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Abstract

I will discuss three different recent results in fixed point and Banach space
theory. Aspects of each were strongly influenced by Brailey’s life and career as
an extremely fine person, mathematician, teacher and mentor.

Parts (1), (2) and (3) were all partially inspired by Brailey’s wonderful seminar
series at Kent State University in 1986, entitled: “The Existence Question for
Fixed Points of Nonexpansive Maps.” As a new Ph.D. student at KSU, meet-
ing and interacting with Brailey during my first year was one of the highlights
of my Ph.D. studies - and my life, both generally and mathematically.

Further, my interest in characterizing the fixed point property in c0, which
led in part to Item (3), was initiated by a paper of Enrique Llorens-Fuster and
Brailey: “The fixed point property in c0”, Canadian Mathematical Bulletin
41(4) (1998), 413-422.

1. Part (1): Introduction

In 1965, Browder [B1] proved: [♠] [For every closed,
bounded, convex (non-empty) subset C of a Hilbert
space (X, ‖·‖), for all nonexpansive mappings T : C → C
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[i.e., ‖Tx−Ty‖ ≤ ‖x− y‖, for all x, y ∈ C], T has a fixed
fixed point in C.] Soon after, also in 1965, Browder
[B2] and Göhde [G] (independently) generalized the re-
sult [♠] to uniformly convex Banach spaces (X, ‖ · ‖);
e.g., X = Lp, 1 < p <∞, with its usual norm ‖ · ‖p.
Later in 1965, Kirk [K] further generalized [♠] to

all reflexive Banach spaces X with normal structure:
those spaces such that all non-trivial closed, bounded,
convex sets C have a smaller radius than diameter.
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Spaces (X, ‖ · ‖) with the property of Browder [♠] be-
came known as spaces with the “fixed point property
for nonexpansive mappings” (FPP (n.e.)).
Concerning Kirk’s theorem, we may ask what fur-

ther generalizations are possible? After 50 years, it
remains an open question as to whether or not ev-
ery reflexive Banach space (X, ‖ ·‖) has the fixed point
property for nonexpansive maps.
Recently (in 2009), Domı́nguez Benavides [5] proved

the following intriguing result: [Given a reflexive Ba-
nach space (X, ‖ · ‖), there exists an equivalent norm
‖ · ‖∼ on X such that (X, ‖ · ‖∼) has the fixed point
property for nonexpansive mappings]. This improves
a theorem of van Dulst [8] for separable reflexive Ba-
nach spaces.
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In contrast to this result, the non-reflexive Banach
space (`1, ‖ · ‖1), the space of all absolutely summable
sequences, with the absolute sum norm ‖ · ‖1, fails the
fixed point property for nonexpansive mappings. E.g.,
let C := {(tn)n∈N : each tn ≥ 0 and

∑∞
n=1 tn = 1}. This

is a closed, bounded, convex subset of `1. Let
T : C → C be the right shift map on C; i.e.,

T (t1, t2, t3, . . . ) := (0, t1, t2, t3, . . . ) .

T is clearly ‖·‖1-nonexpansive (being an isometry) and
fixed point free on C.
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Recently (in 2008), in another significant develop-
ment, Lin [13] provided the first example of a non-
reflexive Banach space (X, ‖ · ‖) with the fixed point
property for nonexpansive mappings. Lin verified this
fact for (`1, ‖ · ‖1) with the equivalent norm ‖| · ‖| given
by

‖|x‖| = sup
k∈N

8k

1 + 8k

∞∑
n=k

|xn|, for all x = (xn)n∈N ∈ `1 .
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What about (c0, ‖ · ‖∞), the Banach space of real-
valued sequences that converge to zero, with the ab-
solute supremum norm ‖ · ‖∞? This is another non-
reflexive Banach space of great importance in Banach
space theory. It also fails the fixed point property for
nonexpansive mappings. E.g., let

C := {(tn)n∈N : each tn ≥ 0, 1 = t1 ≥ t2 ≥ · · · ≥ tn ≥ tn+1

−→ 0, as n→∞} .

