Convexity on groups and semigroups

Jonathan M. Borwein Ohad Giladi

University of Newcastle

August 23, 2015

- - 4 回 ト - 4 回 ト

Outline

- Convex sets/functions
- Examples
- Convex Analysis
- Future directions

General theme

Many known results hold assuming only an additive structure

<- ↓ ↓ < ≥ >

- < ≣ →

Definitions

Definition (Convex set in vector spaces)

X a vector space. $A \subseteq X$ is convex if $x_1, \ldots, x_n \in A$, $\alpha_i > 0$, $\sum_{i=1}^{n} \alpha_i = 1 \Longrightarrow \sum_{i=1}^{n} \alpha_i x_i \in A$.

(ロ) (同) (E) (E) (E)

Definitions

Definition (Convex set in vector spaces)

X a vector space. $A \subseteq X$ is convex if $x_1, \ldots, x_n \in A$, $\alpha_i > 0$, $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n \alpha_i x_i \in A$.

If
$$\alpha_i \in \mathbb{Q}$$
, write $\alpha_i = \frac{m_i}{m}$. Then $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n m_i = m$.

・ロト ・回ト ・ヨト ・ヨト

2

Definitions

Definition (Convex set in vector spaces)

X a vector space. $A \subseteq X$ is convex if $x_1, \ldots, x_n \in A$, $\alpha_i > 0$, $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n \alpha_i x_i \in A$.

If
$$\alpha_i \in \mathbb{Q}$$
, write $\alpha_i = \frac{m_i}{m}$. Then $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n m_i = m$.

Monoid = additive semigroup with unit.

Definitions

Definition (Convex set in vector spaces)

X a vector space. $A \subseteq X$ is convex if $x_1, \ldots, x_n \in A$, $\alpha_i > 0$, $\sum_{i=1}^{n} \alpha_i = 1 \Longrightarrow \sum_{i=1}^{n} \alpha_i x_i \in A$.

If
$$\alpha_i \in \mathbb{Q}$$
, write $\alpha_i = \frac{m_i}{m}$. Then $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n m_i = m$.

Monoid = additive semigroup with unit.

Definition (Convex set in monoids/groups)

X a monoid. $A \subseteq X$ is said to be convex if $x_1, \ldots, x_n \in A$, $m_1, \ldots, m_n, m \in \mathbb{N}$, $m_X = \sum_{i=1}^n m_i x_i$, $m = \sum_{i=1}^n m_i \Longrightarrow x \in A$.

→ Ξ →

Definitions

Definition (Convex set in vector spaces)

X a vector space. $A \subseteq X$ is convex if $x_1, \ldots, x_n \in A$, $\alpha_i > 0$, $\sum_{i=1}^{n} \alpha_i = 1 \Longrightarrow \sum_{i=1}^{n} \alpha_i x_i \in A$.

If
$$\alpha_i \in \mathbb{Q}$$
, write $\alpha_i = \frac{m_i}{m}$. Then $\sum_{i=1}^n \alpha_i = 1 \Longrightarrow \sum_{i=1}^n m_i = m$.

Monoid = additive semigroup with unit.

Definition (Convex set in monoids/groups)

X a monoid. $A \subseteq X$ is said to be convex if $x_1, \ldots, x_n \in A$, $m_1, \ldots, m_n, m \in \mathbb{N}$, $m_X = \sum_{i=1}^n m_i x_i$, $m = \sum_{i=1}^n m_i \Longrightarrow x \in A$.

Definition (Convex hull)

For $A \subseteq X$, conv(A) is the smallest convex set that contains A.

Convex function

Definition (Convex function on vector spaces)

X a vector space. $f : X \to \mathbb{R}$ is convex if $f(x) \le \sum_{i=1}^{n} \alpha_i f(x_i)$, whenever $x = \sum_{i=1}^{n} \alpha_i x_i$, $\alpha_i > 0$, $\sum_{i=1}^{n} \alpha_i = 1$. f is concave if -f is convex

(ロ) (同) (E) (E) (E)

Convex function

Definition (Convex function on vector spaces)

X a vector space. $f : X \to \mathbb{R}$ is convex if $f(x) \le \sum_{i=1}^{n} \alpha_i f(x_i)$, whenever $x = \sum_{i=1}^{n} \alpha_i x_i$, $\alpha_i > 0$, $\sum_{i=1}^{n} \alpha_i = 1$. f is concave if -f is convex

Definition (Convex function on monoids/groups)

X a monoid. $f : X \to \mathbb{R}$ is convex if $mf(x) \le \sum_{i=1}^{n} m_i f(x_i)$, whenever $mx = \sum_{i=1}^{n} m_i x_i$, $m = \sum_{i=1}^{n} m_i$. f is concave if -f is convex

This can be done in a more general setting (X is a module, $\pm \infty$...)

