A new subfamily of enlargements of a maximally monotone operator

 $R.S.Burachik¹$ J.E.Martínez Legaz² M.Rezaie³ M.Théra ⁴

¹University of South Australia

^{2,3,4}Universidad Autónoma de Barcelona, University of Isfahan, University of Limoges

> Fitzpatrick Workshop SPCOM 2015, 10 February

> > イロメ イ押 メイヨメ イヨメ

ă.

 $2Q$

Outline

4 [Enlargements of](#page-28-0) *T*

4 ロ) (何) (日) (日)

÷.

Outline

K ロ ト K 何 ト K ヨ ト K ヨ ト

÷.

Outline

K ロ ト K 何 ト K ヨ ト K ヨ ト

÷.

Outline

[Case](#page-97-0) $T = \partial \varphi$

K ロ ト K 何 ト K ヨ ト K ヨ ト

÷.

Outline

4 ロ) (何) (日) (日)

÷.

[Inclusion Problems](#page-6-0)

K ロ ト K 何 ト K ヨ ト K ヨ ト ニヨ

 QQQ

Monotone Inclusion Problem

Let $T: X \rightrightarrows X^*$ be maximal monotone. Many nonlinear problems are stated as:

Given
$$
z \in X^*
$$
, find $x \in X : \boxed{z \in T(x)}$ (P₀)

Equivalently:

Given
$$
z \in X^*
$$
, find $x \in X : \boxed{(x, z) \in G(T)}$

solving (P_0) \iff requires to know $G(T)$

Main Ingredients I: multivalued mappings

For $T: X \rightrightarrows X^*$ we define

- $\text{its graph as } G(T) := \{ (x, x^*) \in X \times X^* : x^* \in T(x) \},$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- i ts range as $R(T) := \bigcup \{T(x) : x \in D(T)\},$

We say that *T* is

イロトメ 御 トメ 君 トメ 君 トー 君

Main Ingredients I: multivalued mappings

For $T: X \rightrightarrows X^*$ we define

- $\text{its graph as } G(T) := \{ (x, x^*) \in X \times X^* : x^* \in T(x) \},$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- i ts range as $R(T) := \bigcup \{T(x) : x \in D(T)\},$

We say that *T* is

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 一重

Main Ingredients I: multivalued mappings

For $T: X \rightrightarrows X^*$ we define

- $\text{its graph as } G(T) := \{ (x, x^*) \in X \times X^* : x^* \in T(x) \},$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- i ts range as $R(T) := \bigcup \{T(x) : x \in D(T)\},$

We say that *T* is

イロト 不優 トイミト イヨト 一番

Main Ingredients I: multivalued mappings

For $T: X \rightrightarrows X^*$ we define

- $\text{its graph as } G(T) := \{ (x, x^*) \in X \times X^* : x^* \in T(x) \},$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- i ts range as $R(T) := \bigcup \{T(x) : x \in D(T)\},$

We say that *T* is

イロト 不優 トイミト イヨト 一番

Main Ingredients I: multivalued mappings

For $T: X \rightrightarrows X^*$ we define

- $\text{its graph as } G(T) := \{ (x, x^*) \in X \times X^* : x^* \in T(x) \},$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- i ts range as $R(T) := \bigcup \{T(x) : x \in D(T)\},$

We say that *T* is

monotone if

 $\langle y - x, y^* - x^* \rangle \ge 0$ ∀(*x*, *x* *), (y, y^*) ∈ *G*(*T*).

KO KARK KEK KEK E YOKA

maximally monotone if *T* has no monotone extension in the sense of graph inclusion.

Main Ingredients I: multivalued mappings

For $T: X \rightrightarrows X^*$ we define

- $\text{its graph as } G(T) := \{ (x, x^*) \in X \times X^* : x^* \in T(x) \},$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- i ts range as $R(T) := \bigcup \{T(x) : x \in D(T)\},$

We say that *T* is

monotone if

 $\langle y - x, y^* - x^* \rangle \ge 0$ $\forall (x, x^*), (y, y^*) \in G(T).$

KID KAP KE KE KE KE YAN

maximally monotone if *T* has no monotone extension in the sense of graph inclusion.

Main Ingredients II: subdifferentials

For $\varphi: X \to \mathbb{R}_{\infty}$ convex and lsc, we define

- Dom $\varphi := \{x : \varphi(x) < \infty\}$, and
- we say that φ is proper when $\text{Dom}\varphi \neq \emptyset$.
- the subdifferential of φ is the multivalued mapping $\partial \varphi : X \rightrightarrows X^*$ defined by

 $\partial \varphi(x) := \{x^* \in X^* : \varphi(y) - \varphi(x) \ge \langle x^*, y - x \rangle, \forall y \in X\},\$

when $x \in \text{Dom}\varphi$. Otherwise $\partial \varphi(x) = \emptyset$.

KO KA KE KE KE KE YA G

Main Ingredients II: subdifferentials

For $\varphi: X \to \mathbb{R}_{\infty}$ convex and lsc, we define

- Dom $\varphi := \{x : \varphi(x) < \infty\}$, and
- we say that φ is proper when $\text{Dom}\varphi \neq \emptyset$.
- the subdifferential of φ is the multivalued mapping $\partial \varphi : X \rightrightarrows X^*$ defined by

 $\partial \varphi(x) := \{x^* \in X^* : \varphi(y) - \varphi(x) \ge \langle x^*, y - x \rangle, \forall y \in X\},\$

when $x \in \text{Dom}\varphi$. Otherwise $\partial \varphi(x) = \emptyset$.

KID KAP KE KE KE KE YAN

Main Ingredients II: subdifferentials

For $\varphi: X \to \mathbb{R}_{\infty}$ convex and lsc, we define

- Dom $\varphi := \{x : \varphi(x) < \infty\}$, and
- we say that φ is proper when $\text{Dom}\varphi \neq \emptyset$.
- the subdifferential of φ is the multivalued mapping $\partial \varphi : X \rightrightarrows X^*$ defined by

$$
\partial \varphi(x) := \{x^* \in X^* : \varphi(y) - \varphi(x) \geq \langle x^*, y - x \rangle, \,\forall \, y \in X\},\
$$

when $x \in \text{Dom}\varphi$. Otherwise $\partial \varphi(x) = \emptyset$.

KORKARK KERKEL DRA

Fenchel Young inequality

Let $\varphi: X \to \mathbb{R}_\infty$ be convex and lsc, $\varphi^*: X^* \to \mathbb{R}_\infty$

$$
\varphi^*(v) := \sup_{x \in X} \{ \langle x, v \rangle - \varphi(x) \}
$$

is the *conjugate of* ϕ. The *Fenchel Young inequality* states

$$
\varphi(x) + \varphi^*(v) \geq \langle x, v \rangle, \forall x \in X, v \in X^*
$$

$$
\varphi(x) + \varphi^*(v) = \langle x, v \rangle, \iff v \in \partial \varphi(x).
$$
Notation:
$$
\boxed{\varphi^{FY}(x, v) := \varphi(x) + \varphi^*(v)}
$$

KID KAP KE KE KE KE YAN

6-28

Fitzpatrick Theory: the family $H(T)$

In 1988 Fitzpatrick defined the family $H(T)$ consisting of all $h: X \times X^* \to \mathbb{R}_\infty$ convex and lsc such that:

$$
h(x, v) \geq \langle x, v \rangle, \forall x \in X, v \in X^*
$$

$$
h(x, v) = \langle x, v \rangle, \iff v \in T(x).
$$

Given *v* this reformulates the monotone inclusion as an optimization problem in *X*: Find *x* such that

$$
h(x,v)=0=\min_x h(\cdot,v)
$$

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

 QQQ

Fitzpatrick Theory: the family $H(T)$

In 1988 Fitzpatrick defined the family $H(T)$ consisting of all $h: X \times X^* \to \mathbb{R}_\infty$ convex and lsc such that:

$$
h(x, v) \geq \langle x, v \rangle, \forall x \in X, v \in X^*
$$

$$
h(x, v) = \langle x, v \rangle, \iff v \in T(x).
$$

Given *v* this reformulates the monotone inclusion as an optimization problem in *X*: Find *x* such that

$$
h(x,v)=0=\min_x h(\cdot,v)
$$

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

 QQQ

Fitzpatrick Theory: the family $H(T)$

In 1988 Fitzpatrick defined the family $H(T)$ consisting of all $h: X \times X^* \to \mathbb{R}_\infty$ convex and lsc such that:

$$
h(x, v) \geq \langle x, v \rangle, \forall x \in X, v \in X^*
$$

$$
h(x, v) = \langle x, v \rangle, \iff v \in T(x).
$$

Given *v* this reformulates the monotone inclusion as an optimization problem in *X*: Find *x* such that

$$
h(x,v)=0=\min_x h(\cdot,v)
$$

KID KAP KE KE KE KE YAN

A key member of $H(T)$

Fitzpatrick defined $\mathcal{F}_\mathcal{T}: X \times X^* \to \mathbb{R}_\infty$ as

$$
\mathcal{F}_T(x,x^*) := \sup_{(y,y) \in G(T)} \langle y,x^* \rangle + \langle x-y,y^* \rangle
$$

