

Varieties of Smoothness and Rotundity

J.R.Giles

Faculty of Science and Information Technology School of Mathematical and Physical Sciences August 2015 Banach space X, dual X^*

$$||f|| = \sup\{|f(x)| : ||x|| \le 1\}$$

Natural embedding of X into X^{**} , $x \mapsto \hat{x}$

$$\hat{x}(f) = f(x)$$
 for all $f \in X^*, \|\hat{x}\| = \|x\|$

onto is reflexive.

Ball
$$B(X) \equiv \{x \in X : ||x|| \le 1\}$$

Sphere
$$S(X) \equiv \{x \in X : ||x|| = 1\}$$

$$x \in S(X), \lim_{\lambda \to 0} \frac{\|x + \lambda y\| - \|x\|}{\lambda}$$

exists all $y \in S(X)$, Gateaux dble at x,

uniformly all $y \in S(X)$, $Fr\acute{e}chet$ dble at x.

Theme: To determine those Banach spaces which enjoy particular Euclidean space properties.

Euclidean space - continuous convex functions are dble on a dense G_{δ} .

1933 Mazur: separable Banach space has G dble on a dense G_{δ} .

1968 Asplund: Banach space separable dual has Fr. dble on a dense G_{δ} .

Activity of 1970s:

characterisation *Asplund spaces* - where cts convex Fr. dble on a dense G_{δ} (David Gregory 1979)

X with Fr. dble norm on S(X) is Asplund.

Weak Asplund spaces - where cts convex G dble on a dense $G_\delta.$

X with G dble norm on S(X) is weak Asplund (P-P-N 1990).

Rotundity conditions

 \bullet X(UR) for all $x,y\in S(X),$ given $\epsilon>0$ there exists $\delta(\epsilon)>0$ such that

$$||x - y|| < \epsilon$$
 when $||x + y|| > 2 - \delta$

(X reflexive, Ringrose 1958).

• X(WUR) for all $x,y\in S(X)$, given $\epsilon>0$ there exists $\delta(\epsilon,f)>0$ such that

$$|f(x-y)|<\epsilon$$
 when $\|x+y\|>2-\delta$ for each $f\in S(X^*)$

(X Asplund, Hajek 1996).

• $X^*(W^*UR)$ for all $f,g\in S(X^*)$, given $\epsilon>0$ there exists $\delta(\epsilon,z)>0$ such that

$$|(f-g)(z)|| < \epsilon$$
 when $||f+g|| > 2 - \delta$ for each $z \in S(X)$

Related Smoothness Conditions

 $\bullet X(UF)$

$$\lim_{\lambda\to 0}\frac{\|x+\lambda y\|-\|x\|}{\lambda}=f_x(y) \text{ uniformly all } x,y\in S(X).$$

$$X(UF)\Leftrightarrow X^*(UR)$$

 $\bullet X(UG)$

$$\lim_{\lambda \to 0} \frac{\|x + \lambda y\| - \|x\|}{\lambda} = f_x(y) \text{ uniformly all } x \in S(X).$$

(Zajicek 1983).

$$X(WUR) \Leftrightarrow X^*(UG) \Leftrightarrow X^{**}(W^*UR)$$

 $\bullet X(VS)$

 $\lim_{\lambda \to 0} \frac{\|\hat{x} + \lambda F\| - \|\hat{x}\|}{\lambda} = \hat{f}_x(F)$

(X smooth at $x \in S(X)$ and X^{**} smooth at $\hat{x} \in S(\hat{X})$.)

 $(X(VS) \text{ Asplund}, X^*(VS) \text{ on } S(X^*) \text{ reflexive.})$

Continuity Characterisations of Differentiability

$$x \in S(X), D(x) \equiv \{f \in S(X^*): f(x) = 1\},$$

$$x \mapsto D(x) \text{ is } w^* \text{ uscts}$$
 (i)

support mapping $x \mapsto f_x$ where $f_x \in D(x)$.

subgradient inequality for $x \in S(X)$

$$f_x(y) \le \frac{\|x + \lambda y\| - \|x\|}{\lambda} \le f_{\frac{x + \lambda y}{\|x + \lambda y\|}}(y) \text{ all } y \in S(X)$$

for
$$\delta > 0$$
 and reverse for $\delta < 0$ (ii)

(i) and (ii) \Rightarrow norm is G dble at x iff D(x) is singleton.

- (1) $x \mapsto f_x(y)$ for each $y \in S(X)$ cts at $x \in S(X) \Leftrightarrow G$ dble norm at x.
- (2) $x \mapsto f_x$ cts at $x \in S(X) \Leftrightarrow Fr$ dble norm at x.
- (3) $x \mapsto f_x$ uniformly cts on $S(X) \Leftrightarrow UF$ dble norm on S(X).
- (4) $x \mapsto f_x(y)$ for each $y \in S(X)$ uniformly cts on $S(X) \Leftrightarrow UG$ dble norm on S(X).
- (5) $x \mapsto f_x(F)$ for each $F \in S(X^{**})$ cts at $x \in S(X) \Leftrightarrow VS$ norm at x.

Problem (Andrew Yorke, PhD 1977)

$$X^*(WUR)$$

X not necessarily reflexive, (Hajek, 1996).

$$X^*(WUR)$$
 iff for each $F \in S(X^{**})$

$$\lim_{\lambda \to 0} \frac{\|\hat{x} + \lambda F\| - \|\hat{x}\|}{\lambda} = \hat{f}_x(F) \text{ uniformly all } x \in S(X).$$

iff for each $F \in S(X^{**})$, $\hat{x} \mapsto \hat{f}_x(F)$ uniformly cts on S(X)

X Asplund and X^* Asplund