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Abstract

Throughout this presentation, (X, ‖ · ‖) will be a real normed linear
space, and C(X) will be the set of closed, bounded, non-empty,
convex subsets of X. We examine a method for embedding C(X)
into a normed linear space R(X).
We also examine properties of R(X). In particular, we examine
dimension, completeness, reflexivity, and separability of R(X), as
well as some of its notable subspaces.
Finally, we examine the dual R(X)∗, with particular reference to
the Krein-Kakutani Theorem.

T. Bendit, B. Sims Rådström Spaces



Minkowski Sum

Definition

For subsets A,B ⊆ X, the Minkowski Sum is defined to be

A+B = {a+ b : a ∈ A, b ∈ B}.

+ =
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Closed Minkowski Sum

If A,B ∈ C(X), then A+B is non-empty, convex, and bounded.
However, if X is not reflexive, then A+B need not be closed.
For this reason, we define the Closed Minkowski Sum

⊕ : C(X)× C(X) : (A,B) 7→ A+B

C(X) is closed under ⊕. It is also associative, commutative, and
has the identity {0}.
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Order Cancellation Law

The Closed Minkowski Sum satisfies the following order
cancellation law:

Proposition

For any A,B,C ∈ C(X),

A⊕ C ⊆ B ⊕ C =⇒ A ⊆ B.

Hans Rådström observed that this cancellation law allowed us to
embed C(X) into a normed linear space. The additive group of
this space is the Grothendieck group of the monoid C(X).
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Hans Rådström observed that this cancellation law allowed us to
embed C(X) into a normed linear space. The additive group of
this space is the Grothendieck group of the monoid C(X).

T. Bendit, B. Sims Rådström Spaces



The Rådström of X

Using the cancellation law, we may define an equivalence relation
on C(X)× C(X)

∼ = {((A,B), (C,D)) : A⊕D = B ⊕ C}.

We define R(X) = (C(X)× C(X))/ ∼, and denote by A	B the
equivalence class of (A,B) in R(X).
We can embed C(X) into R(X) by identifying C 7→ C 	 {0}. We
can then extend ⊕ to R(X) in the expected way, and R(X) forms
an abelian group under ⊕, with 	 its inverse operation.
We also define a scalar multiplication operation:

λ(C 	D) =

{
|λ|C 	 |λ|D : λ ≥ 0
|λ|D 	 |λ|C : λ < 0

This makes R(X) a real linear space.
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The Rådström of X

Using the cancellation law, we may define an equivalence relation
on C(X)× C(X)

∼ = {((A,B), (C,D)) : A⊕D = B ⊕ C}.

We define R(X) = (C(X)× C(X))/ ∼, and denote by A	B the
equivalence class of (A,B) in R(X).
We can embed C(X) into R(X) by identifying C 7→ C 	 {0}. We
can then extend ⊕ to R(X) in the expected way, and R(X) forms
an abelian group under ⊕, with 	 its inverse operation.
We also define a scalar multiplication operation:

λ(C 	D) =

{
|λ|C 	 |λ|D : λ ≥ 0
|λ|D 	 |λ|C : λ < 0

This makes R(X) a real linear space.

T. Bendit, B. Sims Rådström Spaces
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The Rådström of X

Using the cancellation law, we may define an equivalence relation
on C(X)× C(X)

∼ = {((A,B), (C,D)) : A⊕D = B ⊕ C}.

We define R(X) = (C(X)× C(X))/ ∼, and denote by A	B the
equivalence class of (A,B) in R(X).
We can embed C(X) into R(X) by identifying C 7→ C 	 {0}. We
can then extend ⊕ to R(X) in the expected way, and R(X) forms
an abelian group under ⊕, with 	 its inverse operation.
We also define a scalar multiplication operation:

λ(C 	D) =

{
|λ|C 	 |λ|D : λ ≥ 0
|λ|D 	 |λ|C : λ < 0

This makes R(X) a real linear space.

T. Bendit, B. Sims Rådström Spaces



Further structure of R(X)

We also can extend the subset partial order on C(X) to R(X) by

A	B ≤ C 	D ⇐⇒ A⊕D ⊆ B ⊕ C.

