Extraordinary transmission, symmetry and the Blaschke Product

Michael Meylan^a, Mahmood-ul- Hassan^b, and Amna Bashirb

School of Mathematical and Physical Sciences, The University of Newcastle^a and Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan^b

 Ω

正々 メラメ

Extraordinary optical transmission

Extraordinary optical transmission (EOT) is the phenomenon of greatly enhanced transmission of light. It goes back to Ebbesen, et. al. ''Extraordinary optical transmisison through sub-wavelength hole arrays," Nature 391 (1998), 667. It is thought to be caused by surface plasmons.

Figure: Schematic of Extraordinary optical transmission

 Ω

イロト イ母 トイヨ トイヨト

Extraordinary acoustic transmission

Extraordinary acoustic transmission is the acoustic analogy of extraordinary optical transmission.

Figure: Schematic of Extraordinary acoustic transmission from Crow et. al. AIP Advances 5, 027114 (2015)

This figure from Crow et. al. shows the key results of the experiment

Figure: Figure 6 from Crow et. al.

4 D F

4 何 ▶

÷ Meylan (Newcastle) **[Extraordinary transmission](#page-0-0)** Sims, August 2015 4 / 17

 QQ

Symmetry

We want to explain this extraordinary transmission and to give conditions for it to exist. Symmetry plays a key role. We assume we have one mode of propagation and that the problem is symmetric.

We can decompose the problem into the following two subproblems.

Figure: Symmetric and antisymme[tric](#page-4-0) [pr](#page-6-0)[o](#page-4-0)[ble](#page-5-0)[m](#page-6-0)

If we compare the three problems

Figure: It follows that $R = \frac{1}{2} (R_s + R_a)$ and $T = \frac{1}{2} (R_s - R_a)$

Meylan (Newcastle) [Extraordinary transmission](#page-0-0) Sims, August 2015 7 / 17

Ξ

KOX KOP K K E K K E K

 4990

Decomposition of the Reflection

The reflection coefficients R_s and R_a are analytic functions of the frequency k. For a wave guide they are meromorphic with poles in the lower half plane.

We know that, from conservation of energy

$$
|R_{s}(k)|=|R_{a}(k)|=1, k \in \mathbb{R}
$$

We can then conclude that R_{s} is basically a Blaschke Product

$$
R_{s}(k) = e^{if(k)} \prod_{i} \left(\frac{k - \overline{a_{m}}}{k - a_{m}} \right)
$$

where $f(k)$ takes real values for real k.

 Ω

→ 何 ト → ヨ ト → ヨ ト

Blaschke Product

$$
R_{\mathsf{s}}(k) = \mathrm{e}^{\mathrm{i} f(k)} \prod_{i} \left(\frac{k - \overline{a_m}}{k - a_m} \right)
$$

- \bullet The values a_m are the points where the analytic extension of the scattering matrix is singular .
- \bullet The a_m are known as resonances.
- They are the points where the resolvent is singular and they are almost eigenvalues.
- Without symmetry the scattering matrix has dimension two and we cannot apply this decomposition.

4 D F

79 N Y Y

 Ω

Resonances and Helmholtz Resonators

- A Helmholtz resonator is a physical object a bottle which you blow over for example.
- Mathematically we have perturbed the eigenvalues which have become resonances.
- Resonances and eigenvalues are not the same thing. For example the mode associated with a resonances grows with distance away.

 Ω

From the Blaschke Product to Extraordinary Transmission

The form of the transmission is

$$
T=\frac{1}{2}\left(R_s-R_a\right)
$$

and we know that

$$
|R_{s}(k)|=|R_{s}(k)|=1, k\in\mathbb{R}
$$

and

$$
R_{\rm s}(k) = e^{{\rm i}f(k)} \prod_i \left(\frac{k - \overline{a_m}}{k - a_m} \right)
$$

Therefore near a_m there is a change of phase of 2π . This in turn implies somewhere near a_m , $|T| = 1$. We are assuming that $f(k)$ is slowly varying.

 QQQ

→ 何 ト → ヨ ト → ヨ ト

Example Calculations

The governing equation is

 $\nabla^2 \phi(x, y) + k^2 \phi(x, y) = 0$

Figure: Our geometry

Example Calculations

The solutions is found by mode matching

$$
\phi(x,y) = \sum_{n=1}^{\infty} A_n^{(s)} e^{-i\tilde{\alpha}_n(x+l)} \psi_n(y) + e^{i\tilde{\alpha}_1(x+l)} \psi_1(y)
$$

where

$$
\alpha_n = \frac{(n-1)\pi}{2b}, \qquad \bar{\alpha}_n = \sqrt{(k^2 - \alpha_n^2)},
$$

and

$$
\psi_n(y) = \begin{cases} \sqrt{\frac{1}{b}} \cos \alpha_n (y - b), & n \neq 1, \\ \sqrt{\frac{1}{2b}}, & n = 1, \end{cases}
$$

重

 299

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

There are two challenges to this solution method.

 \bullet How to find the analytic extension of the solution for complex k ?

2 How to find the singularities a_m ?

- These are overcome by
	- **4** A homotopy method. The roots should not jump across branch cuts.
	- ² Newton's method combined with a complex variable bisection method.

 QQ

Results

Meylan (Newcastle) **[Extraordinary transmission](#page-0-0)** Sims, August 2015 15 / 17

重

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

Figure: Reflection and Transmission against wave number for $L = 5$

活

 298

Conclusions

- If there is a symmetry and a single mode of propagation we will get extraordinary transmission, for each resonance.
- We have tested this theory for a simple case in acoustic scattering similar to a recent experimental verification.
- There are many interesting questions raised by this research, ranging from proof of analyticity to possible applications in wave splitting or even an acoustic prism.

 Ω