Let U : C → C be the natural right shift map.

U(t1, t2, t3, . . . ) := (1, t1, t2, t3, . . . ) .

Then U is a ‖ · ‖∞-nonexpansive (isometric, actually)
map with no fixed points in the closed bounded convex
set C.
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It is natural to ask whether there is a c0-analogue of
Lin’s theorem about `1. It remains an open question
as to whether or not there exists an equivalent norm
‖ · ‖∼ on (c0, ‖ · ‖∞) such that (c0, ‖ · ‖∼) has the fixed
point property for nonexpansive mappings. However,
if we weaken the nonexpansive condition to “asymp-
totically nonexpansive”, then the answer is “no”. In
2000, Dowling, Lennard and Turett [7] showed that for
every equivalent renorming ‖|·‖| of (c0, ‖·‖∞), there ex-
ists a closed, bounded, convex set C and an asymptot-
ically nonexpansive mapping T : C → C [i.e., there ex-
ists a sequence (kn)n∈N in [1,∞) such that kn −→

n
1, and

for all n ∈ N, for all x, y ∈ C, ‖|Tnx−Tny‖| ≤ kn‖|x−y‖|]
such that T has no fixed point.
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In contrast to this, note that in 1972, Goebel and
Kirk [9] proved that for all uniformly convex spaces
(X, ‖ · ‖), for every closed, bounded, convex set C ⊆ X,
for all eventually asymptotically nonexpansive maps
T : C → C, T has a fixed point in C.
In a recent paper of Lennard and Nezir [12] (Non-

linear Analysis 95 (2014), 414-420), using the above-
described theorem of Domı́nguez Benavides and the
Strong James’ Distortion Theorems, we proved that
if a Banach space is a Banach lattice, or has an un-
conditional basis, or is a symmetrically normed ideal
of operators on an infinite-dimensional Hilbert space,
then it is reflexive if and only if it has an equivalent
norm that has the fixed point property for cascading
nonexpansive mappings (see Definition 2.1).
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This new class of mappings strictly includes nonex-
pansive mappings. Cascading nonexpansive mappings are
analogous to asymptotically nonexpansive mappings, but
examples show that neither of these two classes of
mappings contain the other. One of these examples
is due to  Lukasz Piasecki. He invented an asymptoti-
cally nonexpansive map that is not cascading nonex-
pansive. This example will be described in the paper
currently being prepared by Lennard, Nezir and Pi-
asecki [LNP].
Note that via Lin’s example (described above) of

an equivalent renorming ‖| · ‖| of (`1, ‖ · ‖1) such that
(`1, ‖|·‖|) has the fixed point property for nonexpansive
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mappings, in our theorem one cannot replace “cascad-
ing nonexpansive mappings” by “nonexpansive map-
pings”.
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2. Reflexivity iff the perturbed cascading
nonexpansive FPP in Banach lattices

Let C be a closed bounded convex subset of a Banach
space (X, ‖ · ‖). Let T : C −→ C be a mapping. Let
C0 := C and

C1 := co
(
T (C)

)
⊆ C .

Clearly C1 is a closed bounded convex set in C. Let
x ∈ C1. Then

Tx ∈ T (C1) ⊆ T (C) ⊆ co (T (C)) = C1 .

So, T maps C1 into C1. Inductively, for all n ∈ N we
define

Cn := co
(
T (Cn−1)

)
⊆ Cn−1 .

Similarly to above, it follows that T maps Cn into Cn.
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Definition 2.1. Let (X, ‖ · ‖) be a Banach space and C be a
closed bounded convex subset of X . Let T : C −→ C be a
mapping and (Cn)n∈N be defined as above. We say that T is
cascading nonexpansive if there exists a sequence (λn)n∈N in
[1,∞) such that λn −→

n
1, and for all n ∈ N, for all x, y ∈ Cn,

‖Tx− Ty‖ ≤ λn ‖x− y‖ .

