Metric Diophantine approximation: solubility of inhomogeneous wave equation

Mumtaz Hussain

August 23, 2015

Mumtaz Hussain

Non-linear Diophantine approximation

Introduction

- Open Problems
- Wavy Diophantine Problem

How well can a real number be approximated by rationals?

- Qualitatively: The set of rational numbers is dense, therefore for any real number *x* we can construct a sequence of rational numbers r_n such that $r_n \rightarrow x$ as $n \rightarrow \infty$.
- Quantitatively: What happens if the denominators of rational numbers are equal to some integer value *N*?

$$0 \xrightarrow[N]{\frac{1}{N}} \frac{1}{N} \xrightarrow[N]{\frac{1}{N}} 1$$

$$\left|x-\frac{p}{q}\right|\leq \frac{1}{2N}$$

• What happens if the denominators are bounded by some value N?

Theorem (Dirichlet 1842)

For any real number α and any positive integer N, there exists a rational p/q with positive denominator $q \leq N$, such that

$$\left| \alpha - \frac{p}{q} \right| < \frac{1}{qN}.$$

Since $q \leq N$, it immediately follows that

Corollary

For any irrational $\alpha \in \mathbb{R}$ there exists infinitely many rationals p/q such that

$$\left|\alpha - \frac{p}{q}\right| < q^{-2}.$$
 (1)

Is it possible to do better?

Theorem (Hurwitz 1891)

For any irrational real number α there exist infinitely many integers p and q > 0 such that

$$|\alpha - p/q| \leq 1/\sqrt{5}q^2$$

For $\alpha = \frac{\sqrt{5}+1}{2}$, $\sqrt{5}$ in the above inequality is best possible.

A real number α is said to be badly approximable if there exists a constant $c = c(\alpha) > 0$ such that

$$\left| \alpha - \frac{p}{q} \right| > \frac{c}{q^2}$$
, for all integers p and $q > 0$

All quadratic irrationals are badly approximable

$$W(au) := \{ lpha \in \mathbb{R} : \left| lpha - rac{p}{q}
ight| \le q^{- au} ext{ for i.m.}(p, q) \in \mathbb{Z} imes \mathbb{N} \}.$$

How big are the sets $W(\tau)$ for $\tau > 2$, **Bad** and \mathcal{L} ?

Khintchine's Theorem

An *approximating function* is a function $\psi : \mathbb{N} \to \mathbb{R}^+$ such that $\psi(r) \to 0$ as $r \to \infty$.

• $W(\psi) := \{ \alpha \in \mathbb{I} : |\alpha - p/q| < \psi(q) \text{ for i.m. } (p,q) \in \mathbb{Z} \times \mathbb{N} \}.$

Theorem (Khintchine(24, 25))

Let ψ be an approximating function. Then

$$|W(\psi)| = \begin{cases} 0 & \text{if} \quad \sum_{q=1}^{\infty} q\psi(q) < \infty \\ 1 & \text{if} \quad \sum_{q=1}^{\infty} q\psi(q) = \infty \ \psi \text{ is decreasing.} \end{cases}$$

Open Problems

• Duffin-Schaeffer Conjecture (1941). For any function $\psi \colon \mathbb{N} \mapsto \mathbb{R}^+$

$$|W(\psi) \cap \mathbb{I}| = 1$$
 if $\sum_{q=1}^{\infty} \varphi(q)\psi(q) = \infty.$

 Littlewood's Conjecture (1930). For any real α and β and any ε > 0 there are infinitely many positive integers q such that

 $\boldsymbol{q}\|\boldsymbol{q}\boldsymbol{\alpha}\|\|\boldsymbol{q}\boldsymbol{\beta}\|<\epsilon.$

Theorem (Einsiedler-Katok-Lindenstrauss 2006)

The set of exceptions to the Littlewood's conjecture has zero Hausdorff dimension.

Open Problems

Baker-Schmidt Problem (1970)

For any non-degenerate submanifold \mathcal{M} of \mathbb{R}^n ,

$$\dim(W(\tau)\cap\mathfrak{M})=\frac{n+1}{\tau+1}+\dim\mathfrak{M}-1$$

 Klienbock–Margulis (1996). Almost all points on M are not very well approximable (M is extremal).

Generalised Baker–Schmidt Problem (GBSP)

Determine Hausdorff measure for $W(\psi) \cap \mathcal{M}$, especially the convergent case.

- Beresnevich–Dickinson–Velani (2006). Divergent case of GBSP holds.
- Hussain (2015). GBSP holds for a parabola.
- *Huang, J. J.* (To appear, CRELLE). GBSP holds for any non-degenerate planar curve.
- *Badziahin–Harrap–Hussain* (preprint). Inhomogeneous GBSP holds for any non-degenerate planar curve.

