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A Generalized Saddle Point Problem

Let V , W , P and Q be Hilbert spaces with inner products (·, ·)V , (·, ·)W , (·, ·)P and
(·, ·)Q, respectively. Let a(·, ·) : V ×W → R, b1(·, ·) : W × P → R,
b2(·, ·) : V ×Q→ R, and c(·, ·) : P ×Q→ R be bilinear forms. We consider a
non-symmetric saddle point problem with penalty: given f ∈W ′ and g ∈ Q′, find
(u, p) ∈ V × P so that

a(u,w) + b1(w, p) = f(w) , w ∈W ,

b2(u, q)− t c(p, q) = g(q) , q ∈ Q , (1)

where t is a positive small parameter, and W ′ and Q′ denote the space of continuous
linear functionals on W and Q, respectively.

1 Well-posedness of the problem (1) when t→ 0.

2 Some relevant resources are by Brezzi, Fortin, Braess, Bernardi, Ciarlet, Canuto
and Maday, etc. [BF91, Bra96, CHZ03, BCM88].
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A Generalized Saddle Point Problem: Continuity
Assumptions

To this end, we assume that the bilinear forms a(·, ·), b1(·, ·), b2(·, ·) and c(·, ·) satisfy
for v ∈ V, w ∈W, p ∈ P, q ∈ Q:

|a(v, w)| ≤ a‖v‖V ‖w‖W , |b1(w, p)| ≤ b1‖w‖W ‖p‖P ,
|b2(v, q)| ≤ b2‖v‖V ‖q‖Q , |c(p, q)| ≤ c‖p‖P ‖q‖Q.

where a, b1, b2 and c are continuity constants.
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A Generalized Saddle Point Problem: Stability
Assumptions

We define two kernel spaces UW ⊂W and UV ⊂ V as

UW := {w ∈W : b1(w, p) = 0, p ∈ P} ,
UV := {v ∈ V : b2(v, q) = 0, q ∈ Q} ,

and assume that for v ∈ UV , w ∈ UW , p ∈ P, q ∈ Q:

sup
w∈UW

a(v, w)

‖w‖W
≥ α‖v‖V , and sup

v∈UV

a(v, w) > 0

sup
w∈W

b1(w, p)

‖w‖W
≥ β1‖p‖P , and sup

v∈V

b2(v, q)

‖v‖V
≥ β2‖q‖Q ,

hold for some constants α, β1, β2 > 0, where the supremum is taken only over the
non-trivial elements of the underlying sets.
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A Generalized Saddle Point Problem: Theorem

A theorem due to Nicolaides [Nic82] and Bernardi et al. [BCM88].

Theorem

Let above assumptions be satisfied. Then for any f ∈W ′ and g ∈ Q′, there exists a
unique solution (u, p) ∈ V × P to the saddle point problem of finding (u, p) ∈ V × P
so that

a(u,w) + b1(w, p) = f(w) , w ∈W ,

b2(u, q) = g(q) , q ∈ Q , (2)

which satisfies the following stability estimates:

‖u‖V ≤ β−1
2 (1 + α−1a)‖g‖Q′ + α−1‖f‖W ′ , ‖p‖P ≤ β−1

1 (‖f‖W ′ + a‖u‖V ) . (3)
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A Generalized Saddle Point Problem: Theorem

Theorem

Let assumptions of continuity and stability be satisfied, and

δ := β−1
1 β−1

2 a(1 + α−1a)tc < 1 . (4)

Then for any f ∈ V ′ and g ∈ Q′, there exists a unique solution (u, p) ∈ V × P to the
saddle point problem (1) satisfying the following stability estimates:

‖p‖P ≤
1

1− δ
‖p̃‖P , ‖u‖V ≤ ‖ũ‖V +

β2(1 + α−1a)tc

1− δ
‖p̃‖P , (5)

where (ũ, p̃) is the solution to (2) and satisfies the bounds

‖ũ‖V ≤ β−1
2 (1 + α−1a)‖g‖Q′ + α−1‖f‖W ′ , ‖p̃‖P ≤ β−1

1 (‖f‖W ′ + a‖ũ‖V ) .
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A Generalized Saddle Point Problem: Proof

Proof:
Letting p0 = 0 ∈ P , we define a sequence {(un, pn)} for n ∈ N by

a(un+1, w) + b1(w, pn+1) = f(w) , w ∈W
b2(un+1, q) = g(q) + tc(pn, q) , q ∈ Q . (6)

The sequence is well-defined from Theorem 1, and for n ∈ N we have

a(un+1 − un, w) + b1(w, pn+1 − pn) = 0 , w ∈W
b2(un+1 − un, q) = tc(pn − pn−1, q) , q ∈ Q . (7)