Note that every cascading nonexpansive mapping is
norm-to-norm continuous; and every nonexpansive map
is cascading nonexpansive.

13



Cascading nonexpansive mappings arise naturally in
Banach spaces (X, ‖ · ‖) that contain an isomorphic
copy of `1 or c0. Examples of such spaces are Ba-
nach spaces isomorphic to a nonreflexive Banach lat-
tice, and nonreflexive Banach spaces with an uncon-
ditional basis. (See, for example, Lindenstrauss and
Tzafriri [15] 1.c.5 and [14] 1.c.12.) Another class of
such spaces are Banach spaces isomorphic to a nonre-
flexive symmetrically normed ideal of operators on an
infinite-dimensional Hilbert space. (See Peter Dodds
and Lennard [4].)

Theorem 2.2. Let (X, ‖ · ‖) be a Banach space that contains
an isomorphic copy of `1 or c0. Then there exists a closed
bounded convex set C ⊆ X and an affine cascading nonexpan-
sive mapping T : C −→ C such that T is fixed point free.
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The proof uses the Strong James’ Distortion Theo-
rem for `1 and c0 ([6], [7]).
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Theorem 2.3. Let (X, ‖ · ‖) be a reflexive Banach space. Then
there exists an equivalent norm ‖·‖∼ on X such that for every
closed bounded convex subset C of X, for all ‖ · ‖∼-cascading
nonexpansive mappings T : C −→ C, T has a fixed point in
C.

Proof. By Domı́nguez Benavides [5], there exists an equivalent
norm ‖ · ‖∼ on X such that for every closed bounded convex sub-
set E of X , for all ‖ · ‖∼-nonexpansive mappings U : E −→ E,
U has a fixed point in E. Fix an arbitrary closed bounded convex
subset C of X . Let T : C −→ C be a ‖ · ‖∼-cascading nonexpan-
sive mapping. As above, let C0 := C and Cn := co

(
T (Cn−1)

)
,

for all n ∈ N. By hypothesis there exists a sequence (λn)n∈N in
[1,∞) such that λn −→

n
1, and for all n ∈ N, for all x, y ∈ Cn,

‖Tx− Ty‖∼ ≤ λn ‖x− y‖∼.
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Now X is reflexive, and so C is weakly compact. By Zorn’s
Lemma there exists a closed bounded convex (non-empty) setD ⊆
C such that D is a minimal invariant set for T . I.e., T (D) ⊆ D,
and if F is a closed bounded convex (non-empty) subset of D with
T (F ) ⊆ F , then F = D. It follows that co

(
T (D)

)
= D. Let

D0 := D and Dn := co
(
T (Dn−1)

)
, for all n ∈ N. Inductively,

we see that for all n ∈ N, D = Dn ⊆ Cn. Therefore, by our
hypotheses on T , for all x, y ∈ D, for all n ∈ N,

‖Tx− Ty‖∼ ≤ λn ‖x− y‖∼ .

But λn −→
n

1. Consequently, for all x, y ∈ D,

‖Tx− Ty‖∼ ≤ ‖x− y‖∼ ;

i.e., T is ‖ · ‖∼-nonexpansive on D. By Domı́nguez Benavides [5],
T has a fixed point in D ⊆ C. �
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Combining Theorem 2.2, the remarks preceding that
theorem, and Theorem 2.3, we get the following “fixed
point property” characterization of reflexivity in Ba-
nach lattices, Banach spaces with an unconditional
basis, and symmetrically normed ideals of operators
on an infinite-dimensional Hilbert space.

Theorem 2.4. [Lennard and Nezir [12]] Let (X, ‖ · ‖) be a
Banach lattice, or a Banach space with an unconditional basis,
or a symmetrically normed ideal of operators on an infinite-
dimensional Hilbert space. Then the following are equivalent.

(1) X is reflexive.