Mumtaz Hussain

Non-linear Diophantine approximation

A Diophantine Problem

Let $f : \mathbb{R}^3 \to \mathbb{R}$ be periodic in each of its variables x_1, x_2 and t, with periods α, β and γ respectively. Assume also that f is a smooth function of each variable. The inhomogeneous wave equation is given by the PDE

$$\frac{\partial^2 u(\mathbf{x},t)}{\partial t^2} - \frac{\partial^2 u(\mathbf{x},t)}{\partial x_1^2} - \frac{\partial^2 u(\mathbf{x},t)}{\partial x_2^2} = f(\mathbf{x},t), \quad \mathbf{x} = (x_1,x_2) \in \mathbb{R}^2, \ t \in \mathbb{R}, \quad (2)$$

where u is a smooth, periodic solution with the same periods as f. The smoothness conditions on f are equivalent to the property that it has a Fourier series expansion of the form

$$f(\mathbf{x},t) = \sum_{(a,b,c)\in\mathbb{Z}^3} f_{a,b,c} \exp\left(2\pi i \left[\frac{a}{\alpha} x_1 + \frac{b}{\beta} x_2 + \frac{c}{\gamma} t\right]\right),$$

in which the coefficients $f_{a,b,c}$ decay faster than the reciprocal of any polynomial in (a, b, c) as max $\{|a|, |b|, |c|\}$ tends to infinity. Any smooth solution u to (2) must satisfy a similar Fourier expansion.

A Diophantine Problem

That is $u(x,t) = \sum_{(a,b,c) \in \mathbb{Z}^3} u_{a,b,c} \exp\left(2\pi i \left[\frac{a}{\alpha}x_1 + \frac{b}{\beta}x_2 + \frac{c}{\gamma}t\right]\right)$ Substituting it into (2) and comparing coefficients, we have

$$u_{a,b,c} = \frac{\gamma^2}{4\pi^2} \frac{f_{a,b,c}}{a^2 \frac{\gamma^2}{\alpha^2} + b^2 \frac{\gamma^2}{\beta^2} - c^2}$$

For *u* to be smooth it suffices to verify that

$$\left|\boldsymbol{a}^{2}\frac{\gamma^{2}}{\alpha^{2}}+\boldsymbol{b}^{2}\frac{\gamma^{2}}{\beta^{2}}-\boldsymbol{c}^{2}\right|\geq\boldsymbol{C}\max\{|\boldsymbol{a}|,|\boldsymbol{b}|\}^{-\tau},$$

for some $C > 0, \tau > 1$ for all $(a, b, c) \in \mathbb{Z}^3$ with $a \neq 0$. That means, this condition can only fail if for all $\tau > 1$ the inequality

$$\left|\boldsymbol{a}^2\frac{\gamma^2}{\alpha^2} + \boldsymbol{b}^2\frac{\gamma^2}{\beta^2} - \boldsymbol{c}^2\right| < \max\{|\boldsymbol{a}|, |\boldsymbol{b}|\}^{-\tau},$$

holds for infinitely many $(a, b, c) \in \mathbb{Z}^3$ with $a \neq 0$.

A general Diophantine problem

Consider a general differential operator

$$\frac{\partial^p}{\partial t^p} - \frac{\partial^n}{\partial x_1^n} - \frac{\partial^m}{\partial x_2^m}.$$

For any triple $(n, m, p) \in \mathbb{N}^3$ and any approximating function ψ define $W^p_{n,m}(\psi)$ to be the set of vectors $\mathbf{x} = (x_1, x_2) \in [0, 1)^2$ for which the inequality

$$|a^n x_1 + b^m x_2 - c^p| < \psi(h_{a,b})$$

holds for infinitely many $(a, b, c) \in \mathbb{N}^2 \times \mathbb{Z}_{\geq 0}$.

Here, we have assigned a natural height $h_{a,b} := \max(a^n, b^m)$ to each pair (a, b) of positive integers.

How big is $W_{n,m}^{p}(\psi)$?

How big is $Bad_{n,m}^{p}(\psi)$?

How big is $Bad_{n,m}^{p}(\psi)$?

.....an inswinger in seaming conditions...

Mumtaz Hussain

Non-linear Diophantine approximation

A Khintchine Type Theorem

Theorem (Harrap–Hussain–Kristensen, 2015)

Assume that either n = m = 1 or $gcd(n, m) \ge 2$. Then, for every approximating function ψ we have that

$$egin{aligned} & \left| \mathcal{W}^{\mathcal{P}}_{n,m}(\psi)
ight| &= egin{aligned} & 0, & \sum\limits_{(a,b)\in\,\mathbb{N}^2} rac{\psi(h_{a,b})}{h_{a,b}^{1-1/\mathcal{P}}} < \infty. \ & 1, & \sum\limits_{(a,b)\in\,\mathbb{N}^2} rac{\psi(h_{a,b})}{h_{a,b}^{1-1/\mathcal{P}}} = \infty. \end{aligned}$$

Theorem (Harrap–Hussain–Kristensen, 2015)

