Metric Diophantine approximation: solubility of inhomogeneous wave equation

Mumtaz Hussain

August 23, 2015

Introduction

- Open Problems
- Wavy Diophantine Problem

How well can a real number be approximated by rationals?

- Qualitatively: The set of rational numbers is dense, therefore for any real number *x* we can construct a sequence of rational numbers *rⁿ* such that $r_n \to x$ as $n \to \infty$.
- Quantitatively: What happens if the denominators of rational numbers are equal to some integer value *N*?

$$
0 \longrightarrow \frac{\frac{1}{2N}}{N} \frac{1}{\frac{p-1}{N} + \frac{p}{N} - \frac{p+1}{N}} \frac{1}{N}
$$

What happens if the denominators are bounded by some value *N*?

Theorem (Dirichlet 1842)

For any real number α *and any positive integer N, there exists a rational p*/*q with positive denominator q* ≤ *N, such that*

$$
\alpha-\frac{p}{q}\bigg|<\frac{1}{qN}.
$$

 $\bigg\}$ $\Big\}$ $\Big\}$ $\overline{1}$

Since $q < N$, it immediately follows that

Corollary

For any irrational α ∈ R *there exists infinitely many rationals p*/*q such that*

$$
\left|\alpha-\frac{p}{q}\right|
$$

Is it possible to do better?

Theorem (Hurwitz 1891)

For any irrational real number α *there exist infinitely many integers p and q > 0 such that* √

$$
|\alpha - p/q| \leq 1/\sqrt{5}q^2.
$$

For $\alpha = \frac{\sqrt{5}+1}{2}$, √ 5 *in the above inequality is best possible.*

A real number α *is said to be badly approximable if there exists a constant* $c = c(\alpha) > 0$ *such that*

$$
\left|\alpha - \frac{p}{q}\right| > \frac{c}{q^2}
$$
, for all integers p and $q > 0$

All quadratic irrationals are badly approximable

$$
\mathcal{W}(\tau) := \{ \alpha \in \mathbb{R} : \left| \alpha - \frac{\rho}{q} \right| \leq q^{-\tau} \text{ for } i.m.(\rho, q) \in \mathbb{Z} \times \mathbb{N} \}.
$$

How big are the sets $W(\tau)$ for $\tau > 2$, **Bad** and \mathcal{L} ?

Khintchine's Theorem

An *approximating function* is a function $\psi : \mathbb{N} \to \mathbb{R}^+$ such that $\psi(r) \to 0$ as $r \to \infty$.

• $W(\psi) := {\alpha \in \mathbb{I} : |\alpha - p/q| < \psi(q) \text{ for i.m. } (p,q) \in \mathbb{Z} \times \mathbb{N}}.$

Theorem (Khintchine(24, 25))

Let ψ *be an approximating function. Then*

$$
|W(\psi)| = \begin{cases} 0 & \text{if } \sum_{q=1}^{\infty} q\psi(q) < \infty \\ 1 & \text{if } \sum_{q=1}^{\infty} q\psi(q) = \infty \ \psi \text{ is decreasing.} \end{cases}
$$

Open Problems

Duffin-Schaeffer Conjecture (1941). *For any function* $\psi : \mathbb{N} \mapsto \mathbb{R}^+$

$$
|W(\psi) \cap \mathbb{I}| = 1 \quad \text{if} \quad \sum_{q=1}^{\infty} \varphi(q) \psi(q) = \infty.
$$

• Littlewood's Conjecture (1930). For any real α and β and any $\epsilon > 0$ there are infinitely many positive integers *q* such that

 q **a** q **k** q **c**.

Theorem (Einsiedler–Katok–Lindenstrauss 2006)

The set of exceptions to the Littlewood's conjecture has zero Hausdorff dimension.

Open Problems

Baker–Schmidt Problem (1970)

For any non-degenerate submanifold M of \mathbb{R}^n ,

$$
\dim(W(\tau) \cap \mathcal{M}) = \frac{n+1}{\tau+1} + \dim \mathcal{M} - 1
$$

● Klienbock–Margulis (1996). Almost all points on M are not very well approximable (M is extremal).

Generalised Baker–Schmidt Problem (GBSP)

Determine Hausdorff measure for W(ψ) ∩ M*, especially the convergent case.*

- Beresnevich–Dickinson–Velani (2006). Divergent case of GBSP holds.
- *Hussain* (2015). GBSP holds for a parabola.
- *Huang, J. J.* (To appear, CRELLE). GBSP holds for any non-degenerate planar curve.
- *Badziahin–Harrap–Hussain* (preprint). Inhomogeneous GBSP holds for any non-degenerate planar curve.