(2) There exists an equivalent norm ‖ · ‖∼ on X such that
for all closed bounded convex sets C ⊆ X and for all ‖ · ‖∼-
cascading nonexpansive mappings T : C −→ C, T has a fixed
point in C.
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3. The FPP in general B-spaces and mappings of
cascading nonexpansive type

Definition 3.1. Let (X, ‖ · ‖) be a Banach space and C be a
closed bounded convex subset of X . Let T : C −→ C be a
mapping and (Cn)n∈N0

be defined as above. We say that T is
of cascading nonexpansive type if T is norm-to-norm continuous
and

limsup
m−→∞

sup
x∈Cm

limsup
µ−→∞

sup
z∈Cµ

[
‖Tx− Tz‖ − ‖x− z‖

]
≤ 0 .

Note that every nonexpansive map is cascading nonexpan-
sive, every cascading nonexpansive mapping is of cascading
nonexpansive type, and every mapping of cascading nonex-
pansive type is norm-to-norm continuous.
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Remark 3.2. There exists a mapping of cascading nonexpansive
type that is not cascading nonexpansive.

4. Reflexivity iff the perturbed FPP for mappings
of cascading nonexpansive type

Theorem 4.1 (Lennard, Nezir, Piasecki, in preparation). Let
(X, ‖ · ‖) be a Banach space. Then the following are equiva-
lent.

(1) X is reflexive.

(2) There exists an equivalent norm ‖ · ‖∼ on X such that for
all closed bounded convex sets C ⊆ X and for all mappings
T : C −→ C of ‖ · ‖∼-cascading nonexpansive type, T has a
fixed point in C.
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5. Part (2) of my talk

In the recent paper of Burns, Lennard and Sivek
(Studia Mathematica 223(3) (2014), 275-283), we prove
the existence of a contractive and fixed point free
mapping on a weakly compact convex subset of the
Banach space L1[0, 1] (with its usual norm), which an-
swers a long-standing open question. This work con-
stitutes part of the doctoral dissertation of the third
author [Siv].
In 1965 Kirk [K] proved that every nonexpansive map-

ping U on a weakly compact convex subset C of a Ba-
nach space X with normal structure has a fixed point,
extending the analogous results of Browder [B1, B2]
and Göhde [G] for uniformly convex spaces.
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For a long time it was unknown if every nonexpansive
mapping U on a weakly compact convex subset C of
a Banach space X has a fixed point. In 1981 Alspach
[A] settled this open question by inventing the first
example of a nonexpansive mapping T on a weakly
compact convex C in a Banach space X for which T
is fixed point free. Alspach’s mapping is an isometry,
and X = L1[0, 1], with its usual norm. Soon after, Sine
[Si] and Schechtman [Sc] invented more of these inter-
esting fixed point free isometries T (again on a weakly
compact convex C ⊆ X = an L1-space, with its usual
norm).
It is easy to check that for Alspach’s mapping T ,
S := (I + T )/2 is another nonexpansive fixed point free
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map on C. Moreover, S contracts the distance be-
tween some pairs of unequal points and preserves the
distance between other such pairs. Further, this fact
is true for S when T is Sine’s map. We thank Brailey
Sims for pointing out to us that this is also true for S
when T is any one of Schechtman’s mappings.
The question as to whether there exists a contractive

mapping U (i.e., U contracts the distances between
all pairs of unequal points) that is fixed point free on
a weakly compact convex subset of a Banach space
was still open. This question remained open until the
authors recently resolved it (see Theorem 5.1 below).
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We now describe this solution. First, we define the
set

C1/2 =

{
f : [0, 1]→ [0, 1] : f ∈ L1[0, 1] and

∫ 1

0
f =

1

2

}
.

This set is a weakly compact convex subset of the
Lebesgue function space L1[0, 1], with its usual norm
‖ · ‖1. For the rest of Part (2) of this talk, T will stand
for Alspach’s map as defined in [A].
Alspach’s mapping T is given by: for all integrable

functions f : [0, 1] −→ [0, 1],

(Tf )(x) =

{
2f (2x) ∧ 1 , 0 ≤ x < 1

2
(2f (2x− 1) ∨ 1)− 1 , 1

2 ≤ x < 1.

