Convexity on groups and semigroups

Jonathan M. Borwein Ohad Giladi

University of Newcastle

August 23, 2015

→ 伊 ▶ → 唐 ▶

 $4.17 \times$

一 4 店 ト

重

Outline

- Convex sets/functions
- **•** Examples
- **Convex Analysis**
- **•** Future directions

General theme

Many known results hold assuming only an additive structure

a mills.

→ 伊 ▶ → 唐 ▶

ス 重っ

重

[Definitions](#page-6-0)

Definition (Convex set in vector spaces)

X a vector space. $A \subseteq X$ is convex if $x_1, \ldots, x_n \in A$, $\alpha_i > 0$, $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n \alpha_i x_i \in A.$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

重

[Definitions](#page-6-0)

Definition (Convex set in vector spaces)

X a vector space. $A \subseteq X$ is convex if $x_1, \ldots, x_n \in A$, $\alpha_i > 0$, $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n \alpha_i x_i \in A.$

If
$$
\alpha_i \in \mathbb{Q}
$$
, write $\alpha_i = \frac{m_i}{m}$. Then $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n m_i = m$.

 \mathcal{A} and \mathcal{A} in \mathcal{A} . If \mathcal{A}

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

重

 $4.17 \times$

[Definitions](#page-6-0)

Definition (Convex set in vector spaces)

X a vector space. $A \subseteq X$ is convex if $x_1, \ldots, x_n \in A$, $\alpha_i > 0$, $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n \alpha_i x_i \in A.$

If
$$
\alpha_i \in \mathbb{Q}
$$
, write $\alpha_i = \frac{m_i}{m}$. Then $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n m_i = m$.

Monoid $=$ additive semigroup with unit.

a mills.

 \mathcal{A} and \mathcal{A} in \mathcal{A} . In the set of \mathcal{B}

TELE

[Definitions](#page-6-0)

Definition (Convex set in vector spaces)

X a vector space. $A \subseteq X$ is convex if $x_1, \ldots, x_n \in A$, $\alpha_i > 0$, $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n \alpha_i x_i \in A.$

If
$$
\alpha_i \in \mathbb{Q}
$$
, write $\alpha_i = \frac{m_i}{m}$. Then $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n m_i = m$.

Monoid $=$ additive semigroup with unit.

Definition (Convex set in monoids/groups)

X a monoid. $A \subseteq X$ is said to be convex if $x_1, \ldots, x_n \in A$. $m_1, \ldots, m_n, m \in \mathbb{N}, m \times \sum_{i=1}^n m_i x_i, m = \sum_{i=1}^n m_i \Longrightarrow x \in A.$

 $4.11 \times 4.60 \times 4.72 \times$

化异体 人名

[Definitions](#page-2-0)

Definition (Convex set in vector spaces)

X a vector space. $A \subseteq X$ is convex if $x_1, \ldots, x_n \in A$, $\alpha_i > 0$, $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n \alpha_i x_i \in A.$

If
$$
\alpha_i \in \mathbb{Q}
$$
, write $\alpha_i = \frac{m_i}{m}$. Then $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n m_i = m$.

Monoid $=$ additive semigroup with unit.

Definition (Convex set in monoids/groups)

X a monoid. $A \subseteq X$ is said to be convex if $x_1, \ldots, x_n \in A$, $m_1, \ldots, m_n, m \in \mathbb{N}, m \times \sum_{i=1}^n m_i x_i, m = \sum_{i=1}^n m_i \Longrightarrow x \in A.$

Definition (Convex hull)

For $A \subseteq X$, $conv(A)$ is the smallest convex set that contains A.

 000

Convex function

Definition (Convex function on vector spaces)

X a vector space. $f: X \to \mathbb{R}$ is convex if $f(x) \le \sum_{i=1}^n \alpha_i f(x_i)$, whenever $x = \sum_{i=1}^{n} \alpha_i x_i$, $\alpha_i > 0$, $\sum_{i=1}^{n} \alpha_i = 1$. *f* is concave if $-t$ is convex

イロメ イタメ イラメ

一 (語) ()

唾

Convex function

Definition (Convex function on vector spaces)

X a vector space. $f: X \to \mathbb{R}$ is convex if $f(x) \le \sum_{i=1}^n \alpha_i f(x_i)$, whenever $x = \sum_{i=1}^{n} \alpha_i x_i$, $\alpha_i > 0$, $\sum_{i=1}^{n} \alpha_i = 1$. *f* is concave if $-t$ is convex

Definition (Convex function on monoids/groups)

X a monoid. $f: X \to \mathbb{R}$ is convex if $mf(x) \leq \sum_{i=1}^{n} m_i f(x_i)$, whenever $mx = \sum_{i=1}^{n} m_i x_i$, $m = \sum_{i=1}^{n} m_i$. *f* is concave if $-f$ is convex