A Diophantine Problem

Let $f:\mathbb{R}^3\to\mathbb{R}$ be periodic in each of its variables x_1,x_2 and $t,$ with periods $\alpha,\,\beta$ and γ respectively. Assume also that *f* is a smooth function of each variable. The inhomogeneous wave equation is given by the PDE

$$
\frac{\partial^2 u(\mathbf{x},t)}{\partial t^2} - \frac{\partial^2 u(\mathbf{x},t)}{\partial x_1^2} - \frac{\partial^2 u(\mathbf{x},t)}{\partial x_2^2} = f(\mathbf{x},t), \quad \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2, t \in \mathbb{R}, \quad (2)
$$

where *u* is a smooth, periodic solution with the same periods as *f*. The smoothness conditions on *f* are equivalent to the property that it has a Fourier series expansion of the form

$$
f(\mathbf{x},t) = \sum_{(a,b,c) \in \mathbb{Z}^3} f_{a,b,c} \exp \left(2\pi i \left[\frac{a}{\alpha} x_1 + \frac{b}{\beta} x_2 + \frac{c}{\gamma} t \right] \right),
$$

in which the coefficients *fa*,*b*,*^c* decay faster than the reciprocal of any polynomial in (a, b, c) as max $\{|a|, |b|, |c|\}$ tends to infinity. Any smooth solution *u* to (2) must satisfy a similar Fourier expansion.

A Diophantine Problem

That is $u(x, t) = \sum_{(a, b, c) \in \mathbb{Z}^3} u_{a, b, c} \exp\left(2\pi i \left[\frac{a}{\alpha}x_1 + \frac{b}{\beta}x_2 + \frac{c}{\gamma}t\right]\right)$ Substituting it into (2) and comparing coefficients, we have

$$
u_{a,b,c} = \frac{\gamma^2}{4\pi^2} \frac{f_{a,b,c}}{a^2 \frac{\gamma^2}{\alpha^2} + b^2 \frac{\gamma^2}{\beta^2} - c^2}
$$

For *u* to be smooth it suffices to verify that

$$
\left|a^2\frac{\gamma^2}{\alpha^2}+b^2\frac{\gamma^2}{\beta^2}-c^2\right|\geq C\max\{|a|,|b|\}^{-\tau},
$$

for some $C > 0, \tau > 1$ for all $(a, b, c) \in \mathbb{Z}^3$ with $a \neq 0.$ That means, this condition can only fail if for all $\tau > 1$ the inequality

$$
\left|a^2\frac{\gamma^2}{\alpha^2}+b^2\frac{\gamma^2}{\beta^2}-c^2\right|<\max\{|a|,|b|\}^{-\tau},
$$

holds for infinitely many $(a, b, c) \in \mathbb{Z}^3$ with $a \neq 0$.

A general Diophantine problem

Consider a general differential operator

$$
\frac{\partial^p}{\partial t^p} - \frac{\partial^n}{\partial x_1^n} - \frac{\partial^m}{\partial x_2^m}.
$$

For any triple $(n, m, p) \in \mathbb{N}^3$ *and any approximating function* ψ *define* $W_{n,m}^p(\psi)$ *to be the set of vectors* $\mathbf{x} = (x_1, x_2) \in [0, 1)^2$ for which the inequality

$$
|a^n x_1 + b^m x_2 - c^p| < \psi(h_{a,b})
$$

holds for infinitely many $(a, b, c) \in \mathbb{N}^2 \times \mathbb{Z}_{\geq 0}$.

Here, we have assigned a natural height $h_{a,b} := \max(a^n, b^m)$ to each pair (a,b) of positive integers.

How big is $W_{n,m}^p(\psi)$?

How big is $Bad_{n,m}^p(\psi)$?

How big is $Bad_{n,m}^p(\psi)$?

..an inswinger in seaming conditions...

A Khintchine Type Theorem

Theorem (Harrap–Hussain–Kristensen, 2015)

Assume that either $n = m = 1$ *or gcd* $(n, m) \ge 2$ *. Then, for every approximating function* ψ *we have that*

$$
|W_{n,m}^p(\psi)| = \begin{cases} 0, & \sum_{(a,b)\in\mathbb{N}^2} \frac{\psi(h_{a,b})}{h_{a,b}^{1-1/p}} < \infty. \\ 1, & \sum_{(a,b)\in\mathbb{N}^2} \frac{\psi(h_{a,b})}{h_{a,b}^{1-1/p}} = \infty. \end{cases}
$$

Theorem (Harrap–Hussain–Kristensen, 2015)