Here, for all α, β ∈ R, α ∧ β := min{α, β} and α ∨ β :=
max{α, β}.
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Alspach’s map preserves areas in the sense that ‖Tf−
Tg‖1 = ‖f − g‖1 for all integrable functions f, g : [0, 1]→
[0, 1]. In particular T : C1/2 −→ C1/2. This and other
facts about Alspach’s mapping were discussed in Alspach
[A]; and also in, for example, Day and Lennard [DL]
(where the minimal invariant sets of T are character-
ized). In the above-mentioned paper of Burns, Lennard
and Sivek, we proved the following theorem.

Theorem 5.1. The mapping

R : C1/2→ C1/2 : f 7→
∞∑
n=0

Tnf

2n+1
=

(
I

2
+
T

4
+
T 2

8
+ · · ·

)
(f )

is contractive [i.e., ‖Rf − Rg‖1 < ‖f − g‖1, for all f 6= g in
C1/2] and fixed point free on C1/2.
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6. Part(3) of my talk: Introduction.

Recently, T. Gallagher, C. Lennard and R. Popescu
(J. Mathematical Analysis and Applications 431 (2015),
471-481) showed that there exists a non-weakly com-
pact, closed, bounded, convex (c.b.c.) subset W of the
Banach space of convergent scalar sequences (c, ‖·‖∞),
such that every nonexpansive mapping T : W −→ W
has a fixed point. This answers a question left open
in the 2003 and 2004 papers of Dowling, Lennard and
Turett [DLT1], [DLT2].
Consider the related Banach space of all scalar se-

quences that converge to zero, (c0, ‖ · ‖∞). In [DLT2]
Theorem 1, the authors show that for a c.b.c. subset
K of (c0, ‖ · ‖∞) to be weakly compact, it is sufficient
for every nonexpansive mapping U : K −→ K to have
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a fixed point. Earlier, Maurey [Maur] had shown that
this condition is also necessary; and consequently it
characterizes weak compactness among the c.b.c. sub-
sets of (c0, ‖ · ‖∞).
In [DLT1] Theorem 4, the authors prove the following

preliminary theorem: [Every non-weakly compact, closed,
bounded, convex subset K of (c0, ‖ · ‖∞) contains a further
subset C of the same type for which there exists a nonexpan-
sive mapping V : C −→ C that is fixed point free]. In [DLT1]
Corollary 7, they proved the analogous result in the
space (c, ‖·‖∞): [Every non-weakly compact, closed, bounded,
convex subset K of (c, ‖ · ‖∞) contains a further subset C of
the same type for which there exists a nonexpansive mapping
V : C −→ C that is fixed point free]. It was left open as to
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whether this result could be extended to: (‡) [On ev-
ery non-weakly compact, closed, bounded, convex subset K of
(c, ‖ · ‖∞) there exists a nonexpansive mapping U : K −→ K
that is fixed point free]. That the analogous strengthen-
ing is true in (c0, ‖ · ‖∞) was established in [DLT2], as
mentioned above.
The main purpose of the above-mentioned paper is

to show via appropriate examples that statement (‡) is
false. (See Theorem 8.1, and many other examples in
our paper...) These are also the first examples of non-
weakly compact, closed, bounded, convex subsets D
of a Banach space X isomorphic to c0, such that D has
the fixed point property for nonexpansive mappings.
It is an interesting related fact, proven by Maurey

[Maur] (also see Borwein and Sims [Borw-Sims]), that the
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analogue of Maurey’s theorem in c0 is true in (c, ‖·‖∞):
[For all weakly compact, convex subsets E of (c, ‖ · ‖∞), every
nonexpansive mapping T : E −→ E has a fixed point].
In Section 9 we use Theorem 8.1 and the fact that

(c, ‖·‖∞) is isomorphic to (c0, ‖·‖∞), to define an equiv-
alent norm ‖·‖∼ on c0 for which there exist non-weakly
compact c.b.c. subsets that have the fixed point prop-
erty (FPP) for ‖ · ‖∼-nonexpansive mappings. (See
Theorem 9.1.)
Finally, as we remarked above, Lin [Lin] proved that

for a certain equivalent norm ‖| · ‖| on `1, every c.b.c.
subset C of `1 has the FPP. Whether an analogous such
equivalent norm exists on c (or equivalently, c0) re-
mains an open question.
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7. Part (3): Preliminaries.

