Semigroup C*-algebras. Ideal structure, classification, and outlook

Xin Li

Queen Mary University of London (QMUL)

Motivating example: $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong \mathcal{T}_2$. How can we go from \mathcal{T}_2 to \mathcal{O}_2 ?

Motivating example: $C^*_{\lambda}(\mathbb{N}*\mathbb{N}) \cong \mathcal{T}_2$. How can we go from \mathcal{T}_2 to \mathcal{O}_2 ?

Let the two generators of $\mathbb{N} * \mathbb{N}$ be *a* and *b*. Their isometries V_a and V_b satisfy $V_a V_a^* \perp V_b V_b^*$. To get \mathcal{O}_2 , we must have $V_a V_a^* + V_b V_b^* = 1$.

Motivating example: $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong \mathcal{T}_2$. How can we go from \mathcal{T}_2 to \mathcal{O}_2 ?

Let the two generators of $\mathbb{N} * \mathbb{N}$ be *a* and *b*. Their isometries V_a and V_b satisfy $V_a V_a^* \perp V_b V_b^*$. To get \mathcal{O}_2 , we must have $V_a V_a^* + V_b V_b^* = 1$.

For $P = \mathbb{N} * \mathbb{N}$, Ω_P can be identified with the space of all finite and infinite words in *a* and *b*.

Motivating example: $C^*_{\lambda}(\mathbb{N}*\mathbb{N}) \cong \mathcal{T}_2$. How can we go from \mathcal{T}_2 to \mathcal{O}_2 ?

Let the two generators of $\mathbb{N} * \mathbb{N}$ be *a* and *b*. Their isometries V_a and V_b satisfy $V_a V_a^* \perp V_b V_b^*$. To get \mathcal{O}_2 , we must have $V_a V_a^* + V_b V_b^* = 1$.

For $P = \mathbb{N} * \mathbb{N}$, Ω_P can be identified with the space of all finite and infinite words in *a* and *b*. $V_a V_a^*$ is the characteristic function on the subspace of all words starting with *a*, and similarly for $V_b V_b^*$.

Motivating example: $C^*_{\lambda}(\mathbb{N}*\mathbb{N}) \cong \mathcal{T}_2$. How can we go from \mathcal{T}_2 to \mathcal{O}_2 ?

Let the two generators of $\mathbb{N} * \mathbb{N}$ be *a* and *b*. Their isometries V_a and V_b satisfy $V_a V_a^* \perp V_b V_b^*$. To get \mathcal{O}_2 , we must have $V_a V_a^* + V_b V_b^* = 1$.

For $P = \mathbb{N} * \mathbb{N}$, Ω_P can be identified with the space of all finite and infinite words in *a* and *b*. $V_a V_a^*$ is the characteristic function on the subspace of all words starting with *a*, and similarly for $V_b V_b^*$. $V_a V_a^* + V_b V_b^* = 1$ would mean that every word starts with either *a* or *b*. Motivating example: $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong \mathcal{T}_2$. How can we go from \mathcal{T}_2 to \mathcal{O}_2 ?

Let the two generators of $\mathbb{N} * \mathbb{N}$ be *a* and *b*. Their isometries V_a and V_b satisfy $V_a V_a^* \perp V_b V_b^*$. To get \mathcal{O}_2 , we must have $V_a V_a^* + V_b V_b^* = 1$.

For $P = \mathbb{N} * \mathbb{N}$, Ω_P can be identified with the space of all finite and infinite words in *a* and *b*. $V_a V_a^*$ is the characteristic function on the subspace of all words starting with *a*, and similarly for $V_b V_b^*$. $V_a V_a^* + V_b V_b^* = 1$ would mean that every word starts with either *a* or *b*. But: There is the empty word.

Motivating example: $C^*_{\lambda}(\mathbb{N} * \mathbb{N}) \cong \mathcal{T}_2$. How can we go from \mathcal{T}_2 to \mathcal{O}_2 ?