Let ψ *be an approximating function and assume that either* $n = m = p = 1$ *or* gcd $(n, m) \geq 2$. Let f be a dimension function such that *r* −2 *f*(*r*) *is monotonic and for notational convenience let g* : *r* → *r* −1 *f*(*r*) *be another dimension function. Then,*

$$
\mathcal{H}^{f}(W_{n,m}^{p}(\psi)) = \begin{cases} 0, & \sum_{(a,b)\in\mathbb{N}^2} g\left(\frac{\psi(h_{a,b})}{h_{a,b}}\right) h_{a,b}^{1/p} < \infty. \\ & \mathcal{H}^{f}\left([0,1)^2\right), & \sum_{(a,b)\in\mathbb{N}^2} g\left(\frac{\psi(h_{a,b})}{h_{a,b}}\right) h_{a,b}^{1/p} = \infty. \end{cases}
$$

Corollary

Assume that either $n = m = p = 1$ *or gcd(n, m) > 2. Let* τ > 1*, then*

$$
\dim_H(W_{n,m}^p(\psi:r\to r^{-\tau}))=1+\min\left\{1,\,\frac{\frac{1}{n}+\frac{1}{m}+\frac{1}{p}}{\tau+1}\right\}.
$$

It also implies for example that $\mathcal{H}^s\left(W_{n,m}^{\rho}(\psi:r\to r^{-\tau})\right)=\infty$ at the critical $\mathsf{exponent}\; \mathcal{s} = \mathsf{dim}_{H}\left(W_{n,m}^{p}(\psi : r \to r^{-\tau})\right).$

Corollary

If f is smooth and periodic in x₁, x₂, <i>t with periods α , β and γ respectively then *the given PDE is solvable with u smooth and periodic with the same periods* whenever $(\gamma^2/\alpha^2, \gamma^2/\beta^2)$ does not belong to

$$
\bigcap_{\tau>1} W_{n,m}^p(\psi:r\to r^{-\tau}),
$$

a null set of Hausdorff dimension 1*.*

Sketch of the proof: the convergence case

Lemma

Let Ω *be an open subset of* R *^t and let E be a Borel subset of* R *t . If there exist strictly positive constant r*⁰ *such that for any ball B in* Ω *of radius* $r(B) < r_0$ *we have*

$$
|E \cap B| \gg |B|, \tag{3}
$$

where the implied constant is independent of B, then E has full measure in Ω*.*

Lemma ((Second) Borel–Cantelli)

Let E^t be a sequence of measurable sets which are quasi-independent on average; that is, the sequence E^t satisfies

$$
\sum_{t=1}^{\infty} |E_t| = \infty \tag{4}
$$

and there exists some strictly positive constant α *for which*

$$
\sum_{s,t=1}^Q |E_s \cap E_t| \leq \frac{1}{\alpha} \left(\sum_{t=1}^Q |E_t| \right)^2
$$

for all Q ≥ 1*. Then,*

$$
\left|\limsup_{t\to\infty}E_t\right|\geq\alpha.
$$

Estimating the measure of $\ell_{a,b} \cap B$

Thus

$$
|\ell_{a,b} \cap B| \geq |B| \frac{\psi(n_{a,b})}{h_{a,b}^{1-1/p}}.
$$
(5)

$$
\sum_{(a,b)\in\mathbb{N}^2} |\ell_{a,b} \cap B| \geq \sum_{(a,b)\in\mathbb{N}^2} |B| \frac{\psi(n_{a,b})}{h_{a,b}^{1-1/p}} = \infty.
$$

 \sqrt{h}

Estimating the measure of $\ell_{a_1,b_1} \cap \ell_{a_2,b_2} \cap B$

 \bullet

 \bullet

 \bullet

$$
|\ell_{a_1,b_1} \cap \ell_{a_2,b_2} \cap B| \asymp |B| \frac{\psi(h_1)\psi(h_2)}{h_1^{1-1/p} h_2^{1-1/p}} \cdot \left(1 + \frac{1}{rh_1^{1/p} \sin \alpha}\right).
$$
 (6)

We now split our calculation into three exhaustive subcases depending on the size of the angle α .

sin $\alpha \geq \frac{1}{11}$ $rh_1^{1/p}$. (7) 1 $rh_1^{1/p}$ \geq sin α \geq $\frac{1}{\alpha}$ $r^{1+\frac{k}{M}}h_1^{\frac{k}{pN}}h_2^{\frac{1}{p}}$, (8) $\sin \alpha \, <\, r^{-(1 + \frac{k}{M})} h_1^{-\frac{k}{\rho N}} h_2^{-\frac{1}{\rho}}$ (9) **Mumtaz Hussain [Non-linear Diophantine approximation](#page-0-0) August 23, 2015 20/22**

Estimating the measure of $\ell_{a_1,b_1} \cap \ell_{a_2,b_2} \cap B$

Number Theory Down Under

18-19 September, 2015 The University of Newcastle

Mumtaz Hussain [Non-linear Diophantine approximation](#page-0-0) August 23, 2015 22/22