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

 Ω

which verifies

$$
\bullet\ \mathcal{F}_T\in\mathcal{H}(T)
$$

 $\mathcal{F}_\mathcal{T} \leq h \leq (\mathcal{F}_\mathcal{T})^* =: \sigma_\mathcal{T}$ for all $h \in \mathcal{H}(\mathcal{T})$

A key member of $\mathcal{H}(T)$

Fitzpatrick defined $\mathcal{F}_\mathcal{T}: X \times X^* \to \mathbb{R}_\infty$ as

$$
\mathcal{F}_T(x,x^*) := \sup_{(y,y) \in G(T)} \langle y,x^* \rangle + \langle x-y,y^* \rangle
$$

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

 $2Q$

which verifies

\n- $$
\mathcal{F}_T \in \mathcal{H}(T)
$$
\n- $\mathcal{F}_T \leq h \leq (\mathcal{F}_T)^* =: \sigma_T$ for all $h \in \mathcal{H}(T)$
\n

A key member of $\mathcal{H}(T)$

Fitzpatrick defined $\mathcal{F}_\mathcal{T}: X \times X^* \to \mathbb{R}_\infty$ as

$$
\mathcal{F}_T(x,x^*) := \sup_{(y,y) \in G(T)} \langle y,x^* \rangle + \langle x-y,y^* \rangle
$$

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

 $2Q$

which verifies

\n- $$
\mathcal{F}_T \in \mathcal{H}(T)
$$
\n- $\mathcal{F}_T \leq h \leq (\mathcal{F}_T)^* =: \sigma_T$ for all $h \in \mathcal{H}(T)$
\n

A key member of $H(T)$

Fitzpatrick defined $\mathcal{F}_\mathcal{T}: X \times X^* \to \mathbb{R}_\infty$ as

$$
\mathcal{F}_T(x,x^*) := \sup_{(y,y) \in G(T)} \langle y,x^* \rangle + \langle x-y,y^* \rangle
$$

KO KARK KEK KEK E YOKA

which verifies

\n- $$
\mathcal{F}_T \in \mathcal{H}(T)
$$
\n- $\mathcal{F}_T \leq h \leq (\mathcal{F}_T)^* =: \sigma_T$ for all $h \in \mathcal{H}(T)$
\n

Main Ingredients III: enlargement of the subdifferential

For $\varphi: X \to \mathbb{R}_\infty$ convex, lsc, let $\varepsilon \geq 0,$ then $\partial_\varepsilon \varphi: X \rightrightarrows X^*$ is

 $\partial_{\varepsilon} \varphi(\mathsf{x}) := \{ \mathsf{x}^* \in \mathsf{X}^* : \varphi(\mathsf{y}) - \varphi(\mathsf{x}) \geq \langle \mathsf{x}^*, \mathsf{y} - \mathsf{x} \rangle - \varepsilon, \, \forall \, \mathsf{y} \in \mathsf{X} \},$

if $x \in \text{Dom}\varphi$. Otherwise, $\partial_{\varepsilon}\varphi(x) = \emptyset$.

 $\tilde{\partial}\varphi(\varepsilon, x) := \partial_{\varepsilon}\varphi(x)$ Brøndsted-Rockafellar enlargement (1965) ∂ϕ˘ characterized by *Fenchel Young ineq.*:

 $\langle x, v \rangle \leq \varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v) \leq \langle x, v \rangle + \varepsilon \iff v \in \partial^z \varphi(\varepsilon, x).$

KORKARK KERKEL DRA

Main Ingredients III: enlargement of the subdifferential

For $\varphi: X \to \mathbb{R}_\infty$ convex, lsc, let $\varepsilon \geq 0,$ then $\partial_\varepsilon \varphi: X \rightrightarrows X^*$ is

 $\partial_{\varepsilon} \varphi(\mathsf{x}) := \{ \mathsf{x}^* \in \mathsf{X}^* : \varphi(\mathsf{y}) - \varphi(\mathsf{x}) \geq \langle \mathsf{x}^*, \mathsf{y} - \mathsf{x} \rangle - \varepsilon, \, \forall \, \mathsf{y} \in \mathsf{X} \},$

if $x \in \text{Dom}\varphi$. Otherwise, $\partial_{\varepsilon}\varphi(x) = \emptyset$.

 $\tilde{\partial}\varphi(\varepsilon, x) := \partial_{\varepsilon}\varphi(x)$ Brøndsted-Rockafellar enlargement (1965) ∂ϕ˘ characterized by *Fenchel Young ineq.*:

 $\langle x, v \rangle \leq \varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v) \leq \langle x, v \rangle + \varepsilon \iff v \in \partial^z \varphi(\varepsilon, x).$

KORKARK KERKEL DRA

Main Ingredients III: enlargement of the subdifferential

For $\varphi: X \to \mathbb{R}_\infty$ convex, lsc, let $\varepsilon \geq 0,$ then $\partial_\varepsilon \varphi: X \rightrightarrows X^*$ is

$$
\bullet \ \partial_{\varepsilon} \varphi(x) := \{x^* \in X^* : \varphi(y) - \varphi(x) \geq \langle x^*, y - x \rangle - \varepsilon, \ \forall \ y \in X\},\
$$

if $x \in \text{Dom}\varphi$. Otherwise, $\partial_{\varepsilon}\varphi(x) = \emptyset$.

 $\partial \varphi(\varepsilon, x) := \partial_{\varepsilon} \varphi(x)$ Brøndsted-Rockafellar enlargement (1965) ∂ϕ˘ characterized by *Fenchel Young ineq.*:

 $\langle x, v \rangle \leq \varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v) \leq \langle x, v \rangle + \varepsilon \iff v \in \partial^z \varphi(\varepsilon, x).$

Main Ingredients III: enlargement of the subdifferential

For $\varphi: X \to \mathbb{R}_\infty$ convex, lsc, let $\varepsilon \geq 0,$ then $\partial_\varepsilon \varphi: X \rightrightarrows X^*$ is

$$
\bullet \ \partial_{\varepsilon} \varphi(x) := \{x^* \in X^* : \varphi(y) - \varphi(x) \geq \langle x^*, y - x \rangle - \varepsilon, \ \forall \ y \in X\},\
$$

if $x \in \text{Dom}\varphi$. Otherwise, $\partial_{\varepsilon}\varphi(x) = \emptyset$.

