Spaces of Convex Sets

Theo Bendit, supervised by Brailey Sims

August 19, 2015

Abstract

Throughout this presentation, $(X,\|\cdot\|)$ will be a real normed linear space, and $\mathcal{C}(X)$ will be the set of closed, bounded, non-empty, convex subsets of X. We examine a method for embedding $\mathcal{C}(X)$ into a normed linear space $\mathcal{R}(X)$.

We also examine properties of $\mathcal{R}(X)$. In particular, we examine dimension, completeness, reflexivity, and separability of $\mathcal{R}(X)$, as well as some of its notable subspaces.

Finally, we examine the dual $\mathcal{R}(X)^*$, with particular reference to the Krein-Kakutani Theorem.

Minkowski Sum

Definition

For subsets $A,B\subseteq X$, the **Minkowski Sum** is defined to be

$$A + B = \{a + b : a \in A, b \in B\}.$$

Minkowski Sum

Definition

For subsets $A,B\subseteq X$, the **Minkowski Sum** is defined to be

$$A + B = \{a + b : a \in A, b \in B\}.$$

Closed Minkowski Sum

If $A,B\in\mathcal{C}(X)$, then A+B is non-empty, convex, and bounded. However, if X is not reflexive, then A+B need not be closed.

$$\oplus : \mathcal{C}(X) \times \mathcal{C}(X) : (A, B) \mapsto \overline{A + B}$$

 $\mathcal{C}(X)$ is closed under \oplus . It is also associative, commutative, and has the identity $\{0\}$.

Closed Minkowski Sum

If $A, B \in \mathcal{C}(X)$, then A+B is non-empty, convex, and bounded. However, if X is not reflexive, then A+B need not be closed. For this reason, we define the **Closed Minkowski Sum**

$$\oplus : \mathcal{C}(X) \times \mathcal{C}(X) : (A, B) \mapsto \overline{A + B}$$

 $\mathcal{C}(X)$ is closed under \oplus . It is also associative, commutative, and has the identity $\{0\}$.

Order Cancellation Law

The Closed Minkowski Sum satisfies the following order cancellation law:

Proposition

For any $A,B,C\in\mathcal{C}(X)$,

$$A \oplus C \subseteq B \oplus C \implies A \subseteq B$$
.

Hans Rådström observed that this cancellation law allowed us to embed $\mathcal{C}(X)$ into a normed linear space. The additive group of this space is the Grothendieck group of the monoid $\mathcal{C}(X)$.

Order Cancellation Law

The Closed Minkowski Sum satisfies the following order cancellation law:

Proposition

For any $A, B, C \in \mathcal{C}(X)$,

$$A \oplus C \subseteq B \oplus C \implies A \subseteq B$$
.

Hans Rådström observed that this cancellation law allowed us to embed $\mathcal{C}(X)$ into a normed linear space. The additive group of this space is the Grothendieck group of the monoid $\mathcal{C}(X)$.

Using the cancellation law, we may define an equivalence relation on $\mathcal{C}(X)\times\mathcal{C}(X)$

$$\sim = \{((A,B),(C,D)): A \oplus D = B \oplus C\}.$$

We define $\mathcal{R}(X) = (\mathcal{C}(X) \times \mathcal{C}(X)) / \sim$, and denote by $A \ominus B$ the equivalence class of (A,B) in $\mathcal{R}(X)$.

We can embed $\mathcal{C}(X)$ into $\mathcal{R}(X)$ by identifying $C \mapsto C \ominus \{0\}$. We can then extend \oplus to $\mathcal{R}(X)$ in the expected way, and $\mathcal{R}(X)$ forms an abelian group under \oplus , with \ominus its inverse operation.

We also define a scalar multiplication operation:

$$\lambda(C \ominus D) = \begin{cases} |\lambda|C \ominus |\lambda|D : \lambda \ge 0 \\ |\lambda|D \ominus |\lambda|C : \lambda < 0 \end{cases}$$

Using the cancellation law, we may define an equivalence relation on $\mathcal{C}(X)\times\mathcal{C}(X)$

$$\sim = \{((A,B),(C,D)): A \oplus D = B \oplus C\}.$$

We define $\mathcal{R}(X) = (\mathcal{C}(X) \times \mathcal{C}(X))/\sim$, and denote by $A \ominus B$ the equivalence class of (A,B) in $\mathcal{R}(X)$.