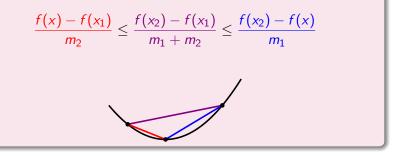
(ロ) (同) (E) (E) (E)

Definitions

Example of some basic properties

Example: three slopes lemma

X a monoid, $f: X \to \mathbb{R}$ convex, $m, m_1, m_2 \in \mathbb{N}$, $x, x_1, x_2 \in X$ such that $mx = m_1x_1 + m_2x_2$. Then



・ロン ・回 と ・ 回 と ・ 回 と

2

Definitions

Divisible and semidivisible monoids/groups

In some cases, want to solve the equation $mx = \sum_{i=1}^{n} m_i x_i$, at least for some $m \in \mathbb{N}$.

▲□→ ▲ 国→ ▲ 国→

2

Definitions

Divisible and semidivisible monoids/groups

In some cases, want to solve the equation $mx = \sum_{i=1}^{n} m_i x_i$, at least for some $m \in \mathbb{N}$.

Definition (Divisible, semidivisible monoids/groups)

A monoid/group X is p-semidivisible if pX = X. X is semidivisible if it is p-semidivisible for some p. X is divisible if it is p-semidivisible for every p.

→ Ξ →

Definitions

Divisible and semidivisible monoids/groups

In some cases, want to solve the equation $mx = \sum_{i=1}^{n} m_i x_i$, at least for some $m \in \mathbb{N}$.

Definition (Divisible, semidivisible monoids/groups)

A monoid/group X is p-semidivisible if pX = X. X is semidivisible if it is p-semidivisible for some p. X is divisible if it is p-semidivisible for every p.

p-semidivisible: same as saying that for every $x \in X$, there exists $y \in X$ such that x = py.

・ロン ・回 と ・ ヨン ・ ヨン

Convex sets in certain groups

Finite groups

For every $x \in X$, there is *m* such that $mx = 0 \Longrightarrow \operatorname{conv}(\{0\}) = X$. The only convex sets are X and \emptyset .

・ 同・ ・ ヨ・

∃ >

Convex sets in certain groups

Finite groups

For every $x \in X$, there is *m* such that $mx = 0 \Longrightarrow \operatorname{conv}(\{0\}) = X$. The only convex sets are X and \emptyset .

Circle group

 $X = \mathbb{R}/\mathbb{Z}$. Then $\operatorname{conv}(\{x\}) = \{x + y \mid y \in \mathbb{Q}\} \Longrightarrow$ no convex singletons in X.

Convex sets in certain groups

Finite groups

For every $x \in X$, there is *m* such that $mx = 0 \Longrightarrow \operatorname{conv}(\{0\}) = X$. The only convex sets are X and \emptyset .

Circle group

 $X = \mathbb{R}/\mathbb{Z}$. Then $\operatorname{conv}(\{x\}) = \{x + y \mid y \in \mathbb{Q}\} \Longrightarrow$ no convex singletons in X.

Integer lattice \mathbb{Z}^d

For
$$A \subseteq \mathbb{Z}^d$$
, $\operatorname{conv}_{\mathbb{Z}^d}(A) = \operatorname{conv}_{\mathbb{R}^d}(A) \cap \mathbb{Z}^d$.

・ロト ・回ト ・ヨト

Convex sets in certain groups

Arctan semigroup

 $X = [0, \infty)$ with the addition $a \oplus b = \frac{a+b}{1+ab}$. If $a, b \neq 0$ then $\frac{1}{a} \oplus \frac{1}{b} = a \oplus b$. Thus, if $a \neq 1$, then $\frac{1}{a} \in \operatorname{conv}(\{a\})$, and so $\{0\}$, $\{1\}$ are the only convex singletons. X is 3-semidivisible but not 2-semidivisible.