Theorem 1 yields the existence and uniqueness of the solution of (7) with the
estimates

‖un+1 − un‖V ≤ β−1
2 (1 + α−1a)tc‖pn − pn−1‖P ,

‖pn+1 − pn‖P ≤ β−1
1 a‖un+1 − un‖V , (8)

and hence

‖pn+1 − pn‖P ≤ β−1
1 β−1

2 a(1 + α−1a)tc ‖pn − pn−1‖P ≤ δn‖p1‖P . (9)
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A Generalized Saddle Point Problem: Proof

Now taking n ∈ N and an integer m > n, we have

‖pm − pn‖P ≤
m−1∑
i=n

‖pi+1 − pi‖P ≤
m−1∑
i=n

δi‖p1‖P ≤
δn

1− δ
‖p1‖P , (10)

which shows that {pn} is a Cauchy sequence, and so converges to a p ∈ P .

1 The stability estimate for p is obtained by taking n = 0 in (10).

2 Using the first inequality of (8) and the estimate (9), the sequence {un} is
shown to be a Cauchy sequence, and stability estimate for u is obtained similarly
as for p.

3 The uniqueness also follows similarly.
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Standard Formulation of the Boundary Value Problem of Elasticity
Mixed Formulation

The Boundary Value Problem of Elasticity

Consider an elastic body in a bounded polyhedral domain Ω in Rd,
d ∈ {2, 3}. We want to compute the deformation and stress on the
elastic body under a body force f on Ω and a surface force gN on a
part ΓN of the boundary of Ω. The elastic body is supposed to be
fixed on a part ΓD of its boundary, where ∂Ω = ΓD ∪ ΓN . Useful in
manufacture engineering.

Measured (black) and computed (red) impact on the wall is plotted.
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Boundary Value Problem of Linear Elasticity

Let the material body be an isotropic linear elastic body. The deformation is
governed by the equilibrium equation and Saint-Venant Kirchhoff material law:

− divσ = f in Ω Momentum Balance Law (11)

σ = Cε(u) Hooke’s Constitutive Equation

σ ∈ [L2(Ω)]d×d is the Cauchy stress, ε(u) := 1
2 (∇u+ [∇u]t) is the strain

C is the Hooke’s tensor and C applied to a tensor d ∈ [L2(Ω)]d×d yields

Cd := λ(trd)1 + 2µd,

where λ and µ are Lamé constants.

The boundary conditions are: u = 0 on ΓD and σn = gN on ΓN . And n is
the outer normal vector on the boundary of Ω.
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Standard Formulation of the Boundary Value Problem of Elasticity
Mixed Formulation

Standard Weak Formulation

1 L2(Ω) is the space of square-integrable functions defined on Ω with the inner
product and norm being denoted by (·, ·)0 and ‖ · ‖0, respectively, and
L2

0(Ω) := {p ∈ L2(Ω) :
∫

Ω
p dx = 0}.

2 Let H1(Ω) = {u ∈ L2(Ω) : ∂u
∂xi
∈ L2(Ω), i = 1, · · · , d} be a Hilbert space with

norm ‖u‖H1(Ω) =
√∫

Ω
(u2 + ‖∇u‖2) dx, and

H1
D(Ω) = {u ∈ H1(Ω) : u|ΓD

= 0}.
3 We need the space of vector functions V := [H1

D(Ω)]d for displacements with
inner product (·, ·)1 and norm ‖ · ‖1 defined in the standard way; that is,

(u,v)1 :=
∑d
i=1(ui, vi)1, with the norm being induced by this inner product.
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A Mixed Formulation of Elasticity Equations

Note that for an identity matrix I and pressure p = λ divu:

Cε(u) = 2µε(u) + λ divuI = 2µε(u) + pI.

A mixed variational formulation of linear elastic problem is found by using p as an
addition unknown. Thus given ` ∈ [L2(Ω)]d, we want to find (u, p) ∈ V × L2

0(Ω)
such that

A(u,v) +B(v, p) = `(v), v ∈ V ,

B(u, q)− 1

λ
C(p, q) = 0 , q ∈ L2

0(Ω) .
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A Mixed Formulation of Elasticity Equations

A(u,v) := 2µ

∫
Ω

ε(u) : ε(v) dx

B(v, q) :=

∫
Ω

div v q dx,

C(p, q) :=

∫
Ω

p q dx,

`(v) :=

∫
Ω

f · v dx+

∫
ΓN

gN · v dσ.

Well-posedness from the standard theory of saddle point problem [BF91].
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Finite Element Space for Displacement

1 A quasi-uniform triangulation Th of the polygonal or polyhedral domain Ω, where
Th consists of simplices, either triangles or tetrahedra.