Let the two generators of $\mathbb{N} * \mathbb{N}$ be *a* and *b*. Their isometries V_a and V_b satisfy $V_a V_a^* \perp V_b V_b^*$. To get \mathcal{O}_2 , we must have $V_a V_a^* + V_b V_b^* = 1$.

For $P = \mathbb{N} * \mathbb{N}$, Ω_P can be identified with the space of all finite and infinite words in *a* and *b*. $V_a V_a^*$ is the characteristic function on the subspace of all words starting with *a*, and similarly for $V_b V_b^*$. $V_a V_a^* + V_b V_b^* = 1$ would mean that every word starts with either *a* or *b*. But: There is the empty word.

Idea: Remove the empty word. To obtain a quotient, we have to remove an invariant subspace, i.e., all finite words. We end up with the subspace of all infinite words. This is $\partial \Omega_P$.

For general $P \subseteq G$, $\partial \Omega_P = \overline{\Omega_{P,\max}}$ where $\Omega_{P,\max}$ are the maximal filters.

For general $P \subseteq G$, $\partial \Omega_P = \overline{\Omega_{P,\max}}$ where $\Omega_{P,\max}$ are the maximal filters. These are all characters $\chi : \mathcal{J}_P \to \{0,1\}$ for which $\chi^{-1}(1)$ is maximal.

For general $P \subseteq G$, $\partial \Omega_P = \overline{\Omega_{P,\max}}$ where $\Omega_{P,\max}$ are the maximal filters. These are all characters $\chi : \mathcal{J}_P \to \{0,1\}$ for which $\chi^{-1}(1)$ is maximal.

Definition

The boundary quotient of $C^*_{\lambda}(P)$ is given by

$$\partial C^*_{\lambda}(P) := C^*_{\lambda}(G \ltimes \partial \Omega_P) \cong C(\partial \Omega_P) \rtimes_r G.$$

For general $P \subseteq G$, $\partial \Omega_P = \overline{\Omega_{P,\max}}$ where $\Omega_{P,\max}$ are the maximal filters. These are all characters $\chi : \mathcal{J}_P \to \{0,1\}$ for which $\chi^{-1}(1)$ is maximal.

Definition

The boundary quotient of $C^*_{\lambda}(P)$ is given by

$$\partial C^*_{\lambda}(P) := C^*_{\lambda}(G \ltimes \partial \Omega_P) \cong C(\partial \Omega_P) \rtimes_r G.$$

 $\partial \Omega_P$ is the smallest *G*-invariant closed subspace of Ω_P , in particular minimal, and $G \sim \partial \Omega_P$ is purely infinite if $\partial \Omega_P$ is not trivial.

For general $P \subseteq G$, $\partial \Omega_P = \overline{\Omega_{P,\max}}$ where $\Omega_{P,\max}$ are the maximal filters. These are all characters $\chi : \mathcal{J}_P \to \{0,1\}$ for which $\chi^{-1}(1)$ is maximal.

Definition

The boundary quotient of $C^*_{\lambda}(P)$ is given by

$$\partial C^*_{\lambda}(P) := C^*_{\lambda}(G \ltimes \partial \Omega_P) \cong C(\partial \Omega_P) \rtimes_r G.$$

 $\partial \Omega_P$ is the smallest *G*-invariant closed subspace of Ω_P , in particular minimal, and $G \curvearrowright \partial \Omega_P$ is purely infinite if $\partial \Omega_P$ is not trivial.

Hence if $G \curvearrowright \partial \Omega_P$ is topologically free, then $\partial C^*_{\lambda}(P)$ will be a purely infinite simple C*-algebra.

The boundary quotient. Examples

The boundary quotient. Examples

Let $A_{\Gamma}^{+} := \langle \{\sigma_{v}: v \in V\} \mid \sigma_{v}\sigma_{w} = \sigma_{w}\sigma_{v} \text{ for all } (v, w) \in E \rangle^{+}$ be the RAAM for the graph $\Gamma = (V, E)$.