A (1) > (1) > (1)

Convex sets in certain groups

Arctan semigroup

$$X = [0, \infty)$$
 with the addition $a \oplus b = \frac{a+b}{1+ab}$. If $a, b \neq 0$ then $\frac{1}{a} \oplus \frac{1}{b} = a \oplus b$. Thus, if $a \neq 1$, then $\frac{1}{a} \in \operatorname{conv}(\{a\})$, and so $\{0\}$, $\{1\}$ are the only convex singletons. X is 3-semidivisible but not 2-semidivisible.

Hyperbolic group

Let X be the matrices of the form $\pm \begin{bmatrix} \cosh(\theta) & \sinh(\theta) \\ \sinh(\theta) & \cosh(\theta) \end{bmatrix}$, $\theta \in \mathbb{R}$, with the matrix multiplication. Then $2nX \neq X$ and (2n+1)X = X. If $f : \mathbb{R} \to \mathbb{R}$ is convex then $F\left(\pm \begin{bmatrix} \cosh(\theta) & \sinh(\theta) \\ \sinh(\theta) & \cosh(\theta) \end{bmatrix}\right) = f(\theta)$ is convex.

・ロン ・回と ・ヨン・

æ

Interpolation of convex functions Maximum formula Optimisation

I ≥ ≥

Interpolation of convex functions

 $f: X \to \mathbb{R}$ is subadditive if $f(x + y) \leq f(x) + f(y)$.

Theorem (Kaufman)

X a monoid, $f, -g : X \to \mathbb{R}$ subadditive, and $g \leq f$. Then there exists $a : X \to \mathbb{R}$ additive such that $g \leq a \leq f$.

This is a monoid version of result by Mazur-Orlicz

Interpolation of convex functions Maximum formula Optimisation

Image: A math a math

Interpolation of convex functions

$$f: X \to \mathbb{R}$$
 is subadditive if $f(x + y) \leq f(x) + f(y)$.

Theorem (Kaufman)

X a monoid, $f, -g : X \to \mathbb{R}$ subadditive, and $g \leq f$. Then there exists a : $X \to \mathbb{R}$ additive such that $g \leq a \leq f$.

This is a monoid version of result by Mazur-Orlicz

 $f: X \to \mathbb{R}$ is affine if it is both convex and concave.

Interpolation of convex functions Maximum formula Optimisation

I = ≥

Interpolation of convex functions

 $f: X \to \mathbb{R}$ is subadditive if $f(x + y) \leq f(x) + f(y)$.

Theorem (Kaufman)

X a monoid, $f, -g : X \to \mathbb{R}$ subadditive, and $g \leq f$. Then there exists a : $X \to \mathbb{R}$ additive such that $g \leq a \leq f$.

This is a monoid version of result by Mazur-Orlicz

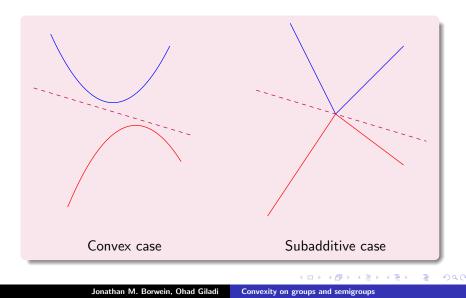
 $f: X \to \mathbb{R}$ is affine if it is both convex and concave.

Theorem

X is a semidivisible monoid, $f, -g : X \to \mathbb{R}$ convex, and $g \le f$. Then there exists $a : X \to \mathbb{R}$ affine such that $g \le a \le f$.

Interpolation of convex functions Maximum formula Optimisation

Picture: interpolation of subadditive/convex functions



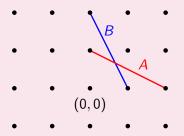
Interpolation of convex functions Maximum formula Optimisation

・ロン ・回と ・ヨン・

Example: nondivisible case

Failure in the nondivisible case

$$X = \mathbb{Z}^2$$
, $f(x) = 5d_A(x) - 1$ and $g = -5d_B(x) + 1$.



f, -g are convex, $g \leq f$, but there is no affine a s.t. $g \leq a \leq f$.

Interpolation of convex functions Maximum formula Optimisation

- ∢ ≣ ▶

Directional derivative and subgradient

Definition (Directional derivative)

$$f_x(h) = \inf \left\{ n \big(f(x+g) - f(x) \big) \mid ng = h \right\}$$

If f is convex: n(f(x+g) - f(x)) is decreasing in n.