We can embed C(X) into R(X) by identifying $C \mapsto C \ominus \{0\}$. We can then extend \oplus to R(X) in the expected way, and R(X) forms an abelian group under \oplus , with \ominus its inverse operation.

$$\lambda(C \ominus D) = \begin{cases} |\lambda|C \ominus |\lambda|D : \lambda \ge 0 \\ |\lambda|D \ominus |\lambda|C : \lambda < 0 \end{cases}$$

Using the cancellation law, we may define an equivalence relation on $\mathcal{C}(X)\times\mathcal{C}(X)$

$$\sim = \{((A,B),(C,D)): A \oplus D = B \oplus C\}.$$

We define $\mathcal{R}(X) = (\mathcal{C}(X) \times \mathcal{C}(X)) / \sim$, and denote by $A \ominus B$ the equivalence class of (A,B) in $\mathcal{R}(X)$.

We can embed $\mathcal{C}(X)$ into $\mathcal{R}(X)$ by identifying $C \mapsto C \ominus \{0\}$. We can then extend \oplus to $\mathcal{R}(X)$ in the expected way, and $\mathcal{R}(X)$ forms an abelian group under \oplus , with \ominus its inverse operation.

We also define a scalar multiplication operation:

$$\lambda(C \ominus D) = \begin{cases} |\lambda|C \ominus |\lambda|D : \lambda \ge 0 \\ |\lambda|D \ominus |\lambda|C : \lambda < 0 \end{cases}$$

Using the cancellation law, we may define an equivalence relation on $\mathcal{C}(X)\times\mathcal{C}(X)$

$$\sim = \{((A,B),(C,D)) : A \oplus D = B \oplus C\}.$$

We define $\mathcal{R}(X) = (\mathcal{C}(X) \times \mathcal{C}(X)) / \sim$, and denote by $A \ominus B$ the equivalence class of (A,B) in $\mathcal{R}(X)$.

We can embed $\mathcal{C}(X)$ into $\mathcal{R}(X)$ by identifying $C\mapsto C\ominus\{0\}$. We can then extend \oplus to $\mathcal{R}(X)$ in the expected way, and $\mathcal{R}(X)$ forms an abelian group under \oplus , with \ominus its inverse operation.

We also define a scalar multiplication operation:

$$\lambda(C \ominus D) = \begin{cases} |\lambda|C \ominus |\lambda|D : \lambda \ge 0 \\ |\lambda|D \ominus |\lambda|C : \lambda < 0 \end{cases}$$

Further structure of $\mathcal{R}(X)$

We also can extend the subset partial order on $\mathcal{C}(X)$ to $\mathcal{R}(X)$ by

$$A \ominus B \le C \ominus D \iff A \oplus D \subseteq B \oplus C.$$

This partial order makes $\mathcal{R}(X)$ a linear lattice. $\mathcal{R}(X)$ is also a Kakutani space:

Definition

A linear lattice V is a Kakutani space if

- V is Archimedean: $\forall v, w \in V$, if $nv \leq w \ \forall n \in \mathbb{N}$, then $v \leq 0$.
- $\exists e \in V, \forall v \in V, \exists n \in \mathbb{N}, -ne \leq v \leq ne$

In the case of $\mathcal{R}(X)$, $e = B_X$, the closed unit ball of X.

Further structure of $\mathcal{R}(X)$

We also can extend the subset partial order on $\mathcal{C}(X)$ to $\mathcal{R}(X)$ by

$$A \ominus B \le C \ominus D \iff A \oplus D \subseteq B \oplus C.$$

This partial order makes $\mathcal{R}(X)$ a linear lattice. $\mathcal{R}(X)$ is also a Kakutani space:

Definition

A linear lattice V is a Kakutani space if

- V is Archimedean: $\forall v, w \in V$, if $nv \leq w \ \forall n \in \mathbb{N}$, then $v \leq 0$.
- $\exists e \in V, \forall v \in V, \exists n \in \mathbb{N}, -ne \leq v \leq ne$

In the case of $\mathcal{R}(X)$, $e = B_X$, the closed unit ball of X.