 $\partial \varphi(\varepsilon, x) := \partial_{\varepsilon} \varphi(x)$ Brøndsted-Rockafellar enlargement (1965) ∂ϕ˘ characterized by *Fenchel Young ineq.*:

$$
\langle x, v \rangle \leq \varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v) \leq \langle x, v \rangle + \varepsilon \iff v \in \partial \varphi(\varepsilon, x).
$$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

The family E(*T*) of enlargements of *T*

$\textsf{\textit{E}}:\mathbb{R}_+\times\textsf{\textit{X}}\rightrightarrows\textsf{\textit{X}}^{*}$ is in $\mathbb{E}(\textsf{\textit{T}})$ when

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

The family E(*T*) of enlargements of *T*

 $\textsf{\textit{E}}:\mathbb{R}_+\times\textsf{\textit{X}}\rightrightarrows\textsf{\textit{X}}^{*}$ is in $\mathbb{E}(\textsf{\textit{T}})$ when

 (E_1) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon > 0, x \in X$;

(*E*₂) If $0 \le \varepsilon_1 \le \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

 (E_3) The transportation formula holds: Whenever

 $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1,$ $\bar{x} := \alpha_1 x^1 + \alpha_2 x^2$, $\bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and $\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle \mathbf{v}^1 - \mathbf{v}^2, \mathbf{x}^1 - \mathbf{x}^2 \rangle$, then

 $\vert \bar{\varepsilon}\geq 0$ and $\bar{\mathbf{v}}\in E(\bar{\varepsilon},\bar{\mathbf{x}}). \vert$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

イロン イ押ン イヨン イヨン 一重

 QQ

The family E(*T*) of enlargements of *T*

 $\textsf{\textit{E}}:\mathbb{R}_+\times\textsf{\textit{X}}\rightrightarrows\textsf{\textit{X}}^{*}$ is in $\mathbb{E}(\textsf{\textit{T}})$ when

 (E_1) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon > 0, x \in X$;

 (E_2) If $0 \le \varepsilon_1 \le \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(*E*3) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1,$ $\bar{x} := \alpha_1 x^1 + \alpha_2 x^2$, $\bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and $\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle \mathbf{v}^1 - \mathbf{v}^2, \mathbf{x}^1 - \mathbf{x}^2 \rangle$, then

 $\vert \bar{\varepsilon}\geq 0$ and $\bar{\mathbf{v}}\in E(\bar{\varepsilon},\bar{\mathbf{x}}). \vert$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

KID KAP KE KE KE KE YAN

The family E(*T*) of enlargements of *T*

 $\textsf{\textit{E}}:\mathbb{R}_+\times\textsf{\textit{X}}\rightrightarrows\textsf{\textit{X}}^{*}$ is in $\mathbb{E}(\textsf{\textit{T}})$ when

 (E_1) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon > 0, x \in X$;

 (E_2) If $0 \le \varepsilon_1 \le \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(*E*3) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1,$ $\bar{x} := \alpha_1 x^1 + \alpha_2 x^2$, $\bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and $\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle \mathsf{v}^1 - \mathsf{v}^2, \mathsf{x}^1 - \mathsf{x}^2 \rangle$, then

 $\overline{\varepsilon} \geq 0$ and $\overline{v} \in E(\overline{\varepsilon}, \overline{x})$.

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

KID KAP KE KE KE KE YAN

The family E(*T*) of enlargements of *T*

 $\textsf{\textit{E}}:\mathbb{R}_+\times\textsf{\textit{X}}\rightrightarrows\textsf{\textit{X}}^{*}$ is in $\mathbb{E}(\textsf{\textit{T}})$ when

 (E_1) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon > 0, x \in X$;

 (E_2) If $0 \le \varepsilon_1 \le \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(*E*3) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1,$ $\bar{x} := \alpha_1 x^1 + \alpha_2 x^2$, $\bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and $\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle \mathsf{v}^1 - \mathsf{v}^2, \mathsf{x}^1 - \mathsf{x}^2 \rangle$, then

 $\overline{\varepsilon} \geq 0$ and $\overline{v} \in E(\overline{\varepsilon}, \overline{x})$.

[Additive enlargements](#page-49-0) **[Mutual additivity](#page-56-0)** [New enlargements](#page-73-0)

4 0 X 4 @ X 4 B X 4 B X 1 B X 9 A C

The family E(*T*) of enlargements of *T*

 $\textsf{\textit{E}}:\mathbb{R}_+\times\textsf{\textit{X}}\rightrightarrows\textsf{\textit{X}}^{*}$ is in $\mathbb{E}(\textsf{\textit{T}})$ when

 (E_1) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon > 0, x \in X$;

(*E*₂) If $0 \le \varepsilon_1 \le \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

 (E_3) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1,$ $\bar{x} := \alpha_1 x^1 + \alpha_2 x^2$, $\bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and $\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle \mathsf{v}^1 - \mathsf{v}^2, \mathsf{x}^1 - \mathsf{x}^2 \rangle$, then

 $\overline{\varepsilon} \geq 0$ and $\overline{v} \in E(\overline{\varepsilon}, \overline{x})$.

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

From enlargements to convex functions:

$$
(E_3) \Longleftrightarrow \widetilde{G}(E) \text{ convex},
$$

where

$$
G(E) := \{ (x, v, \varepsilon) : v \in E(\varepsilon, x) \}
$$

\n
$$
\widetilde{G}(E) := \{ (x, v, \varepsilon + \langle x, v \rangle) : v \in E(\varepsilon, x) \}
$$

イロン イ押ン イミン イヨン ニヨー 2990

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

From $\mathbb{E}(T)$ to $\mathcal{H}(T)$

This convex function is given by

$$
h_E(x,v):=\inf\{t:(x,v,t)\in \widetilde{G}(E)\}
$$

Moreover, $h_F \in \mathcal{H}(T)$ for all $E \in \mathbb{E}(T)!$
[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

K ロ ト K 何 ト K ヨ ト K ヨ ト ニヨ

 QQ

From $\mathbb{E}(T)$ to $\mathcal{H}(T)$

This convex function is given by

 $h_F(x, v) := \inf\{t : (x, v, t) \in G(E)\}$

Moreover, $h_F \in \mathcal{H}(T)$ for all $E \in \mathbb{E}(T)!$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

K ロ ト K 何 ト K ヨ ト K ヨ ト ニヨ

 2990

From $\mathbb{E}(T)$ to $\mathcal{H}(T)$

This convex function is given by

$$
h_E(x,v):=\inf\{t:(x,v,t)\in \widetilde{G}(E)\}
$$

Moreover, $h_F \in \mathcal{H}(T)$ for all $E \in \mathbb{E}(T)!$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

K ロ ト K 何 ト K ヨ ト K ヨ ト ニヨ

 299

From $\mathbb{E}(T)$ to $\mathcal{H}(T)$

This convex function is given by

$$
h_E(x,v):=\inf\{t:(x,v,t)\in \widetilde{G}(E)\}
$$

Moreover, $h_E \in \mathcal{H}(\mathcal{T})$ for all $E \in \mathbb{E}(\mathcal{T})!$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

From $H(T)$ to $E(T)$

Given $h \in \mathcal{H}(\mathcal{T})$ define $L^h: \mathbb{R}_+ \times X \rightrightarrows X^*$ as

 $L^h(\varepsilon, x) := \{v \in X^* \; : \; h(x, v) \leq \langle x, v \rangle + \varepsilon\}$

Then $L^h \in \mathbb{E}(\mathcal{T})$ for all $h \in \mathcal{H}(\mathcal{T})!$

$$
\mathcal{H}(\mathcal{T}) \underset{\text{bijection}}{\longleftrightarrow} \mathbb{E}(\mathcal{T})
$$

E(*T*) B.-Svaiter, 2002.

 $na\alpha$

イロン イ押ン イミン イヨン・ヨー

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

From $H(T)$ to $E(T)$

Given $h \in \mathcal{H}(\mathcal{T})$ define $L^h: \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$$
L^h(\varepsilon, x) := \{v \in X^* \; : \; h(x, v) \leq \langle x, v \rangle + \varepsilon\}
$$

Then $L^h \in \mathbb{E}(\mathcal{T})$ for all $h \in \mathcal{H}(\mathcal{T})!$

$$
\mathcal{H}(\mathcal{T}) \underset{\text{bijection}}{\longleftrightarrow} \mathbb{E}(\mathcal{T})
$$

E(*T*) B.-Svaiter, 2002.