This can be done in a more general setting (X is a module, $\pm \infty$...) |

イロメ イ部メ イヨメ イヨメー

唾

つくい

[Definitions](#page-2-0)

Example of some basic properties

Example: three slopes lemma

X a monoid, $f: X \to \mathbb{R}$ convex, $m, m_1, m_2 \in \mathbb{N}$, $x, x_1, x_2 \in X$ such that $mx = m_1x_1 + m_2x_2$. Then

イロメ イ部メ イヨメ イヨメー

[Definitions](#page-2-0)

Divisible and semidivisible monoids/groups

In some cases, want to solve the equation $mx = \sum_{i=1}^{n} m_i x_i$, at least for some $m \in \mathbb{N}$.

 $4.17 \times$

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$ \mathcal{B} \mathcal{A} $\mathcal{B}^{\mathcal{A}}$ $\mathcal{B}^{\mathcal{A}}$

∢ 重→

Divisible and semidivisible monoids/groups

In some cases, want to solve the equation $mx = \sum_{i=1}^{n} m_i x_i$, at least for some $m \in \mathbb{N}$.

Definition (Divisible, semidivisible monoids/groups)

A monoid/group X is p-semidivisible if $pX = X$. X is semidivisible if it is p-semidivisible for some p . X is divisible if it is p-semidivisible for every p.

 $\mathcal{A} \cap \mathcal{B} \longrightarrow \mathcal{A} \subset \mathcal{B} \longrightarrow$

不同 医

Divisible and semidivisible monoids/groups

In some cases, want to solve the equation $mx = \sum_{i=1}^{n} m_i x_i$, at least for some $m \in \mathbb{N}$.

Definition (Divisible, semidivisible monoids/groups)

A monoid/group X is p-semidivisible if $pX = X$. X is semidivisible if it is p-semidivisible for some p . X is divisible if it is p-semidivisible for every p.

p-semidivisible: same as saying that for every $x \in X$, there exists $y \in X$ such that $x = py$.

イロメ イタメ イラメ

na ⊞is

Convex sets in certain groups

Finite groups

For every $x \in X$, there is m such that $mx = 0 \Longrightarrow \text{conv}(\{0\}) = X$. The only convex sets are X and \emptyset .

 $4.17 \times$

 \leftarrow \overline{m} \rightarrow \rightarrow \equiv $2Q$

不同 医

扂

Convex sets in certain groups

Finite groups

For every $x \in X$, there is m such that $mx = 0 \Longrightarrow \text{conv}(\{0\}) = X$. The only convex sets are X and \emptyset .

Circle group

 $X = \mathbb{R}/\mathbb{Z}$. Then $\text{conv}(\{x\}) = \{x + y \mid y \in \mathbb{Q}\} \Longrightarrow$ no convex singletons in X .

 $4.71 \times 4.77 \times 4.75$

4. E. K

Convex sets in certain groups

Finite groups

For every $x \in X$, there is m such that $mx = 0 \Longrightarrow \text{conv}(\{0\}) = X$. The only convex sets are X and \emptyset .

Circle group

 $X = \mathbb{R}/\mathbb{Z}$. Then $\text{conv}(\{x\}) = \{x + y \mid y \in \mathbb{Q}\} \Longrightarrow$ no convex singletons in X .

Integer lattice \mathbb{Z}^d

For
$$
A \subseteq \mathbb{Z}^d
$$
, $\text{conv}_{\mathbb{Z}^d}(A) = \text{conv}_{\mathbb{R}^d}(A) \cap \mathbb{Z}^d$.

 $4.11 \times 4.60 \times 4.72 \times$

4. E. K

Convex sets in certain groups

Arctan semigroup

 $X=[0,\infty)$ with the addition $a\oplus b=\frac{a+b}{1+ab}$. If $a,b\neq 0$ then $\frac{1}{a} \oplus \frac{1}{b} = a \oplus b$. Thus, if $a \neq 1$, then $\frac{1}{a} \in \text{conv}(\{a\})$, and so $\{0\}$, ${1}$ are the only convex singletons. X is 3-semidivisible but not 2-semidivisible.

Convex sets in certain groups

Arctan semigroup

 $X=[0,\infty)$ with the addition $a\oplus b=\frac{a+b}{1+ab}$. If $a,b\neq 0$ then $\frac{1}{a} \oplus \frac{1}{b} = a \oplus b$. Thus, if $a \neq 1$, then $\frac{1}{a} \in \text{conv}(\{a\})$, and so $\{0\}$, $\{1\}$ are the only convex singletons. X is 3-semidivisible but not 2-semidivisible.