Let $A_{\Gamma}^+ := \langle \{\sigma_v : v \in V\} \mid \sigma_v \sigma_w = \sigma_w \sigma_v \text{ for all } (v, w) \in E \rangle^+$ be the RAAM for the graph $\Gamma = (V, E)$.

 Γ is co-irreducible, if we cannot find a non-trivial decomposition $V = V_1 \sqcup V_2$ such that $V_1 \times V_2 \in E$. If Γ is co-irreducible and not a singleton, $\partial C_{\lambda}^*(A_{\Gamma}^+)$ is a unital UCT Kirchberg algebra.

Let $A_{\Gamma}^{+} := \langle \{\sigma_{v}: v \in V\} \mid \sigma_{v}\sigma_{w} = \sigma_{w}\sigma_{v} \text{ for all } (v,w) \in E \rangle^{+}$ be the RAAM for the graph $\Gamma = (V, E)$.

 Γ is co-irreducible, if we cannot find a non-trivial decomposition $V = V_1 \sqcup V_2$ such that $V_1 \times V_2 \in E$. If Γ is co-irreducible and not a singleton, $\partial C_{\lambda}^*(A_{\Gamma}^+)$ is a unital UCT Kirchberg algebra.

Let R be an integral domain, and $P = R \rtimes R^{\times}$. What is the boundary quotient of $C_{\lambda}^{*}(R \rtimes R^{\times})$?

Let $A_{\Gamma}^{+} := \langle \{\sigma_{v}: v \in V\} \mid \sigma_{v}\sigma_{w} = \sigma_{w}\sigma_{v} \text{ for all } (v, w) \in E \rangle^{+}$ be the RAAM for the graph $\Gamma = (V, E)$.

 Γ is co-irreducible, if we cannot find a non-trivial decomposition $V = V_1 \sqcup V_2$ such that $V_1 \times V_2 \in E$. If Γ is co-irreducible and not a singleton, $\partial C_{\lambda}^*(A_{\Gamma}^+)$ is a unital UCT Kirchberg algebra.

Let R be an integral domain, and $P = R \rtimes R^{\times}$. What is the boundary quotient of $C_{\lambda}^{*}(R \rtimes R^{\times})$?

On $\ell^2 R$, define $U^b \delta_x = \delta_{b+x}$ for $b \in R$, $S_a \delta_x = \delta_{ax}$ for $a \in R^{\times}$. Set $\mathfrak{A}_r[R] := C^*(\{U^b, S_a: b \in R, a \in R^{\times}\} \subseteq \mathcal{L}(\ell^2 R).$

Let $A_{\Gamma}^{+} := \langle \{\sigma_{v}: v \in V\} \mid \sigma_{v}\sigma_{w} = \sigma_{w}\sigma_{v} \text{ for all } (v, w) \in E \rangle^{+}$ be the RAAM for the graph $\Gamma = (V, E)$.

 Γ is co-irreducible, if we cannot find a non-trivial decomposition $V = V_1 \sqcup V_2$ such that $V_1 \times V_2 \in E$. If Γ is co-irreducible and not a singleton, $\partial C_{\lambda}^*(A_{\Gamma}^+)$ is a unital UCT Kirchberg algebra.

Let R be an integral domain, and $P = R \rtimes R^{\times}$. What is the boundary quotient of $C_{\lambda}^{*}(R \rtimes R^{\times})$?

On $\ell^2 R$, define $U^b \delta_x = \delta_{b+x}$ for $b \in R$, $S_a \delta_x = \delta_{ax}$ for $a \in R^{\times}$. Set $\mathfrak{A}_r[R] := C^*(\{U^b, S_a: b \in R, a \in R^{\times}\} \subseteq \mathcal{L}(\ell^2 R).$

We have a canonical isomorphism $\partial C^*_{\lambda}(R \rtimes R^{\times}) \cong \mathfrak{A}_r[R]$ if R is not a field, and in that case, these are again unital UCT Kirchberg algebras.