 2990

イロン イ押ン イミン イヨン・ヨー

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

From $H(T)$ to $E(T)$

Given $h \in \mathcal{H}(\mathcal{T})$ define $L^h: \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$$
L^h(\varepsilon, x) := \{v \in X^* \; : \; h(x, v) \leq \langle x, v \rangle + \varepsilon\}
$$

Then $L^h \in \mathbb{E}(\mathcal{T})$ for all $h \in \mathcal{H}(\mathcal{T})!$

$$
\mathcal{H}(T) \underset{bijection}{\longleftrightarrow} \mathbb{E}(T) \qquad \qquad \text{B.-Svalter, 2002.}
$$

KORKARK (EXIST) DI VOCA

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

From $H(T)$ to $E(T)$

Given $h \in \mathcal{H}(\mathcal{T})$ define $L^h: \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$$
L^h(\varepsilon, x) := \{v \in X^* \; : \; h(x, v) \leq \langle x, v \rangle + \varepsilon\}
$$

Then $L^h \in \mathbb{E}(\mathcal{T})$ for all $h \in \mathcal{H}(\mathcal{T})!$

$$
\mathcal{H}(T) \underset{\text{bijection}}{\longleftrightarrow} \mathbb{E}(T) \qquad \qquad \text{B.-Svaiter, 2002.}
$$

KORKARK (EXIST) DI VOCA

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Case $T = \partial \varphi$

$\textsf{Recall}\ \varphi^{\textsf{FY}}(x,v)=\varphi(x)+\varphi^*(v),$ then $\varphi^{\textsf{FY}}\in\mathcal{H}(\partial\varphi)$

KOX KOX KEX KEX E YOUR

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 $A(D) \times A(D) \times A(D) \times A(D) \times B$

 Ω

Extreme members in the families

 $H(T)$ has a smallest and a largest element ${\mathcal F}_{\mathcal T} \leq h \leq \sigma_{\mathcal T} = ({\mathcal F}_{\mathcal T})^*,$ ${\mathbb E}({\mathcal T})$ has largest element:

$$
T^{BE}(\varepsilon, x) := \{v \in X^* \,:\, \langle x - y, v - u \rangle \geq -\varepsilon, \,\forall \, (y, u) \in G(T) \},
$$

and smallest $\mathcal{T}^{SE}(\varepsilon, x) = \cap_{E \in \mathbb{E}(\mathcal{T})} E(\varepsilon, x),$

 R elated through $L^{\mathcal{F}_{\mathcal{T}}} = T^{\mathcal{B}\mathcal{E}},$ and $L^{\sigma_{\mathcal{T}}} = T^{\mathcal{S}\mathcal{E}}$

$$
h_{\mathcal{T}^{SE}}=\sigma_{\mathcal{T}}, \text{ and } h_{\mathcal{T}^{BE}}=\mathcal{F}_{\mathcal{T}}
$$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 $A(D) \times A(D) \times A(D) \times A(D) \times B$

 QQ

Extreme members in the families

 $H(T)$ has a smallest and a largest element $\overline{\mathcal{F}}_{{\mathcal{T}}}\leq h \leq \sigma_{{\mathcal{T}}}=(\overline{\mathcal{F}}_{{\mathcal{T}}})^*,$ $\mathbb{E}(\overline{I})$ has largest element:

$$
T^{BE}(\varepsilon, x) := \{v \in X^* \,:\, \langle x - y, v - u \rangle \geq -\varepsilon, \,\forall (y, u) \in G(T)\},
$$

and smallest $\mathcal{T}^{SE}(\varepsilon, x) = \cap_{E \in \mathbb{E}(\mathcal{T})} E(\varepsilon, x),$

 R elated through $L^{\mathcal{F}_{\mathcal{T}}} = T^{\mathcal{B}\mathcal{E}},$ and $L^{\sigma_{\mathcal{T}}} = T^{\mathcal{S}\mathcal{E}}$

$$
h_{\mathcal{T}^{SE}}=\sigma_{\mathcal{T}}, \text{ and } h_{\mathcal{T}^{BE}}=\mathcal{F}_{\mathcal{T}}
$$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

イロトメ 御 トメ 君 トメ 君 トー 君

 QQ

Extreme members in the families

 $H(T)$ has a smallest and a largest element $\overline{\mathcal{F}}_{{\mathcal{T}}}\leq h \leq \sigma_{{\mathcal{T}}}=(\overline{\mathcal{F}}_{{\mathcal{T}}})^*,$ $\mathbb{E}(\overline{I})$ has largest element:

$$
\mathcal{T}^{BE}(\varepsilon,x):=\{v\in X^*\,:\,\langle x-y,v-u\rangle\geq -\varepsilon,\,\forall\,(y,u)\in G(\mathcal{T})\},
$$

and smallest $\mathcal{T}^{SE}(\varepsilon, x) = \cap_{E \in \mathbb{E}(\mathcal{T})} E(\varepsilon, x),$

 R elated through $L^{\mathcal{F}_{\mathcal{T}}} = T^{\mathcal{B}\mathcal{E}},$ and $L^{\sigma_{\mathcal{T}}} = T^{\mathcal{S}\mathcal{E}}$

$$
h_{\mathcal{T}^{SE}}=\sigma_{\mathcal{T}}, \text{ and } h_{\mathcal{T}^{BE}}=\mathcal{F}_{\mathcal{T}}
$$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 Ω

Extreme members in the families

 $H(T)$ has a smallest and a largest element $\overline{\mathcal{F}}_{{\mathcal{T}}}\leq h \leq \sigma_{{\mathcal{T}}}=(\overline{\mathcal{F}}_{{\mathcal{T}}})^*,$ $\mathbb{E}(\overline{I})$ has largest element:

$$
T^{BE}(\varepsilon, x) := \{v \in X^* \; : \; \langle x - y, v - u \rangle \geq -\varepsilon, \, \forall (y, u) \in G(T) \},
$$

and smallest $\mathcal{T}^{SE}(\varepsilon, x) = \cap_{E \in \mathbb{E}(\mathcal{T})} E(\varepsilon, x),$

 R elated through $L^{\mathcal{F}_{\mathcal{T}}} = T^{\mathcal{B}\mathcal{E}},$ and $L^{\sigma_{\mathcal{T}}} = T^{\mathcal{S}\mathcal{E}}$

$$
h_{T^{SE}} = \sigma_T
$$
, and
$$
h_{T^{BE}} = \mathcal{F}_T
$$

[Additive enlargements](#page-49-0) **[Mutual additivity](#page-56-0)** [New enlargements](#page-73-0)

KORKARK KERKEL DRA

Extreme members in the families

 $H(T)$ has a smallest and a largest element $\overline{\mathcal{F}}_{{\mathcal{T}}}\leq h \leq \sigma_{{\mathcal{T}}}=(\overline{\mathcal{F}}_{{\mathcal{T}}})^*,$ $\mathbb{E}(\overline{I})$ has largest element:

$$
T^{BE}(\varepsilon, x) := \{v \in X^* \; : \; \langle x - y, v - u \rangle \geq -\varepsilon, \, \forall (y, u) \in G(T) \},
$$

and smallest $\mathcal{T}^{SE}(\varepsilon, x) = \cap_{E \in \mathbb{E}(\mathcal{T})} E(\varepsilon, x),$

 R elated through $L^{\mathcal{F}_{\mathcal{T}}} = T^{\mathcal{B}\mathcal{E}},$ and $L^{\sigma_{\mathcal{T}}} = T^{\mathcal{S}\mathcal{E}}$

$$
h_{\mathcal{T}^{SE}}=\sigma_{\mathcal{T}}, \text{ and } h_{\mathcal{T}^{BE}}=\mathcal{F}_{\mathcal{T}}
$$

[Additive enlargements](#page-55-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 Ω

Additivity

\bullet $E \in \mathbb{E}$ (*T*) is *additive*, if

$$
\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\langle V_1 - V_2, x_1 - x_2 \rangle} \xrightarrow[\varepsilon_1 + \varepsilon_2].
$$

Set $\mathbb{E}_A(T) := \{E \in \mathbb{E}(T) : E$ additive}

 $\partial \varphi$ is additive, i.e., $\partial \varphi \in \mathbb{E}_{a}(\partial \varphi)$

T SE is always additive, but *T BE* may not!

[Additive enlargements](#page-55-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 Ω

Additivity

\bullet $E \in \mathbb{E}$ (*T*) is *additive*, if

$$
\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\langle V_1 - V_2, x_1 - x_2 \rangle} \xrightarrow[\varepsilon_1 + \varepsilon_2].
$$

Set $\mathbb{E}_A(T) := \{E \in \mathbb{E}(T) : E$ additive}

 $\partial \varphi$ is additive, i.e., $\partial \varphi \in \mathbb{E}_{a}(\partial \varphi)$

T SE is always additive, but *T BE* may not!