Convex sets, convex functions Maximum formula Examples Convex analysis on groups Optimisation

▲ □ ► ▲ □ ►

• 3 >

Directional derivative and subgradient

Definition (Directional derivative)

$$f_x(h) = \inf \left\{ n \big(f(x+g) - f(x) \big) \mid ng = h \right\}$$

If f is convex: n(f(x+g) - f(x)) is decreasing in n. Recall, if X is a VS: $f_x(h) = \inf \{ \frac{1}{t} (f(x+th) - f(x) \mid t > 0) \}.$ Convex sets, convex functions Maximum formula Examples Convex analysis on groups Optimisation

• 3 > 1

Directional derivative and subgradient

Definition (Directional derivative)

$$f_x(h) = \inf \left\{ n \big(f(x+g) - f(x) \big) \mid ng = h \right\}$$

If f is convex: n(f(x+g) - f(x)) is decreasing in n. Recall, if X is a VS: $f_x(h) = \inf \{\frac{1}{t}(f(x+th) - f(x) \mid t > 0)\}.$

Definition (Subgradient)

$$\partial f(x) = \left\{ a : X \to \mathbb{R} \mid f(x) + a(h) \leq f(x+h), a \text{ additive} \right\}$$

Convex sets, convex functions Maximum formula Examples Convex analysis on groups Optimisation

Directional derivative and subgradient

Definition (Directional derivative)

$$f_x(h) = \inf \left\{ n \big(f(x+g) - f(x) \big) \mid ng = h \right\}$$

If f is convex: n(f(x+g) - f(x)) is decreasing in n. Recall, if X is a VS: $f_x(h) = \inf \{ \frac{1}{t} (f(x+th) - f(x) \mid t > 0) \}.$

Definition (Subgradient)

$$\partial f(x) = \left\{ a : X \to \mathbb{R} \mid f(x) + a(h) \leq f(x+h), a \text{ additive} \right\}$$

Theorem (Max formula)

X a semidivisible group and $f : X \to \mathbb{R}$ convex. Then

$$f_x(h) = \max \left\{ a(h) \mid a \in \partial f(x) \right\}$$

Interpolation of convex functions Maximum formula Optimisation

・ロン ・回と ・ヨン ・ヨン

Consequences of the max formula

Definition (Sublinear function)

 $f: X \to \mathbb{R}$ is sublinear if f(nx) = nf(x) and f is subadditive.

Theorem (Hahn-Banach for groups)

X a group and $Y \subseteq X$ a subgroup. $f : X \to \mathbb{R}$ is sublinear and $h : Y \to \mathbb{R}$ is additive such that $h \leq f$ on Y. Then there exists $\overline{h} : X \to \mathbb{R}$ additive such that $\overline{h} \leq f$ and $\overline{h} = h$ on Y.

Did not use semidvisibility since the functions are sublinear.

Interpolation of convex functions Maximum formula Optimisation

・ロト ・回ト ・ヨト

Convex optimisation on groups

Consider the constrained problem

$$\inf \left\{ f(x) \mid g_1(x) \leq 0, \dots, g_k(x) \leq 0 \right\}$$

Theorem (Subgradient of max function)

X semidivisible group and $f_1, \ldots, f_k : X \to \mathbb{R}$ convex. Let $g(x) = \max_{1 \le i \le k} f_i(x)$. Then

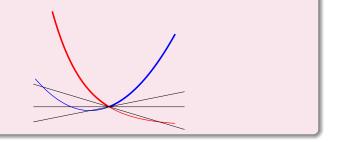
$$\partial g(x) = \operatorname{conv}\Big(\bigcup_{f_i(x)=g(x)} \partial f_i(x)\Big)$$

Interpolation of convex functions Maximum formula Optimisation

Convex optimisation on groups

Subgradient of max function

$$\partial g(x) = \operatorname{conv}\Big(\bigcup_{f_i(x)=g(x)} \partial f_i(x)\Big), \ \ g = \max_{1 \le i \le k} f_i$$



・ロト ・回ト ・ヨト

- < ≣ →

æ

Future Directions

- Noncommutative groups
- Questions in topological groups (continuity, differentiability...)
- Applications in integer programming

▲ 同 ▶ | ▲ 臣 ▶

The End

Jonathan M. Borwein, Ohad Giladi Convexity on groups and semigroups

æ