Let ψ be an approximating function and assume that either n = m = p = 1 or gcd $(n, m) \ge 2$. Let f be a dimension function such that $r^{-2}f(r)$ is monotonic and for notational convenience let $g : r \to r^{-1}f(r)$ be another dimension function. Then,

$$\mathcal{H}^{f}\left(\mathcal{W}^{p}_{n,m}(\psi)
ight) = egin{cases} 0, & \sum\limits_{(a,b)\in\,\mathbb{N}^{2}}\,g\left(rac{\psi(h_{a,b})}{h_{a,b}}
ight)h^{1/p}_{a,b} <\infty. \ & \mathcal{H}^{f}\left([0,1)^{2}
ight), & \sum\limits_{(a,b)\in\,\mathbb{N}^{2}}\,g\left(rac{\psi(h_{a,b})}{h_{a,b}}
ight)h^{1/p}_{a,b} =\infty. \end{cases}$$

Corollary

Assume that either n = m = p = 1 or $gcd(n, m) \ge 2$. Let $\tau > 1$, then

$$\dim_{H}\left(W_{n,m}^{p}\left(\psi:r\to r^{-\tau}\right)\right)=1+\min\left\{1,\ \frac{\frac{1}{n}+\frac{1}{m}+\frac{1}{p}}{\tau+1}\right\}.$$

It also implies for example that $\mathcal{H}^{s}(W_{n,m}^{p}(\psi:r \to r^{-\tau})) = \infty$ at the critical exponent $s = \dim_{H}(W_{n,m}^{p}(\psi:r \to r^{-\tau}))$.

Corollary

If f is smooth and periodic in x_1, x_2, t with periods α, β and γ respectively then the given PDE is solvable with u smooth and periodic with the same periods whenever $(\gamma^2/\alpha^2, \gamma^2/\beta^2)$ does not belong to

$$\bigcap_{\tau>1} W^p_{n,m}\left(\psi: \mathbf{r} \to \mathbf{r}^{-\tau}\right),\,$$

a null set of Hausdorff dimension 1.

Sketch of the proof: the convergence case

Lemma

Let Ω be an open subset of \mathbb{R}^t and let E be a Borel subset of \mathbb{R}^t . If there exist strictly positive constant r_0 such that for any ball B in Ω of radius $r(B) < r_0$ we have

$$E \cap B| \gg |B|,$$
 (3)

where the implied constant is independent of B, then E has full measure in Ω .

Lemma ((Second) Borel–Cantelli)

Let E_t be a sequence of measurable sets which are **quasi-independent** on average; that is, the sequence E_t satisfies

$$\sum_{t=1}^{\infty} |E_t| = \infty \tag{4}$$

and there exists some strictly positive constant α for which

$$\sum_{s,t=1}^{Q} |E_s \cap E_t| \leq \frac{1}{\alpha} \left(\sum_{t=1}^{Q} |E_t| \right)^2$$

for all $Q \ge 1$. Then,

$$\left|\limsup_{t\to\infty} E_t\right| \geq \alpha.$$

Estimating the measure of $\ell_{a,b} \cap B$

$$\begin{split} \left|\ell_{a,b} \cap B\right| &\asymp \quad |B| \frac{\psi(n_{a,b})}{h_{a,b}^{1-1/p}}. \end{split}$$
Thus
$$\begin{split} \sum_{(a,b) \in \mathbb{N}^2} \left|\ell_{a,b} \cap B\right| &\asymp \quad \sum_{(a,b) \in \mathbb{N}^2} |B| \frac{\psi(h_{a,b})}{h_{a,b}^{1-1/p}} = \infty. \end{split}$$

116)

(5)

Estimating the measure of $\ell_{a_1,b_1} \cap \ell_{a_2,b_2} \cap B$

0

$$\left|\ell_{a_1,b_1} \cap \ell_{a_2,b_2} \cap B\right| \asymp |B| \frac{\psi(h_1)\psi(h_2)}{h_1^{1-1/p} h_2^{1-1/p}} \cdot \left(1 + \frac{1}{rh_1^{1/p} \sin \alpha}\right).$$
(6)

We now split our calculation into three exhaustive subcases depending on the size of the angle α .

 $\sin \alpha \geq \frac{1}{rh_1^{1/p}}.$ (7) $\frac{1}{rh_1^{1/p}} \geq \sin \alpha \geq \frac{1}{r^{1+\frac{k}{M}}h_1^{\frac{k}{pN}}h_2^{\frac{1}{p}}},$ (8) $\sin \alpha < r^{-(1+\frac{k}{M})} h_1^{-\frac{k}{pN}} h_2^{-\frac{1}{p}}.$ (9)Mumtaz Hussain Non-linear Diophantine approximation August 23, 2015 20 / 22

Estimating the measure of $\ell_{a_1,b_1} \cap \ell_{a_2,b_2} \cap B$

Number Theory Down Under

18-19 September, 2015 The University of Newcastle