[Additive enlargements](#page-55-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Additivity

 \bullet $E \in \mathbb{E}$ (*T*) is *additive*, if

$$
\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2).
$$

 Ω

Set $\mathbb{E}_{a}(T) := \{E \in \mathbb{E}(T) : E \text{ additive}\}\$

 $\partial \varphi$ is additive, i.e., $\partial \varphi \in \mathbb{E}_{a}(\partial \varphi)$

T SE is always additive, but *T BE* may not!

[Additive enlargements](#page-55-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 $na\alpha$

Additivity

 \bullet $E \in \mathbb{E}$ (*T*) is *additive*, if

$$
\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\langle V_1 - V_2, x_1 - x_2 \rangle} \geq -(\varepsilon_1 + \varepsilon_2).
$$

Set $\mathbb{E}_{a}(T) := \{E \in \mathbb{E}(T) : E \text{ additive}\}\$

 $\partial \phi$ is additive, i.e., $\partial \phi \in \mathbb{E}_{a}(\partial \phi)$ T^{SE} is always additive, but T^{BE} may not!

[Additive enlargements](#page-55-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 $na\alpha$

Additivity

 \bullet $E \in \mathbb{E}$ (*T*) is *additive*, if

$$
\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\langle V_1 - V_2, x_1 - x_2 \rangle} \geq -(\varepsilon_1 + \varepsilon_2).
$$

 $Set \mathbb{E}_q(T) := \{E \in \mathbb{E}(T) : E \text{ additive}\}\$

 $\partial \phi$ is additive, i.e., $\partial \phi \in \mathbb{E}_{a}(\partial \phi)$ *T SE* is always additive, but *T BE* may not!

[Additive enlargements](#page-55-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 $na\alpha$

Additivity

 \bullet $E \in \mathbb{E}$ (*T*) is *additive*, if

$$
\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\langle V_1 - V_2, x_1 - x_2 \rangle} \geq -(\varepsilon_1 + \varepsilon_2).
$$

 $Set \mathbb{E}_q(T) := \{E \in \mathbb{E}(T) : E \text{ additive}\}\$

 $\partial \phi$ is additive, i.e., $\partial \phi \in \mathbb{E}_{a}(\partial \phi)$ *T SE* is always additive, but *T BE* may not!

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Additivity

 \bullet $E \in \mathbb{E}$ (*T*) is *additive*, if

$$
\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\langle V_1 - V_2, x_1 - x_2 \rangle} \geq -(\varepsilon_1 + \varepsilon_2).
$$

Set $\mathbb{E}_{a}(T) := \{E \in \mathbb{E}(T) : E \text{ additive}\}\$

 ∂ ϕ is additive, i.e., $\partial \phi \in \mathbb{E}_{a}(\partial \phi)$

T SE is always additive, but *T BE* may not!

[Additive enlargements](#page-49-0) [Mutual additivity](#page-61-0) [New enlargements](#page-73-0)

Additivity as a mutual relation/maximal property

E ∈ E*a*(*T*) is *maximally additive* (*max-add*, for short), if

$$
\frac{\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X}{\varepsilon = \hat{E}}
$$

 \bullet $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$
\underbrace{v_1 \in E_1(\varepsilon_1, x_1), v_2 \in E_2(\varepsilon_1, x_2)}_{\Downarrow}
$$

$$
\langle v_1 - v_2, x_1 - x_2 \rangle \geq -(\varepsilon_1 + \varepsilon_2).
$$

 Ω

[Additive enlargements](#page-49-0) [Mutual additivity](#page-61-0) [New enlargements](#page-73-0)

Additivity as a mutual relation/maximal property

E ∈ E*a*(*T*) is *maximally additive* (*max-add*, for short), if

$$
\frac{\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X}{\varepsilon = \hat{E}}
$$

 \bullet $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$
\underbrace{v_1 \in E_1(\varepsilon_1, x_1), v_2 \in E_2(\varepsilon_1, x_2)}_{\langle V_1 - V_2, x_1 - x_2 \rangle} \geq -(\varepsilon_1 + \varepsilon_2).
$$

Denoted as $E_1 \sim a E_2 \implies E \sim a E$ iff $E \in \mathbb{E}_a(T)$

 QQ

[Additive enlargements](#page-49-0) [Mutual additivity](#page-61-0) [New enlargements](#page-73-0)

Additivity as a mutual relation/maximal property

E ∈ E*a*(*T*) is *maximally additive* (*max-add*, for short), if

$$
\frac{\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X}{\varepsilon = \hat{E}}
$$

 \bullet $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$
\underbrace{v_1 \in E_1(\varepsilon_1, x_1), v_2 \in E_2(\varepsilon_1, x_2)}_{\langle V_1 - V_2, x_1 - x_2 \rangle} \geq -(\varepsilon_1 + \varepsilon_2).
$$

Denoted as $E_1 \sim a E_2 \implies E \sim a E$ iff $E \in \mathbb{E}_a(T)$

 QQ

[Additive enlargements](#page-49-0) [Mutual additivity](#page-61-0) [New enlargements](#page-73-0)

Additivity as a mutual relation/maximal property

E ∈ E*a*(*T*) is *maximally additive* (*max-add*, for short), if

$$
\frac{\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X}{\varepsilon = \hat{E}}
$$

 \bullet $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$
\underbrace{v_1 \in E_1(\varepsilon_1,x_1),\ v_2 \in E_2(\varepsilon_1,x_2)}_{\langle V_1 - V_2, x_1 - x_2 \rangle \, \geq \, -(\varepsilon_1 + \varepsilon_2).
$$

Denoted as $E_1 \sim a E_2 \implies E \sim a E$ iff $E \in \mathbb{E}_a(T)$

 QQ

[Additive enlargements](#page-49-0) [Mutual additivity](#page-61-0) [New enlargements](#page-73-0)

Additivity as a mutual relation/maximal property

E ∈ E*a*(*T*) is *maximally additive* (*max-add*, for short), if

$$
\frac{\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X}{\varepsilon = \hat{E}}
$$

 \bullet $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$
\underbrace{v_1 \in E_1(\varepsilon_1,x_1),\ v_2 \in E_2(\varepsilon_1,x_2)}_{\langle V_1 - V_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2).
$$

Denoted as $E_1 \sim_{\mathbf{a}} E_2 \implies E \sim_{\mathbf{a}} E$ iff $E \in \mathbb{E}_{\mathbf{a}}(T)$

 QQQ

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Additivity as a mutual relation/maximal property

E ∈ E*a*(*T*) is *maximally additive* (*max-add*, for short), if

$$
\frac{\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \geq 0, \forall x \in X}{\varepsilon = \hat{E}}
$$

 \bullet $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$
\underbrace{v_1 \in E_1(\varepsilon_1, x_1), v_2 \in E_2(\varepsilon_1, x_2)}_{\langle V_1 - V_2, x_1 - x_2 \rangle} \geq -(\varepsilon_1 + \varepsilon_2).
$$

Denoted as $E_1 \sim_{\mathcal{A}} E_2 \implies E \sim_{\mathcal{A}} E$ iff $E \in \mathbb{E}_{\mathcal{A}}(T)$

 QQQ

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 Ω

Example of Max-Additivity

If $T = \partial \varphi$ then $\partial \varphi$ is max-add (Svaiter, 2000)

If *T* arbitrary, then *T SE* is always additive, but not necesarily

Max-additivity detects those elements in E*a*(*T*) which have even more in common with $\partial\omega$!

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 QQ

Example of Max-Additivity

If $T = \partial \varphi$ then $\partial \varphi$ is max-add (Svaiter, 2000)

If *T* arbitrary, then *T SE* is always additive, but not necesarily max-add!

Max-additivity detects those elements in E*a*(*T*) which have even more in common with $\partial\omega$!

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 QQQ

Example of Max-Additivity

If $T = \partial \varphi$ then $\partial \varphi$ is max-add (Svaiter, 2000)

If *T* arbitrary, then *T SE* is always additive, but not necesarily max-add!

Max-additivity detects those elements in $\mathbb{E}_{a}(T)$ which have even more in common with $\partial \omega$!

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Example of mutual additivity

If *T* arbitrary, then *T SE* and *T BE* are always mutually additive (Svaiter, 2000)

Questions: How to identify additive elements E(*T*)? How to identify max-add elements whithin $\mathbb{E}_{a}(T)$? How to characterize mutual additivity?