Let $A_{\Gamma}^{+} := \langle \{\sigma_{v}: v \in V\} \mid \sigma_{v}\sigma_{w} = \sigma_{w}\sigma_{v} \text{ for all } (v, w) \in E \rangle^{+}$ be the RAAM for the graph $\Gamma = (V, E)$.

Let $A_{\Gamma}^+ := \langle \{\sigma_v: v \in V\} \mid \sigma_v \sigma_w = \sigma_w \sigma_v \text{ for all } (v, w) \in E \rangle^+$ be the RAAM for the graph $\Gamma = (V, E)$. Let $\Gamma_i = (V_i, E_i)$ be the co-irreducible subgraphs of Γ .

Let $A_{\Gamma}^+ := \langle \{\sigma_v : v \in V\} \mid \sigma_v \sigma_w = \sigma_w \sigma_v \text{ for all } (v, w) \in E \rangle^+$ be the RAAM for the graph $\Gamma = (V, E)$. Let $\Gamma_i = (V_i, E_i)$ be the co-irreducible subgraphs of Γ .

Let $t(\Gamma)$ be the number of those Γ_i with $|V_i| = 1$.

Let $A_{\Gamma}^+ := \langle \{\sigma_v: v \in V\} \mid \sigma_v \sigma_w = \sigma_w \sigma_v \text{ for all } (v, w) \in E \rangle^+$ be the RAAM for the graph $\Gamma = (V, E)$. Let $\Gamma_i = (V_i, E_i)$ be the co-irreducible subgraphs of Γ .

Let $t(\Gamma)$ be the number of those Γ_i with $|V_i| = 1$. For fixed Γ_i , and $n \in \mathbb{N}$, let K_n be the set of all complete subgraphs of Γ_i with n + 1 vertices.

Let $A_{\Gamma}^+ := \langle \{\sigma_v : v \in V\} \mid \sigma_v \sigma_w = \sigma_w \sigma_v \text{ for all } (v, w) \in E \rangle^+$ be the RAAM for the graph $\Gamma = (V, E)$. Let $\Gamma_i = (V_i, E_i)$ be the co-irreducible subgraphs of Γ .

Let $t(\Gamma)$ be the number of those Γ_i with $|V_i| = 1$. For fixed Γ_i , and $n \in \mathbb{N}$, let K_n be the set of all complete subgraphs of Γ_i with n + 1 vertices. Set $\chi(\Gamma_i) := 1 - \sum_{n=0}^{\infty} (-1)^n |K_n|$.

Let $A_{\Gamma}^+ := \langle \{\sigma_v : v \in V\} \mid \sigma_v \sigma_w = \sigma_w \sigma_v \text{ for all } (v, w) \in E \rangle^+$ be the RAAM for the graph $\Gamma = (V, E)$. Let $\Gamma_i = (V_i, E_i)$ be the co-irreducible subgraphs of Γ .

Let $t(\Gamma)$ be the number of those Γ_i with $|V_i| = 1$. For fixed Γ_i , and $n \in \mathbb{N}$, let K_n be the set of all complete subgraphs of Γ_i with n + 1 vertices. Set $\chi(\Gamma_i) := 1 - \sum_{n=0}^{\infty} (-1)^n |K_n|$. For $k \in \mathbb{Z}$, let $N_k(\Gamma)$ be the number of Γ_i with $\chi(\Gamma_i) = k$.

Let $A_{\Gamma}^+ := \langle \{\sigma_v : v \in V\} \mid \sigma_v \sigma_w = \sigma_w \sigma_v \text{ for all } (v, w) \in E \rangle^+$ be the RAAM for the graph $\Gamma = (V, E)$. Let $\Gamma_i = (V_i, E_i)$ be the co-irreducible subgraphs of Γ .

Let $t(\Gamma)$ be the number of those Γ_i with $|V_i| = 1$. For fixed Γ_i , and $n \in \mathbb{N}$, let K_n be the set of all complete subgraphs of Γ_i with n + 1 vertices. Set $\chi(\Gamma_i) := 1 - \sum_{n=0}^{\infty} (-1)^n |K_n|$. For $k \in \mathbb{Z}$, let $N_k(\Gamma)$ be the number of Γ_i with $\chi(\Gamma_i) = k$.