Kakutani Spaces

Kakutani spaces induce a canonical norm:

$$||v|| = \inf\{\lambda \ge 0 : -\lambda e \le v \le \lambda e\}.$$

The canonical norm on a Kakutani space is a lattice norm, and furthermore, the associated operator norm on the dual is also a lattice norm.

In the case of $\mathcal{R}(X)$, this norm is derived from the Hausdorff distance:

$$||A \ominus B|| = \mathcal{H}(A, B) = \max \left\{ \sup_{a \in A} \inf_{b \in B} ||a - b||, \sup_{b \in B} \inf_{a \in A} ||a - b|| \right\}.$$

Kakutani Spaces

Kakutani spaces induce a canonical norm:

$$||v|| = \inf\{\lambda \ge 0 : -\lambda e \le v \le \lambda e\}.$$

The canonical norm on a Kakutani space is a lattice norm, and furthermore, the associated operator norm on the dual is also a lattice norm.

In the case of $\mathcal{R}(X)$, this norm is derived from the Hausdorff distance:

$$||A \ominus B|| = \mathcal{H}(A, B) = \max \left\{ \sup_{a \in A} \inf_{b \in B} ||a - b||, \sup_{b \in B} \inf_{a \in A} ||a - b|| \right\}.$$

•
$$\mathcal{C}(\mathbb{R}) = \{[a,b] : a \leq b\}$$

•
$$[a,b] \ominus [c,d] = \begin{cases} [a-c,b-d] : a-c \le b-d \\ \ominus [c-a,d-b] : a-c > b-d \end{cases}$$

- $\mathcal{R}(\mathbb{R}) = \mathcal{C}(\mathbb{R}) \cup \ominus \mathcal{C}(\mathbb{R})$
- $\mathcal{R}(\mathbb{R})$ is isometric to \mathbb{R}^2 under $\|\cdot\|_{\infty}$.

•
$$\mathcal{C}(\mathbb{R}) = \{[a,b] : a \leq b\}$$

•
$$[a,b] \ominus [c,d] = \begin{cases} [a-c,b-d] : a-c \le b-d \\ \ominus [c-a,d-b] : a-c > b-d \end{cases}$$

- $\mathcal{R}(\mathbb{R}) = \mathcal{C}(\mathbb{R}) \cup \ominus \mathcal{C}(\mathbb{R})$
- $\mathcal{R}(\mathbb{R})$ is isometric to \mathbb{R}^2 under $\|\cdot\|_{\infty}$.

- $\mathcal{C}(\mathbb{R}) = \{[a,b] : a \leq b\}$
- $[a,b] \ominus [c,d] = \begin{cases} [a-c,b-d] : a-c \le b-d \\ \ominus [c-a,d-b] : a-c > b-d \end{cases}$
- $\mathcal{R}(\mathbb{R}) = \mathcal{C}(\mathbb{R}) \cup \ominus \mathcal{C}(\mathbb{R})$
- $\mathcal{R}(\mathbb{R})$ is isometric to \mathbb{R}^2 under $\|\cdot\|_{\infty}$.

- $\mathcal{C}(\mathbb{R}) = \{[a,b] : a \leq b\}$
- $[a,b] \ominus [c,d] = \begin{cases} [a-c,b-d] : a-c \le b-d \\ \ominus [c-a,d-b] : a-c > b-d \end{cases}$
- $\mathcal{R}(\mathbb{R}) = \mathcal{C}(\mathbb{R}) \cup \ominus \mathcal{C}(\mathbb{R})$
- $\mathcal{R}(\mathbb{R})$ is isometric to \mathbb{R}^2 under $\|\cdot\|_{\infty}$.