Hyperbolic group

Let X be the matrices of the form $\pm \left[\begin{array}{cc} \cosh(\theta) & \sinh(\theta) \ \sinh(\theta) & \cosh(\theta) \end{array} \right]$ $sinh(\theta)$ cosh (θ) $], \theta \in \mathbb{R},$ with the matrix multiplication. Then $\overline{2}nX \neq X$ and $(2n+1)X = X$. If $f : \mathbb{R} \to \mathbb{R}$ is convex then $F\left(\pm \begin{bmatrix} \cosh(\theta) & \sinh(\theta) \\ \sinh(\theta) & \cosh(\theta) \end{bmatrix}\right)$ $\begin{array}{ll} \mathsf{cosh}(\theta) & \mathsf{sinh}(\theta) \ \mathsf{sinh}(\theta) & \mathsf{cosh}(\theta) \end{array} \bigg| \bigg) = f(\theta) \text{ is convex}.$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

E

[Interpolation of convex functions](#page-20-0) [Maximum formula](#page-23-0) **[Optimisation](#page-28-0)**

4 D F 4 H F 4 E

E N

へのへ

Interpolation of convex functions

$$
f: X \to \mathbb{R} \text{ is subadditive if } f(x+y) \leq f(x) + f(y).
$$

Theorem (Kaufman)

X a monoid, $f, -g : X \to \mathbb{R}$ subadditive, and $g \leq f$. Then there exists $a: X \to \mathbb{R}$ additive such that $g \le a \le f$.

This is a monoid version of result by Mazur-Orlicz

[Interpolation of convex functions](#page-20-0) [Maximum formula](#page-23-0) **[Optimisation](#page-28-0)**

 $4.71 \times 4.77 \times 4.75$

へのへ

Interpolation of convex functions

$$
f: X \to \mathbb{R} \text{ is subadditive if } f(x+y) \leq f(x) + f(y).
$$

Theorem (Kaufman)

X a monoid, $f, -g : X \to \mathbb{R}$ subadditive, and $g \leq f$. Then there exists $a: X \to \mathbb{R}$ additive such that $g \le a \le f$.

This is a monoid version of result by Mazur-Orlicz

 $f: X \to \mathbb{R}$ is affine if it is both convex and concave.

[Interpolation of convex functions](#page-18-0) [Maximum formula](#page-23-0) **[Optimisation](#page-28-0)**

K ロ ▶ K dV ▶ K ミ ▶

←思う

 290

Interpolation of convex functions

$$
f: X \to \mathbb{R} \text{ is subadditive if } f(x+y) \leq f(x) + f(y).
$$

Theorem (Kaufman)

X a monoid, $f, -g : X \to \mathbb{R}$ subadditive, and $g \leq f$. Then there exists $a: X \to \mathbb{R}$ additive such that $g \le a \le f$.

This is a monoid version of result by Mazur-Orlicz

 $f: X \to \mathbb{R}$ is affine if it is both convex and concave.

Theorem

X is a semidivisible monoid, $f, -g : X \to \mathbb{R}$ convex, and $g \leq f$. Then there exists $a: X \to \mathbb{R}$ affine such that $g \le a \le f$.

[Interpolation of convex functions](#page-18-0) [Maximum formula](#page-23-0) **[Optimisation](#page-28-0)**

Picture: interpolation of subadditive/convex functions

[Interpolation of convex functions](#page-18-0) [Maximum formula](#page-23-0) **[Optimisation](#page-28-0)**

K ロ ト K 倒 ト K 走 ト

一 4 店 ト

 $2Q$

Example: nondivisible case

Failure in the nondivisible case

$$
X = \mathbb{Z}^2
$$
, $f(x) = 5d_A(x) - 1$ and $g = -5d_B(x) + 1$.

f, $-g$ are convex, $g \leq f$, but there is no affine a s.t. $g \leq a \leq f$.

[Interpolation of convex functions](#page-18-0) [Maximum formula](#page-26-0) **[Optimisation](#page-28-0)**

a mills.

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B}

∢ 重う

IN

 $2Q$

Directional derivative and subgradient

Definition (Directional derivative)

$$
f_{x}(h) = \inf \left\{ n \big(f(x+g) - f(x) \big) \mid ng = h \right\}
$$

If f is convex: $n(f(x + g) - f(x))$ is decreasing in n.