2 Sh is the standard linear finite element space defined on the triangulation Th

Sh :=
{
v ∈ H1(Ω) : v|T ∈ P1(T ), T ∈ Th

}
and Bh is the space of bubble functions

Bh :=

{
bT ∈ P3(T ) : bT |∂T

= 0, and

∫
T

bT dx > 0, T ∈ Th
}
,

3 Our finite element space for the displacement is V h = (Sh ⊕Bh)d ∩ V .
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Finite Element Space for Pressure

Let {φ1, . . . , φN} be the finite element basis of Sh. Starting with the basis of Sh, we
construct a dual space Qh spanned by the basis {µ1, . . . , µN} so that the basis
functions of Sh and Qh satisfy a condition of biorthogonality relation∫

Ω

µi φj dx = cjδij , cj 6= 0, 1 ≤ i, j ≤ N , (12)

where δij is the Kronecker symbol. The finite element trial and test spaces for
pressure are S0

h ⊂ L2
0(Ω) ∩ Sh and Q0

h ⊂ L2
0(Ω) ∩Qh.

S0
h =

{
φh ∈ Sh :

∫
Ω

φh dx = 0

}
and Q0

h =

{
qh ∈ Qh :

∫
Ω

qh dx = 0

}
.
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Finite Element Problem

1 Our finite element problem is to find (uh, ph) ∈ V h × S0
h such that

A(uh,vh) +B1(vh, ph) = `(vh) , vh ∈ V h ,

B2(uh, qh)− 1

λ
C(ph, qh) = 0 , qh ∈ Q0

h. (13)

2 With the choice of a biorthogonal system Sh and Qh the matrix associated with
the bilinear form C(·, ·) is diagonal. Note that C(φi, µj) = δij .
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Finite Element Method

We show the existence and uniqueness of the solution of the mixed formulation (16)
using Theorem 2.

1 Continuity A(·, ·) on V h × V h, of B1(·, ·) on V h × S0
h, and B2(·, ·) on

V h ×Q0
h and of C(·, ·) on S0

h ×Q0
h are continuous.

2 Coercivity By using the Korn’s inequality the ellipticity of the bilinear form
A(·, ·) holds on V h × V h.

3 Inf-sup condition There exists a constant β1 > 0 and β2 > 0 independent of
the mesh-size such that

sup
vh∈V h

B1(vh, µh)

‖vh‖1
≥ β‖µh‖0 , µh ∈ S0

h (14)

sup
vh∈V h

B2(vh, qh)

‖vh‖1
≥ β‖qh‖0 , qh ∈ Q0

h. (15)
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Finite Element Method

The following theorem holds [Nic82, BCM88, BF91, Bra01].

Theorem

The discrete problem (16) has exactly one solution (uh, ph) ∈ V h × S0
h, and there exists a

constant c independent of Lamé parameter λ such that

‖uh‖1 + ‖ph‖0 ≤ c‖f‖0 .

Furthermore, if (u, p) is the solution to the problem (12), we have the following error
estimate uniform with respect to λ:

‖u − uh‖1 + ‖p − ph‖0 ≤ c1 inf
vh∈V h

‖u − vh‖1 + c2 inf
qh∈S0

h

‖p − qh‖0 ,

where the constants c1 and c2 are independent of the mesh-size.

Using the standard approximation properties of the spaces V h and S0
h, we see that the

approximation to the displacement converges to the exact solution with O(h) in H1-norm.
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Finite Element Method: Getting rid of bubble functions

1 If we do not include the bubble functions, the inf-sup conditions for bilinear
forms B1(·, ·) and B2(·, ·) do not hold.

2 In this case the saddle point problem is modified as

A(uh,vh) +B1(vh, ph) = `(vh) , vh ∈ V h ,

B2(uh, qh)− g(ph, qh) = 0 , qh ∈ Q0
h, (16)

where g(ph, qh) = 1
λC(ph, qh)−G(ph, qh).

3 We need to choose G(ph, qh) appropriately to stabilise the system.
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Finite Element Method: Getting rid of bubble functions

1 One example of G(ph, qh) is

G(ph, qh) = G(ph −Πhph, qh −Πhqh),

where Πh is a suitable projection operator. [Bochev, Dohrman and Gunzburger
2006].

2 Now we need a g-biorthogonal system defined as

g(φi, µj) = − 1

λ
C(φi, µj) +G(φi, µj) = cjδij

to get a diagonal matrix as before. [L’ 2014].
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Numerical Results

Cook’s membrane problem with initial triangulation (left) and the vertical tip
displacement versus number of elements per edge
Note: Hu-Washizu and standard-quad are computed on quadrilateral mesh with the
equal number of nodes.
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Numerical Results

Nearly incompressible cylindrical (Mooney-Rivlin) shell under bending force

A nearly incompressible (neo-Hookean) torus under compression
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