The Banach space of all bounded sequences (`∞, ‖·‖∞)
is given by

`∞ :=

{
x = (xn)n∈N : xn ∈ R , and ‖x‖∞ := sup

n∈N
|xn| <∞

}
.

The Banach space of all convergent sequences (c, ‖·‖∞)
is defined by

c :=
{
x = (xn)n∈N : xn ∈ R , and λ(x) := lim

n−→∞
xn exists in R

}
.

Moreover, the Banach space of all convergent to zero
sequences
(c0, ‖ · ‖∞) is defined by

c0 :=
{
x = (xn)n∈N : each xn ∈ R , and lim

n−→∞
xn = 0

}
.
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Clearly, each of the above Banach spaces contains the
next as a proper closed subspace. We also define c+

0 :=
{x ∈ c0 : each xj ≥ 0}.
Following Aronszajn and Panitchpakdi [AP] Defini-

tion 1, p. 410 (also see, for example, Goebel and
Kirk [Goeb-Kirk] Definition 4.4, pp. 46-47), we say that
a metric space (M,ρ) is hyperconvex if for all families(
B(xa; ra)

)
a∈A of closed balls in M for which

ρ(xa, xb) ≤ ra + rb , for all a, b ∈ A ,

it follows that ⋂
a∈A

B(xa; ra) 6= ∅ .

Examples of hyperconvex metric spaces include the
real line with its usual metric, (R, d|·|); (Rn, d‖·‖∞), for
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all n ∈ N; and (`∞, d‖·‖∞). Also, all closed balls and order

intervals in these metric spaces are hyperconvex (see,
for example, [Goeb-Kirk], p. 47 and p. 49).

We will use the following interesting theorem of Soardi
[Soardi]. (Also see, for example, [Goeb-Kirk] p. 48.)

Theorem 7.1 (Soardi, 1979). Let (M,ρ) be a bounded, hy-
perconvex metric space. Then every nonexpansive mapping
T : M −→M has a fixed point.

We will also use the interesting characterization the-
orem below that is a corollary of Aronszajn and Pan-
itchpakdi [AP] Theorem 9, p. 423. (Also see, for ex-
ample, Esṕınola and Khamsi [Kirk-Sims] Corollary 4.8,
p. 401.) A mapping R from a metric space (M,ρ) into
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a metric subspace S is called a retraction of M onto S,
if R is continuous on M and R(s) = s, for all s ∈ S.

Theorem 7.2 (Aronszajn and Panitchpakdi, 1956). Let (H, d)
be a metric space. Then the following are equivalent.
(1) H is hyperconvex.
(2) There exists a hyperconvex metric space (M,ρ) such that
H ⊆ M and ρ|H×H = d, and a nonexpansive retraction R of
M onto H.

8. A non-weakly compact c.b.c. subset of c with
the fixed point property.

Theorem 8.1. There exists a non-weakly compact, closed,
bounded, convex subset W of the Banach space (c, ‖ ·‖∞) such
that every nonexpansive mapping T : W −→ W has a fixed
point.
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Proof. Let us define

W := {y = (yn)n∈N ∈ `∞ : 1 ≥ y1 ≥ y2 ≥ y3 ≥ · · · ≥ 0} .
Clearly, by the monotone convergence theorem, W is a subset of
c. It is easy to check that W is a closed, bounded, convex subset
of (c, ‖ · ‖∞). That W is not weakly compact may be seen by
using the criterion for weak convergence of sequences in c given in
Banach [Ban] Chapter IX, p. 83.
We will show that the metric space (W,d‖·‖∞) is hyperconvex.