Properties of $\mathcal{R}(X)$

Theorem

 $\mathcal{R}(X)$ is separable if and only if X is finite-dimensional. If $\dim(X) > 1$, then

- R(X) is incomplete, and hence not reflexive or finite-dimensional.
- The completion $\overline{\mathcal{R}(X)}$, or equivalently the dual $\mathcal{R}(X)^*$, is not reflexive.

Induced Transformations and Subspaces

For a bounded linear transformation $T: X \to Y$, we may induce a bounded linear transformation from $\mathcal{R}(X)$ to $\mathcal{R}(Y)$:

$$\rho_T : \mathcal{R}(X) \to \mathcal{R}(Y) : A \ominus B \mapsto \overline{T(A)} \ominus \overline{T(B)}.$$

If we consider the inclusion map T of a subspace Y into X, the image of the induced transformation ρ_T is an isometric embedding of $\mathcal{R}(Y)$ into $\mathcal{R}(X)$. This gives us a subspace structure of $\mathcal{R}(X)$ inherited from the subspace structure of X.

Proposition

Regardless of whether Y is closed in X, $\rho_T(\mathcal{R}(Y))$ is closed in $\mathcal{R}(X)$. Moreover, if Y is dense in X, then ρ_T is surjective, proving $\mathcal{R}(X)$ and $\mathcal{R}(Y)$ are isometrically isomorphic.

Induced Transformations and Subspaces

For a bounded linear transformation $T: X \to Y$, we may induce a bounded linear transformation from $\mathcal{R}(X)$ to $\mathcal{R}(Y)$:

$$\rho_T : \mathcal{R}(X) \to \mathcal{R}(Y) : A \ominus B \mapsto \overline{T(A)} \ominus \overline{T(B)}.$$

If we consider the inclusion map T of a subspace Y into X, the image of the induced transformation ρ_T is an isometric embedding of $\mathcal{R}(Y)$ into $\mathcal{R}(X)$. This gives us a subspace structure of $\mathcal{R}(X)$ inherited from the subspace structure of X.

Proposition

Regardless of whether Y is closed in X, $\rho_T(\mathcal{R}(Y))$ is closed in $\mathcal{R}(X)$. Moreover, if Y is dense in X, then ρ_T is surjective, proving $\mathcal{R}(X)$ and $\mathcal{R}(Y)$ are isometrically isomorphic.

Induced Transformations and Subspaces

For a bounded linear transformation $T: X \to Y$, we may induce a bounded linear transformation from $\mathcal{R}(X)$ to $\mathcal{R}(Y)$:

$$\rho_T : \mathcal{R}(X) \to \mathcal{R}(Y) : A \ominus B \mapsto \overline{T(A)} \ominus \overline{T(B)}.$$

If we consider the inclusion map T of a subspace Y into X, the image of the induced transformation ρ_T is an isometric embedding of $\mathcal{R}(Y)$ into $\mathcal{R}(X)$. This gives us a subspace structure of $\mathcal{R}(X)$ inherited from the subspace structure of X.

Proposition

Regardless of whether Y is closed in X, $\rho_T(\mathcal{R}(Y))$ is closed in $\mathcal{R}(X)$. Moreover, if Y is dense in X, then ρ_T is surjective, proving $\mathcal{R}(X)$ and $\mathcal{R}(Y)$ are isometrically isomorphic.

Induced Functionals

Equipped with our knowledge of $\mathcal{R}(\mathbb{R})$, we can induce functionals in $\mathcal{R}(X)^*$ from functionals in X^* . We may consider ρ_f for $f \in X^*$ as a bounded linear transformation of $\mathcal{R}(X)$ into \mathbb{R}^2 . We can then compose ρ_f with functionals on \mathbb{R}^2 to obtain a two dimensional subspace of $\mathcal{R}(X)^*$ spanned by the following functionals:

$$\sigma_f(A \ominus B) = \sup f(A) - \sup f(B)$$

 $\iota_f(A \ominus B) = \inf f(A) - \inf f(B).$

We say that a functional in $\operatorname{span}\{\sigma_f, \iota_f\}$ is **induced** by f. Note in particular that $-\iota_f = \sigma_{-f}$.