We will address these using convex functions!

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

イロン イ押ン イミン イヨン ニヨー

 QQQ

From convex functions to *T* and viceversa

Let $f: X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$T_f(x) := \{ v \in X^* : (v, x) \in \partial f(x, v) \}$ ★

Fitzpatrick proved that T_f mon, and for *T* monotone and $f := \mathcal{F}_T$:

-
-

Can recover *T* as a diagonal slice of the ∂F*^T* !

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

KID KAP KE KE KE KE YAN

From convex functions to *T* and viceversa

Let $f: X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$
T_f(x) := \{v \in X^* \,:\, (v,x) \in \partial f(x,v)\} \quad \bigstar
$$

Fitzpatrick proved that T_f mon, and for *T* monotone and $f = F_T$:

- $\forall x \in X$, $T(x) \subseteq T_{\mathcal{F}_T}(x)$.
- *T* maximal \implies *T* = *T*_{F_{τ}}

Can recover *T* as a diagonal slice of the ∂F*^T* !

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

KID KAP KE KE KE KE YAN

From convex functions to *T* and viceversa

Let $f: X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$
T_f(x) := \{v \in X^* \,:\, (v,x) \in \partial f(x,v)\} \quad \bigstar
$$

Fitzpatrick proved that T_f mon, and for *T* monotone and $f = F_T$:

- $\forall x \in X$, $T(x) \subseteq T_{\mathcal{F}_T}(x)$.
- **o** *T* maximal \implies *T* = *T*_{*FT*}

Can recover *T* as a diagonal slice of the ∂F*^T* !

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

KID KAP KE KE KE KE YAN

From convex functions to *T* and viceversa

Let $f: X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$
T_f(x) := \{v \in X^* \,:\, (v,x) \in \partial f(x,v)\} \quad \bigstar
$$

Fitzpatrick proved that T_f mon, and for *T* monotone and $f = F_T$:

- $\forall x \in X$, $T(x) \subseteq T_{\mathcal{F}_T}(x)$.
- **o** *T* maximal \implies *T* = *T*_{*FT*}

Can recover *T* as a diagonal slice of the ∂F*^T* !

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

KID KAP KE KE KE KE YAN

From convex functions to *T* and viceversa

Let $f: X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$
T_f(x) := \{v \in X^* \,:\, (v,x) \in \partial f(x,v)\} \quad \bigstar
$$

Fitzpatrick proved that T_f mon, and for *T* monotone and $f = F_T$:

- $\forall x \in X$, $T(x) \subseteq T_{\mathcal{F}_T}(x)$.
- **o** *T* maximal \implies *T* = *T*_{*FT*}

Can recover *T* as a diagonal slice of the $\partial \mathcal{F}_T$!

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

KID KAP KE KE KE KE YAN

From convex functions to *T* and viceversa

Let $f: X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$
T_f(x) := \{v \in X^* \,:\, (v,x) \in \partial f(x,v)\} \quad \bigstar
$$

Fitzpatrick proved that T_f mon, and for *T* monotone and $f = F_T$:

- $\forall x \in X$, $T(x) \subseteq T_{\mathcal{F}_T}(x)$.
- **o** *T* maximal \implies *T* = *T*_{*FT*}

Can recover *T* as a diagonal slice of the $\partial \mathcal{F}_T$!
[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

KID KAP KE KE KE KE YAN

From convex functions to *T* and viceversa

Let $f: X \times X^* \to \mathbb{R}_\infty$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$
T_f(x) := \{v \in X^* \,:\, (v,x) \in \partial f(x,v)\} \quad \bigstar
$$

Fitzpatrick proved that T_f mon, and for *T* monotone and $f = F_T$:

- $\forall x \in X$, $T(x) \subseteq T_{\mathcal{F}_T}(x)$.
- **o** *T* maximal \implies *T* = *T*_{*FT*}

Can recover *T* as a diagonal slice of the $\partial \mathcal{F}_T$!

Question: What happens if we use ∂f in \star ? Can we still recover *T*?

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-74-0)

イロン イ押ン イミン イヨン ニヨー

 2990

Operator A

Let $h \in \mathcal{H}(\mathcal{T})$, define $\mathcal{J} : \mathcal{H}(\mathcal{T}) \to \mathcal{H}(\mathcal{T})$ as

 $\mathcal{J}h(x, v) := h^*(v, x)$

I.e., *Jh* **swaps the variables of** *h***^{*}** Define $\mathcal{A} : \mathcal{H}(T) \rightarrow \mathcal{H}(T)$ as

$$
\mathcal{A}h:=\frac{h+\mathcal{J}h}{2}
$$

Fact: $Ah \in H(T)$ if $h \in H(T)$.

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

KO KARK KEK KEK E YOKA

Operator A

Let $h \in \mathcal{H}(\mathcal{T})$, define $\mathcal{J} : \mathcal{H}(\mathcal{T}) \to \mathcal{H}(\mathcal{T})$ as

 $\mathcal{J}h(x, v) := h^*(v, x)$

I.e., $\mathcal{J}h$ swaps the variables of h^* Define $\mathcal{A} : \mathcal{H}(T) \to \mathcal{H}(T)$ as

$$
\mathcal{A}h:=\frac{h+\mathcal{J}h}{2}
$$

Fact: $Ah \in \mathcal{H}(\mathcal{T})$ if $h \in \mathcal{H}(\mathcal{T})$.

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

An induced subfamily of enlargements

Let *T* be max-mon and fix $h \in \mathcal{H}(T)$. We define $\breve{\mathcal{T}}_h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$$
\breve{\mathcal{T}}_h(\varepsilon,x):=\{v\in X^*\,:\,(v,x)\in\breve{\partial}h(2\varepsilon,x,v)\}\quad\bigstar
$$

 $\mathsf{Define}\ \mathbb{E}_{\mathcal{H}}(\mathcal{T}) := \{E\in\mathbb{E}(\mathcal{T})\ :\ E=\breve{\mathcal{T}}_h \text{ for some }h\in\mathcal{H}(\mathcal{T})\}$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

イロン イ押ン イミン イヨン ニヨー

 Ω

An induced subfamily of enlargements

Let *T* be max-mon and fix $h \in \mathcal{H}(T)$. We define $\breve{\mathcal{T}}_h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as $\breve{\mathcal{T}}_h(\varepsilon, x) := \{v \in X^* \,:\, (v, x) \in \partial h(2\varepsilon, x, v)\}$ $T_h(x) = T_h(0, x) = T$ $\breve{\mathcal{T}}_h = L^{\mathcal{A}h}$, so $\breve{\mathcal{T}}_h \in \mathbb{E}(\mathcal{T})$.

 $\mathsf{Define}\ \mathbb{E}_{\mathcal{H}}(\mathcal{T}) := \{E\in\mathbb{E}(\mathcal{T})\ :\ E=\breve{\mathcal{T}}_h \text{ for some }h\in\mathcal{H}(\mathcal{T})\}$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

イロン イ押ン イミン イヨン ニヨー

 Ω

An induced subfamily of enlargements

Let *T* be max-mon and fix $h \in \mathcal{H}(T)$. We define $\breve{\mathcal{T}}_h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as $\breve{\mathcal{T}}_h(\varepsilon, x) := \{v \in X^* \,:\, (v, x) \in \partial h(2\varepsilon, x, v)\}$ $T_h(x) = T_h(0, x) = T$ $\breve{\mathcal{T}}_h = L^{\mathcal{A}h}$, so $\breve{\mathcal{T}}_h \in \mathbb{E}(\mathcal{T})$.

 $\mathsf{Define}\ \mathbb{E}_{\mathcal{H}}(\mathcal{T}) := \{E\in\mathbb{E}(\mathcal{T})\ :\ E=\breve{\mathcal{T}}_h \text{ for some }h\in\mathcal{H}(\mathcal{T})\}$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

イロン イ押ン イミン イヨン ニヨー

 Ω

An induced subfamily of enlargements

Let *T* be max-mon and fix $h \in \mathcal{H}(T)$. We define $\breve{\mathcal{T}}_h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as $\breve{\mathcal{T}}_h(\varepsilon, x) := \{v \in X^* \,:\, (v, x) \in \partial h(2\varepsilon, x, v)\}$ $T_h(x) = T_h(0, x) = T$ $\breve{\mathcal{T}}_h = L^{\mathcal{A}h}$, so $\breve{\mathcal{T}}_h \in \mathbb{E}(\mathcal{T})$.