The theorem will then follow from Soardi’s Theorem [Soardi] (see
Theorem 7.1 above).
Let 0 := (0, 0, 0, . . . , 0, . . . ) and 1 := (1, 1, 1, . . . , 1, . . . ). Con-

sider the order interval L := [[0,1]] := {u = (un)n∈N : 0 ≤
un ≤ 1 , for alln ∈ N}. Then (L, d‖·‖∞) is a hyperconvex metric

space. (See, for example, [Goeb-Kirk] Remark 4.1, p. 49.) Also
note that W is a subset of L.
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We define the mapping S : L −→ W by

S(y) := (y1, y1∧y2, y1∧y2∧y3, . . . ) , for all y = (yj)j∈N ∈ L .

The map S is clearly a retraction of L onto W . Moreover, it is
easy to check that

‖S(x)− S(y)‖∞ ≤ ‖x− y‖∞ , for all x, y ∈ L .

Thus, S is a nonexpansive retraction of the hyperconvex metric
space L onto W . Hence (W,d‖·‖∞) is hyperconvex, and so has
the the fixed point property for nonexpansive mappings. �

9. An equivalent norm on c0 s.t. some non-weakly
compact, c.b.c. sets have the fixed point

property.
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We define the equivalent norm ‖ · ‖∼ on c0 by the
formula

‖β‖∼ := max
k∈N
|βk+1 + β1| , for all β = (βj)j∈N ∈ c0 .

We further define the non-weakly compact, closed,
bounded, convex subset K of c0 by

K :=
{
α = (α1, α2, . . . , αj, . . . ) ∈ c+

0 :

α1 + α2 ≤ 1 and α2 ≥ α3 ≥ α4 ≥ . . .
}
.

Theorem 9.1. The non-weakly compact, closed, bounded, con-
vex subset K of c0 has the fixed point property for ‖ · ‖∼-
nonexpansive mappings.

Thank you !
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Proof. Consider the one-to-one continuous linear mapping U :
c −→ c0 given by

U : u = (u1, u2, u3, . . . ) 7→ (λ(u), u1−λ(u), u2−λ(u), u3−λ(u), . . . ) .

The map U is clearly onto and the inverse mapping U−1 : c0 −→
c is given by

U−1 : β = (β1, β2, β3, . . . ) 7→ (β2 + β1, β3 + β1, β4 + β1, . . . ) .

Clearly, U is a linear isomorphism of (c, ‖ · ‖∞) onto (c0, ‖ · ‖∞).
Moreover, by its construction, U is a linear isometric isomorphism
of
(c, ‖ · ‖∞) onto (c0, ‖ · ‖∼). Recall that the following non-weakly
compact, closed, bounded, convex subset of (c, ‖ · ‖∞) has the
fixed point property for nonexpansive mappings:

W := {y = (yn)n∈N ∈ `∞ : 1 ≥ y1 ≥ y2 ≥ y3 ≥ · · · ≥ 0} .
It is easy to check that U(W ) = K. �

37



Thank you again !

References
1. D. E. Alspach, A fixed point free nonexpansive map, Proceedings of the American Mathematical Society 82 (1981), no. 3, 423–424.
2. F.E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), no. 6, 1272–1276.
3. , Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), no. 4, 1041–1044.
4. P.G. Dodds and C.J. Lennard, Normality in trace ideals, J. Operator Theory 16 (1986), 127–145.
5. T. Domı́nguez Benavides, A renorming of some nonseparable Banach spaces with the Fixed Point Property, J. Math. Anal. Appl. 350 (2009),

no. 2, 525–530.
6. P.N. Dowling, W.B. Johnson, C.J. Lennard, and B. Turett, The optimality of James’s distortion theorems, Proc. Amer. Math. Soc. 125 (1997),

no. 1, 167–174.
7. P.N. Dowling, C.J. Lennard, and B. Turett, Some fixed point results in l1 and c0, Nonlinear Analysis 39 (2000), 929–936.
8. D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. 25 (1982), no. 2, 139–144.
9. K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171–174.
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