γ) ≡

∑
k>0 Nk(Λ) mod 2.



Classification results

Let A+
Γ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v ,w) ∈ E 〉+ be the

RAAM for the graph Γ = (V ,E ). Let Γi = (Vi ,Ei ) be the co-irreducible
subgraphs of Γ.

Let t(Γ) be the number of those Γi with |Vi | = 1.
For fixed Γi , and n ∈ N, let Kn be the set of all complete subgraphs of Γi

with n + 1 vertices.

Set χ(Γi ) := 1−
∑∞

n=0(−1)n|Kn|.
For k ∈ Z, let Nk(Γ) be the number of Γi with χ(Γi ) = k.

Theorem (Eilers-L-Ruiz)

Let Γ and Λ be finite graphs. The following are equivalent:

1. C∗λ(A+
Γ ) ∼= C∗λ(A+

Λ )

2. I t(Γ) = t(Λ)
I Nk(Γ) + N−k(Γ) = Nk(Λ) + N−k(Λ) for all k ∈ Z
I N0(Γ) > 0 or

∑
k>0 Nk(Γ) ≡

∑
k>0 Nk(Λ) mod 2.



Classification results

Let A+
Γ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v ,w) ∈ E 〉+ be the

RAAM for the graph Γ = (V ,E ). Let Γi = (Vi ,Ei ) be the co-irreducible
subgraphs of Γ.

Let t(Γ) be the number of those Γi with |Vi | = 1.
For fixed Γi , and n ∈ N, let Kn be the set of all complete subgraphs of Γi

with n + 1 vertices. Set χ(Γi ) := 1−
∑∞

n=0(−1)n|Kn|.

For k ∈ Z, let Nk(Γ) be the number of Γi with χ(Γi ) = k.

Theorem (Eilers-L-Ruiz)

Let Γ and Λ be finite graphs. The following are equivalent:

1. C∗λ(A+
Γ ) ∼= C∗λ(A+

Λ )

2. I t(Γ) = t(Λ)
I Nk(Γ) + N−k(Γ) = Nk(Λ) + N−k(Λ) for all k ∈ Z
I N0(Γ) > 0 or

∑
k>0 Nk(Γ) ≡

∑
k>0 Nk(Λ) mod 2.



Classification results

Let A+
Γ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v ,w) ∈ E 〉+ be the

RAAM for the graph Γ = (V ,E ). Let Γi = (Vi ,Ei ) be the co-irreducible
subgraphs of Γ.

Let t(Γ) be the number of those Γi with |Vi | = 1.
For fixed Γi , and n ∈ N, let Kn be the set of all complete subgraphs of Γi

with n + 1 vertices. Set χ(Γi ) := 1−
∑∞

n=0(−1)n|Kn|.
For k ∈ Z, let Nk(Γ) be the number of Γi with χ(Γi ) = k.

Theorem (Eilers-L-Ruiz)

Let Γ and Λ be finite graphs. The following are equivalent:

1. C∗λ(A+
Γ ) ∼= C∗λ(A+

Λ )

2. I t(Γ) = t(Λ)
I Nk(Γ) + N−k(Γ) = Nk(Λ) + N−k(Λ) for all k ∈ Z
I N0(Γ) > 0 or

∑
k>0 Nk(Γ) ≡

∑
k>0 Nk(Λ) mod 2.



Classification results

Let A+
Γ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v ,w) ∈ E 〉+ be the

RAAM for the graph Γ = (V ,E ). Let Γi = (Vi ,Ei ) be the co-irreducible
subgraphs of Γ.

Let t(Γ) be the number of those Γi with |Vi | = 1.
For fixed Γi , and n ∈ N, let Kn be the set of all complete subgraphs of Γi

with n + 1 vertices. Set χ(Γi ) := 1−
∑∞

n=0(−1)n|Kn|.
For k ∈ Z, let Nk(Γ) be the number of Γi with χ(Γi ) = k.

Theorem (Eilers-L-Ruiz)

Let Γ and Λ be finite graphs. The following are equivalent:

1. C∗λ(A+
Γ ) ∼= C∗λ(A+

Λ )

2. I t(Γ) = t(Λ)
I Nk(Γ) + N−k(Γ) = Nk(Λ) + N−k(Λ) for all k ∈ Z
I N0(Γ) > 0 or

∑
k>0 Nk(Γ) ≡

∑
k>0 Nk(Λ) mod 2.



Classification results

Theorem (L)

Let K and L be number fields with rings of algebraic integers R
and S . Assume that K and L have the same number of roots of
unity. If C∗λ(R o R×) ∼= C∗λ(S o S×) then ζK = ζL.

In particular, for Galois extensions K , L with the same number of
roots of unity, C∗λ(R o R×) ∼= C∗λ(S o S×) if and only if K ∼= L.
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Classification results

Theorem (L)

Let K and L be number fields with rings of algebraic integers R
and S . If there exists an isomorphism C∗λ(R oR×) ∼= C∗λ(S o S×)
sending Dλ(RoR×) to Dλ(SoS×), then ζK = ζL and ClK ∼= ClL.

Here Dλ(P) = C∗λ(P) ∩ `∞(P).



Outlook: Nuclearity and embeddings into amenable groups

We observed: If a semigroup P embeds into an amenable group, then
C∗λ(P) is nuclear.

What about the converse?

Question

Let P be a semigroup which embeds into a group. If C∗λ(P) is
nuclear, does P embed into an amenable group?

More concrete questions:

Do right-angled Artin monoids embed into amenable groups?

Do Baumslag-Solitar monoids embed into amenable groups?
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Outlook: K-theory

Does our K-theory formula really require the Toeplitz condition?
Does it require the Baum-Connes conjecture?

Question

Given a left cancellative right LCM monoid P, do we always have
K∗(C

∗
λ(P)) ∼= K∗(C

∗
λ(P∗))?
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Outlook: Left vs right

Let P be a cancellative semigroup.

Then we can construct C*-algebras
C∗λ(P) and C∗ρ (P) attached to left and right regular representations.

These algebras can be very different.

However, their K-theories coincide in all our computations. Also, there is
no example where one is nuclear and the other one is not.

Task

Find a cancellative semigroup P for which C∗λ(P) and C∗ρ (P) differ
in K-theory, or with respect to nuclearity.
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Thank you very much for your attention!