 $\mathsf{Define}\ \mathbb{E}_{\mathcal{H}}(\mathcal{T}) := \{E\in\mathbb{E}(\mathcal{T})\ :\ E=\breve{\mathcal{T}}_h \text{ for some }h\in\mathcal{H}(\mathcal{T})\}$

[Additive enlargements](#page-49-0) **[Mutual additivity](#page-56-0)** [New enlargements](#page-73-0)

KID KAP KE KE KE KE YAN

An induced subfamily of enlargements

Let *T* be max-mon and fix $h \in \mathcal{H}(T)$. We define $\breve{\mathcal{T}}_h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as $\breve{\mathcal{T}}_h(\varepsilon, x) := \{v \in X^* \,:\, (v, x) \in \partial h(2\varepsilon, x, v)\}$ $T_h(x) = T_h(0, x) = T$ $\breve{\mathcal{T}}_h = L^{\mathcal{A}h}$, so $\breve{\mathcal{T}}_h \in \mathbb{E}(\mathcal{T})$.

 $\mathsf{Define}\ \mathbb{E}_{\mathcal{H}}(\mathcal{T}) := \{E\in\mathbb{E}(\mathcal{T})\ :\ E=\breve{\mathcal{T}}_h \text{ for some }h\in\mathcal{H}(\mathcal{T})\}$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

KID KAP KE KE KE KE YAN

An induced subfamily of enlargements

Let *T* be max-mon and fix $h \in \mathcal{H}(T)$. We define $\breve{\mathcal{T}}_h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as $\breve{\mathcal{T}}_h(\varepsilon, x) := \{v \in X^* \,:\, (v, x) \in \partial h(2\varepsilon, x, v)\}$ $T_h(x) = T_h(0, x) = T$ $\breve{\mathcal{T}}_h = L^{\mathcal{A}h}$, so $\breve{\mathcal{T}}_h \in \mathbb{E}(\mathcal{T})$.

 $\mathsf{Define}\ \mathbb{E}_{\mathcal{H}}(\mathcal{T}) := \{E\in\mathbb{E}(\mathcal{T})\ :\ E=\breve{\mathcal{T}}_h \text{ for some }h\in\mathcal{H}(\mathcal{T})\}$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding ${\mathsf f}$ unctions (i.e., ${\mathsf E}={\mathsf L}^{h_{\mathsf E}}$ and ${\mathsf E}'={\mathsf L}^{h_{{\mathsf E}'}})$

E ∼*a E*' iff $\mathcal{J}h_E \leq h_{E}$. Hence, $E \in \mathbb{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$. • $h_F = \mathcal{J} h_F$ iff *E* is max-add

-
-
-

◆ロ→ ◆伊→ ◆ミ→ →ミ→ → ミ

つひへ

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding ${\mathsf f}$ unctions (i.e., ${\mathsf E}={\mathsf L}^{h_{\mathsf E}}$ and ${\mathsf E}'={\mathsf L}^{h_{{\mathsf E}'}})$

E ∼*a E*' iff $\mathcal{J}h_E \leq h_{E}$. Hence, $E \in \mathbb{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$. • $h_F = \mathcal{J} h_F$ iff *E* is max-add

◆ロ→ ◆伊→ ◆ミ→ →ミ→ → ミ

つひへ

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding ${\mathsf f}$ unctions (i.e., ${\mathsf E}={\mathsf L}^{h_{\mathsf E}}$ and ${\mathsf E}'={\mathsf L}^{h_{{\mathsf E}'}})$

E ∼*a E*' iff $\mathcal{J}h_E \leq h_{E}$. Hence, $E \in \mathbb{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$. • $h_F = \mathcal{J} h_F$ iff *E* is max-add

◆ロ→ ◆伊→ ◆ミ→ →ミ→ → ミ

つひへ

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding ${\mathsf f}$ unctions (i.e., ${\mathsf E}={\mathsf L}^{h_{\mathsf E}}$ and ${\mathsf E}'={\mathsf L}^{h_{{\mathsf E}'}})$

E ∼*a E*' iff $\mathcal{J}h_E \leq h_{E}$. Hence, $E \in \mathbb{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$. • $h_F = \mathcal{J} h_F$ iff *E* is max-add

In particular, *E* ∼*^a L* J *h^E*

- Since $L^{\mathcal{J}h_E}$ is the largest enlargement mutually additive with *E*, it is the "additive complement" of *E*.
- *E* is max-add iff it coincides with its additive complement.

[Additive enlargements](#page-49-0) **[Mutual additivity](#page-56-0)** [New enlargements](#page-73-0)

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding ${\mathsf f}$ unctions (i.e., ${\mathsf E}={\mathsf L}^{h_{\mathsf E}}$ and ${\mathsf E}'={\mathsf L}^{h_{{\mathsf E}'}})$

- *E* ∼*a E*' iff $\mathcal{J}h_E \leq h_{E}$. Hence, $E \in \mathbb{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$. • $h_F = \mathcal{J} h_F$ iff *E* is max-add
- In particular, *E* ∼*^a L* J *h^E*
- Since $L^{\mathcal{J}h_E}$ is the largest enlargement mutually additive with *E*, it is the "additive complement" of *E*.

E is max-add iff it coincides with its additive complement.

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding ${\mathsf f}$ unctions (i.e., ${\mathsf E}={\mathsf L}^{h_{\mathsf E}}$ and ${\mathsf E}'={\mathsf L}^{h_{{\mathsf E}'}})$

- *E* ∼*a E*' iff $\mathcal{J}h_E \leq h_{E}$. Hence, $E \in \mathbb{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$. • $h_F = \mathcal{J} h_F$ iff *E* is max-add
- In particular, *E* ∼*^a L* J *h^E*
- Since $L^{\mathcal{J}h_E}$ is the largest enlargement mutually additive with *E*, it is the "additive complement" of *E*.
- *E* is max-add iff it coincides with its additive complement.

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

イロトメ 御 トメ 君 トメ 君 トー 君

 299

Conmutative diagram

Taking conjugates in $H(T)$ is order reversing, and its effect in $E(T)$ is to map E into its additive complement.

J

Fixed points of J correspond to max-add elements!

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Relation w/previous facts

 $\mathsf{Recall}\ \varphi^{\mathsf{FY}}(x,v) = \varphi(x) + \varphi^*(v),$ since $\mathcal{J}\varphi^{\mathsf{FY}} = \varphi^{\mathsf{FY}}$ we confirm the fact that

 $\partial \varphi$ is max-add

Previous result extends the known fact (Svaiter 2000):

$$
T^{SE}\sim_a T^{BE}
$$

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

 $na\alpha$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Relation w/previous facts

 $\mathsf{Recall}\ \varphi^{\mathsf{FY}}(x,v) = \varphi(x) + \varphi^*(v),$ since $\mathcal{J}\varphi^{\mathsf{FY}} = \varphi^{\mathsf{FY}}$ we confirm the fact that

 $\partial \varphi$ is max-add

Previous result extends the known fact (Svaiter 2000):

$$
T^{SE}\sim_a T^{BE}
$$

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

 QQ

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Relation w/previous facts

 $\mathsf{Recall}\ \varphi^{\mathsf{FY}}(x,v) = \varphi(x) + \varphi^*(v),$ since $\mathcal{J}\varphi^{\mathsf{FY}} = \varphi^{\mathsf{FY}}$ we confirm the fact that

 $\partial \varphi$ is max-add

Previous result extends the known fact (Svaiter 2000):

$$
T^{SE}\sim_a T^{BE}
$$

KORKARK (EXIST) DI VOCA

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

Relation w/previous facts

 $\mathsf{Recall}\ \varphi^{\mathsf{FY}}(x,v) = \varphi(x) + \varphi^*(v),$ since $\mathcal{J}\varphi^{\mathsf{FY}} = \varphi^{\mathsf{FY}}$ we confirm the fact that