This partial order makes R(X) a linear lattice. R(X) is also a
Kakutani space:

Definition

A linear lattice V is a Kakutani space if

• V is Archimedean: ∀v, w ∈ V , if nv ≤ w ∀n ∈ N, then v ≤ 0.

• ∃e ∈ V,∀v ∈ V,∃n ∈ N,−ne ≤ v ≤ ne

In the case of R(X), e = BX , the closed unit ball of X.
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Kakutani Spaces

Kakutani spaces induce a canonical norm:

‖v‖ = inf{λ ≥ 0 : −λe ≤ v ≤ λe}.

The canonical norm on a Kakutani space is a lattice norm, and
furthermore, the associated operator norm on the dual is also a
lattice norm.
In the case of R(X), this norm is derived from the Hausdorff
distance:

‖A	B‖ = H(A,B) = max

{
sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
.
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An example: R(R)

We have

• C(R) = {[a, b] : a ≤ b}

• [a, b]	 [c, d] =

{
[a− c, b− d] : a− c ≤ b− d
	[c− a, d− b] : a− c > b− d

• R(R) = C(R) ∪ 	C(R)
• R(R) is isometric to R2 under ‖ · ‖∞.
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Properties of R(X)

Theorem

R(X) is separable if and only if X is finite-dimensional.
If dim(X) > 1, then

• R(X) is incomplete, and hence not reflexive or
finite-dimensional.

• The completion R(X), or equivalently the dual R(X)∗, is not
reflexive.
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Induced Transformations and Subspaces

For a bounded linear transformation T : X → Y , we may induce a
bounded linear transformation from R(X) to R(Y ):

ρT : R(X)→ R(Y ) : A	B 7→ T (A)	 T (B).

If we consider the inclusion map T of a subspace Y into X, the
image of the induced transformation ρT is an isometric embedding
of R(Y ) into R(X). This gives us a subspace structure of R(X)
inherited from the subspace structure of X.

Proposition

Regardless of whether Y is closed in X, ρT (R(Y )) is closed in
R(X). Moreover, if Y is dense in X, then ρT is surjective, proving
R(X) and R(Y ) are isometrically isomorphic.
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Induced Functionals

Equipped with our knowledge of R(R), we can induce functionals
in R(X)∗ from functionals in X∗. We may consider ρf for f ∈ X∗
as a bounded linear transformation of R(X) into R2. We can then
compose ρf with functionals on R2 to obtain a two dimensional
subspace of R(X)∗ spanned by the following functionals:

σf (A	B) = sup f(A)− sup f(B)

ιf (A	B) = inf f(A)− inf f(B).

We say that a functional in span{σf , ιf} is induced by f . Note in
particular that −ιf = σ−f .
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Structure of R(X)∗

Theorem

Suppose φ ∈ R(X)∗. Then there exist unique scalars
(cf )f∈SX∗ ∈ R, all but countably many of which are 0, and
ψ ∈ R(X)∗ that is lattice-orthogonal to σf for all f ∈ X∗ such
that

φ = ψ +
∑

f∈SX∗

cfσf .

Moreover, φ is monotone if and only if cf ≥ 0 for all f ∈ SX∗ and
ψ is monotone.
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The Krein-Kakutani Theorem

Theorem (Krein, Kakutani)

If V is a Kakutani space, then for some compact Hausdorff
topological space K, V embeds densely, isometrically, and
monotonically into C(K), in such a way that e maps to the
constant function 1.

[Coppel, pp. 196–209] provides a self-contained proof of this form
of the theorem.
In particular, the space K = ext(V ∗+ ∩ SV ∗), under the weak∗

topology. That is, K is the extreme points of the set of norm 1,
monotone functionals in V ∗. This is one good reason to study
R(X)∗.
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Applying The Krein-Kakutani Theorem

Theorem

Suppose K = ext(R(X)∗+ ∩ SR(X)∗), as per the Krein-Kakutani
Theorem. Then {σf : f ∈ SX∗} ⊆ K, with equality holding if and
only if X is finite-dimensional.

If X is finite-dimensional, there is therefore a natural bijection
between K and SX∗ . This bijection turns out to be a
homeomorphism, with SX∗ under the standard Euclidean topology.
Therefore,

Corollary

If X is finite-dimensional, then R(X) embeds densely,
isometrically, and monotonically into C(SX∗).
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