Structure of $\mathcal{R}(X)^*$

Theorem

Suppose $\phi \in \mathcal{R}(X)^*$. Then there exist unique scalars $(c_f)_{f \in S_{X^*}} \in \mathbb{R}$, all but countably many of which are 0, and $\psi \in \mathcal{R}(X)^*$ that is lattice-orthogonal to σ_f for all $f \in X^*$ such that

$$\phi = \psi + \sum_{f \in S_{X^*}} c_f \sigma_f.$$

Moreover, ϕ is monotone if and only if $c_f \geq 0$ for all $f \in S_{X^*}$ and ψ is monotone.

The Krein-Kakutani Theorem

Theorem (Krein, Kakutani)

If V is a Kakutani space, then for some compact Hausdorff topological space K, V embeds densely, isometrically, and monotonically into C(K), in such a way that e maps to the constant function 1.

[Coppel, pp. 196–209] provides a self-contained proof of this form of the theorem.

In particular, the space $K=\operatorname{ext}(V_+^*\cap S_{V^*})$, under the weak* topology. That is, K is the extreme points of the set of norm 1, monotone functionals in V^* . This is one good reason to study $\mathcal{R}(X)^*$.

Applying The Krein-Kakutani Theorem

Theorem

Suppose $K = \operatorname{ext}(\mathcal{R}(X)_+^* \cap S_{\mathcal{R}(X)^*})$, as per the Krein-Kakutani Theorem. Then $\{\sigma_f : f \in S_{X^*}\} \subseteq K$, with equality holding if and only if X is finite-dimensional.

If X is finite-dimensional, there is therefore a natural bijection between K and S_{X^*} . This bijection turns out to be a homeomorphism, with S_{X^*} under the standard Euclidean topology. Therefore,

Corollary

If X is finite-dimensional, then $\mathcal{R}(X)$ embeds densely, isometrically, and monotonically into $C(S_{X^*})$.

Applying The Krein-Kakutani Theorem

Theorem

Suppose $K = \operatorname{ext}(\mathcal{R}(X)_+^* \cap S_{\mathcal{R}(X)^*})$, as per the Krein-Kakutani Theorem. Then $\{\sigma_f : f \in S_{X^*}\} \subseteq K$, with equality holding if and only if X is finite-dimensional.

If X is finite-dimensional, there is therefore a natural bijection between K and S_{X^*} . This bijection turns out to be a homeomorphism, with S_{X^*} under the standard Euclidean topology. Therefore,

Corollary

If X is finite-dimensional, then $\mathcal{R}(X)$ embeds densely, isometrically, and monotonically into $C(S_{X^*})$.

Applying The Krein-Kakutani Theorem

Theorem

Suppose $K = \operatorname{ext}(\mathcal{R}(X)_+^* \cap S_{\mathcal{R}(X)^*})$, as per the Krein-Kakutani Theorem. Then $\{\sigma_f : f \in S_{X^*}\} \subseteq K$, with equality holding if and only if X is finite-dimensional.

If X is finite-dimensional, there is therefore a natural bijection between K and S_{X^*} . This bijection turns out to be a homeomorphism, with S_{X^*} under the standard Euclidean topology. Therefore,

Corollary

If X is finite-dimensional, then $\mathcal{R}(X)$ embeds densely, isometrically, and monotonically into $C(S_{X^*})$.

References

- Hans Rådström, 1952: An Embedding Theorem for Spaces of Convex Sets. *Proceedings of the American Mathematical Society*, **3**, 165–169.
- W. A. Coppel, 1998: Foundations of Convex Geometry. Cambridge University Press, 222 pp.
- Klaus D. Schmidt, 1986: Embedding Theorems for Classes of Convex Sets. *Acta Applicandae Mathematicae*, **5**, 209–237.
- J. Grzybowki, and H. Przybycień, 2013: Completeness in Minkowski-Rådstroöm-Hörmander spaces. *Optimization: A Journal of Mathematical Programming and Operations Research*, doi:10,1080/02331934.2013.793330
- Diethard Pallaschke, and Ryszard Urbański, 2003: Pairs of Compact Convex Sets. Kluwer Academic Publishers, 282 + xii pp.