[Interpolation of convex functions](#page-18-0) [Maximum formula](#page-26-0) **[Optimisation](#page-28-0)**

 $4.17 \times$

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$ \mathcal{B} \mathcal{A} $\mathcal{B}^{\mathcal{A}}$ $\mathcal{B}^{\mathcal{A}}$

不同 医

へのへ

Directional derivative and subgradient

Definition (Directional derivative)

$$
f_{x}(h) = \inf \left\{ n \big(f(x+g) - f(x) \big) \mid ng = h \right\}
$$

If f is convex: $n(f(x + g) - f(x))$ is decreasing in n. Recall, if X is a VS: $f_x(h) = \inf \left\{ \frac{1}{t} \left(f(x + th) - f(x) \middle| t > 0 \right) \right\}$.

[Interpolation of convex functions](#page-18-0) [Maximum formula](#page-26-0) **[Optimisation](#page-28-0)**

 $4.11 \times 4.60 \times 4.72 \times$

不同 医

へのへ

Directional derivative and subgradient

Definition (Directional derivative)

$$
f_{x}(h) = \inf \left\{ n \big(f(x+g) - f(x) \big) \mid ng = h \right\}
$$

If f is convex: $n(f(x + g) - f(x))$ is decreasing in n. Recall, if X is a VS: $f_x(h) = \inf \left\{ \frac{1}{t} \left(f(x + th) - f(x) \middle| t > 0 \right) \right\}$.

Definition (Subgradient)

$$
\partial f(x) = \big\{ a : X \to \mathbb{R} \mid f(x) + a(h) \leq f(x+h), a \text{ additive} \big\}
$$

[Interpolation of convex functions](#page-18-0) [Maximum formula](#page-23-0) **[Optimisation](#page-28-0)**

 000

Directional derivative and subgradient

Definition (Directional derivative)

$$
f_{x}(h) = \inf \left\{ n \big(f(x+g) - f(x) \big) \mid ng = h \right\}
$$

If f is convex: $n(f(x + g) - f(x))$ is decreasing in n. Recall, if X is a VS: $f_x(h) = \inf \left\{ \frac{1}{t} \left(f(x + th) - f(x) \middle| t > 0 \right) \right\}$.

Definition (Subgradient)

$$
\partial f(x) = \big\{ a : X \to \mathbb{R} \mid f(x) + a(h) \leq f(x+h), a \text{ additive} \big\}
$$

Theorem (Max formula)

X a semidivisible group and $f : X \to \mathbb{R}$ convex. Then

$$
f_{x}(h) = \max\big\{a(h) \mid a \in \partial f(x)\big\}
$$

[Interpolation of convex functions](#page-18-0) [Maximum formula](#page-23-0) **[Optimisation](#page-28-0)**

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} -1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

→ 唐 ト

へのへ

Consequences of the max formula

Definition (Sublinear function)

 $f: X \to \mathbb{R}$ is sublinear if $f(nx) = nf(x)$ and f is subadditive.

Theorem (Hahn-Banach for groups)

X a group and $Y \subseteq X$ a subgroup. $f : X \to \mathbb{R}$ is sublinear and h : $Y \rightarrow \mathbb{R}$ is additive such that $h \leq f$ on Y. Then there exists $\bar{h}: X \to \mathbb{R}$ additive such that $\bar{h} \leq f$ and $\bar{h} = h$ on Y.

Did not use semidvisibility since the functions are sublinear.

[Interpolation of convex functions](#page-18-0) [Maximum formula](#page-23-0) **[Optimisation](#page-28-0)**

 $4.11 \times 4.60 \times 4.72 \times$

E N

へのへ

Convex optimisation on groups

Consider the constrained problem

$$
\inf \big\{f(x) \mid g_1(x) \leq 0, \ldots, g_k(x) \leq 0 \big\}
$$

Theorem (Subgradient of max function)

X semidivisible group and $f_1, \ldots, f_k : X \to \mathbb{R}$ convex. Let $g(x) = \max_{1 \leq i \leq k} f_i(x)$. Then

$$
\partial g(x) = \text{conv}\Big(\bigcup_{f_i(x)=g(x)} \partial f_i(x)\Big)
$$

[Interpolation of convex functions](#page-18-0) [Maximum formula](#page-23-0) **[Optimisation](#page-28-0)**

Convex optimisation on groups

Subgradient of max function

$$
\partial g(x) = \text{conv}\Big(\bigcup_{f_i(x)=g(x)} \partial f_i(x)\Big), \ \ g = \max_{1 \leq i \leq k} f_i
$$

K ロ ト K 倒 ト K 走 ト

ス 重っ

ă

Future Directions

- Noncommutative groups
- Questions in topological groups (continuity, differentiability...)
- Applications in integer programming

 4.17 ± 1.0

 \Box

∢ 重 ≯

The End

Jonathan M. Borwein, Ohad Giladi [Convexity on groups and semigroups](#page-0-0)

メロメ メ団メ メモメ メモメー

目

 299