Theorem (Eilers-L-Ruiz)

Let Γ and Λ be finite graphs. The following are equivalent:

1.
$$C_{\lambda}^{*}(A_{\Gamma}^{-}) \cong C_{\lambda}^{*}(A_{\Lambda}^{+})$$

2. $\blacktriangleright t(\Gamma) = t(\Lambda)$
 $\blacktriangleright N_{k}(\Gamma) + N_{-k}(\Gamma) = N_{k}(\Lambda) + N_{-k}(\Lambda) \text{ for all } k \in \mathbb{Z}$
 $\blacktriangleright N_{0}(\Gamma) > 0 \text{ or } \sum_{k>0} N_{k}(\Gamma) \equiv \sum_{k>0} N_{k}(\Lambda) \mod 2.$

Theorem (L)

Let K and L be number fields with rings of algebraic integers Rand S. Assume that K and L have the same number of roots of unity. If $C_{\lambda}^*(R \rtimes R^{\times}) \cong C_{\lambda}^*(S \rtimes S^{\times})$ then $\zeta_K = \zeta_L$.

Theorem (L)

Let K and L be number fields with rings of algebraic integers Rand S. Assume that K and L have the same number of roots of unity. If $C^*_{\lambda}(R \rtimes R^{\times}) \cong C^*_{\lambda}(S \rtimes S^{\times})$ then $\zeta_K = \zeta_L$.

In particular, for Galois extensions K, L with the same number of roots of unity, $C^*_{\lambda}(R \rtimes R^{\times}) \cong C^*_{\lambda}(S \rtimes S^{\times})$ if and only if $K \cong L$.

Theorem (L)

Let K and L be number fields with rings of algebraic integers R and S. If there exists an isomorphism $C^*_{\lambda}(R \rtimes R^{\times}) \cong C^*_{\lambda}(S \rtimes S^{\times})$ sending $D_{\lambda}(R \rtimes R^{\times})$ to $D_{\lambda}(S \rtimes S^{\times})$, then $\zeta_K = \zeta_L$ and $Cl_K \cong Cl_L$.

Here $D_{\lambda}(P) = C_{\lambda}^{*}(P) \cap \ell^{\infty}(P)$.

We observed: If a semigroup P embeds into an amenable group, then $C^*_{\lambda}(P)$ is nuclear.

Question

Let P be a semigroup which embeds into a group. If $C^*_{\lambda}(P)$ is nuclear, does P embed into an amenable group?

Question

Let P be a semigroup which embeds into a group. If $C^*_{\lambda}(P)$ is nuclear, does P embed into an amenable group?

More concrete questions:

Do right-angled Artin monoids embed into amenable groups?

Question

Let P be a semigroup which embeds into a group. If $C^*_{\lambda}(P)$ is nuclear, does P embed into an amenable group?

More concrete questions:

Do right-angled Artin monoids embed into amenable groups? Do Baumslag-Solitar monoids embed into amenable groups? Does our K-theory formula really require the Toeplitz condition? Does it require the Baum-Connes conjecture?

Does our K-theory formula really require the Toeplitz condition? Does it require the Baum-Connes conjecture?

Question

Given a left cancellative right LCM monoid P, do we always have $K_*(C^*_{\lambda}(P)) \cong K_*(C^*_{\lambda}(P^*))$?

Outlook: Left vs right

Let P be a cancellative semigroup.

These algebras can be very different.

These algebras can be very different.

However, their K-theories coincide in all our computations.

These algebras can be very different.

However, their K-theories coincide in all our computations. Also, there is no example where one is nuclear and the other one is not.

These algebras can be very different.

However, their K-theories coincide in all our computations. Also, there is no example where one is nuclear and the other one is not.

Task

Find a cancellative semigroup P for which $C^*_{\lambda}(P)$ and $C^*_{\rho}(P)$ differ in K-theory, or with respect to nuclearity.

Thank you very much for your attention!