 $\partial \varphi$ is max-add

Previous result extends the known fact (Svaiter 2000):

$$
T^{SE}\sim_a T^{BE}
$$

KORKARK KERKEL DRA

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 QQ

New enlargements are additive

Let $h \in \mathcal{H}(\mathcal{T})$. The following hold:

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 QQ

New enlargements are additive

Let $h \in \mathcal{H}(\mathcal{T})$. The following hold:

 $\breve{\mathcal{T}}_h \in \mathbb{E}_a(T)$

 \widetilde{T}_h is max-add iff $\mathcal{J}Ah = Ah$

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 QQ

New enlargements are additive

Let $h \in \mathcal{H}(\mathcal{T})$. The following hold:

$$
\bullet\ \ \check{\mathcal{T}}_h\in \mathbb{E}_a(\mathcal{T})
$$

- $\widetilde{\mathcal{T}}_h$ is max-add iff $\mathcal{J} \mathcal{A} h = \mathcal{A} h$
-

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

 QQ

New enlargements are additive

Let $h \in \mathcal{H}(\mathcal{T})$. The following hold:

$$
\bullet\ \ \check{\mathcal{T}}_h\in \mathbb{E}_a(\mathcal{T})
$$

- $\widetilde{\mathcal{T}}_h$ is max-add iff $\mathcal{J} \mathcal{A} h = \mathcal{A} h$
-

[Additive enlargements](#page-49-0) [Mutual additivity](#page-56-0) [New enlargements](#page-73-0)

KORKARK (EXIST) DI VOCA

New enlargements are additive

Let $h \in \mathcal{H}(\mathcal{T})$. The following hold:

$$
\bullet\ \ \check{T}_h\in \mathbb{E}_a(T)
$$

•
$$
\check{T}_h
$$
 is max-add iff $\mathcal{J}Ah = Ah$

Hence, if $\mathcal{J}h = h$ then $\breve{\mathcal{T}}_h$ is max-add

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial\omega}$ to obtain an enlargement smaller than $\partial\varphi$

 Ω

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

 $\bullet \ \forall \varepsilon > 0$, $x \in \text{Dom}\varphi$ we have

 $\breve{\mathcal{T}}_h(\varepsilon/2,x) \subseteq \breve{\partial} \varphi(\varepsilon,x)$

\n- If
$$
h = \varphi^{FY}
$$
 we must have $\partial \varphi = \overline{T}_{\varphi^{FY}}$.
\n- If $h = \mathcal{F}_{\partial \varphi}$ $\overline{T}_{\mathcal{F}_{\partial \varphi}}(\varepsilon/2, x) \subseteq \partial \varphi(\varepsilon, x)$
\n

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial\varphi}$ to obtain an enlargement smaller than $\partial\varphi$

 $na\alpha$

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

 $\bullet \ \forall \varepsilon > 0$, $x \in \text{Dom}\varphi$ we have

$$
\breve{\mathcal{T}}_h(\varepsilon/2,x)\subseteq\breve{\partial\varphi}(\varepsilon,x)
$$

\n- If
$$
h = \varphi^{FY}
$$
 we must have $\partial \varphi = \mathsf{I}_{\varphi^{FY}}$.
\n- If $h = \mathcal{F}_{\partial \varphi}$ $\mathcal{T}_{\mathcal{F}_{\partial \varphi}}(\varepsilon/2, x) \subseteq \partial \varphi(\varepsilon, x)$.
\n

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial\omega}$ to obtain an enlargement smaller than $\partial\varphi$

 2990

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

 $\bullet \ \forall \varepsilon > 0$, $x \in \text{Dom}\varphi$ we have

$$
\breve{\mathcal{T}}_h(\varepsilon/2,x)\subseteq\breve{\partial\varphi}(\varepsilon,x)
$$

\n- If
$$
h = \varphi^{FY}
$$
 we must have $\partial \varphi = \check{\mathcal{T}}_{\varphi^{FY}}$.
\n- If $h = \mathcal{F}_{\partial \varphi}$ $\check{\mathcal{T}}_{\mathcal{F}_{\partial \varphi}}(\varepsilon/2, x) \subseteq \partial \varphi(\varepsilon, x)$
\n

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial\omega}$ to obtain an enlargement smaller than $\partial\varphi$

 2990

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

 $\bullet \ \forall \varepsilon > 0$, $x \in \text{Dom}\varphi$ we have

$$
\breve{\mathcal{T}}_h(\varepsilon/2,x)\subseteq\breve{\partial\varphi}(\varepsilon,x)
$$

\n- If
$$
h = \varphi^{FY}
$$
 we must have $\partial \varphi = \check{\mathcal{T}}_{\varphi^{FY}}$.
\n- If $h = \mathcal{F}_{\partial \varphi}$ $\check{\mathcal{T}}_{\mathcal{F}_{\partial \varphi}}(\varepsilon/2, x) \subseteq \partial \varphi(\varepsilon, x)$
\n

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial\omega}$ to obtain an enlargement smaller than $\partial\varphi$

 2990

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

 $\bullet \ \forall \varepsilon > 0$, $x \in \text{Dom}\varphi$ we have

$$
\breve{\mathcal{T}}_h(\varepsilon/2,x)\subseteq\breve{\partial\varphi}(\varepsilon,x)
$$

\n- If
$$
h = \varphi^{FY}
$$
 we must have $\partial \varphi = \check{\mathcal{T}}_{\varphi^{FY}}$.
\n- If $h = \mathcal{F}_{\partial \varphi}$ $\check{\mathcal{T}}_{\mathcal{F}_{\partial \varphi}}(\varepsilon/2, x) \subseteq \partial \varphi(\varepsilon, x)$
\n

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial\omega}$ to obtain an enlargement smaller than $\partial \varphi$

KORKARK (EXIST) DI VOCA

Open problems

- Does the subfamily $\mathbb{E}_{H}(T)$ contain all additive enlargements of *T*?
-
-
-
-

Open problems

- Does the subfamily $\mathbb{E}_{H}(T)$ contain all additive enlargements of *T*?
-
-
-
-

Open problems

- Does the subfamily $\mathbb{E}_{H}(T)$ contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{H}(T)$ are max-add when $h = \mathcal{J}h$. Are these all the max-add enlargements of *T*?

イロン イ押ン イヨン イヨン 一重

 QQ

-
-
-

Open problems

- Does the subfamily $\mathbb{E}_{H}(T)$ contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{H}(T)$ are max-add when $h = \mathcal{J}h$. Are these all the max-add enlargements of *T*?

イロン イ押ン イヨン イヨン 一重

 QQ

-
-
-

Open problems

- Does the subfamily $\mathbb{E}_{H}(T)$ contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{H}(T)$ are max-add when $h = f/h$. Are these all the max-add enlargements of *T*?

- Can we characterize *h* such that $J Ah = Ah$?
- In which cases has $\mathbb{E}_{H}(T)$ a single element?
-

Open problems

- Does the subfamily $\mathbb{E}_{H}(T)$ contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{H}(T)$ are max-add when $h = f/h$. Are these all the max-add enlargements of *T*?

- Can we characterize *h* such that $J Ah = Ah$?
- In which cases has $\mathbb{E}_{H}(T)$ a single element?
-

Open problems

- Does the subfamily $\mathbb{E}_{H}(T)$ contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{H}(T)$ are max-add when $h = f/h$. Are these all the max-add enlargements of *T*?

- Can we characterize *h* such that $J Ah = Ah$?
- In which cases has $\mathbb{E}_{H}(T)$ a single element?
-

[Motivation](#page-6-0) [Preliminaries](#page-7-0) [The family](#page-17-0) $H(T)$ [Enlargements of](#page-28-0) *T* [Case](#page-97-0) $T = \partial \varphi$

Open problems

- Does the subfamily $\mathbb{E}_{H}(T)$ contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{H}(T)$ are max-add when $h = f/h$. Are these all the max-add enlargements of *T*?

- Can we characterize *h* such that $J Ah = Ah$?
- In which cases has $\mathbb{E}_{H}(T)$ a single element?
- When are the max-add elements unique?

[Motivation](#page-6-0) [Preliminaries](#page-7-0) [The family](#page-17-0) $H(T)$ [Enlargements of](#page-28-0) *T* [Case](#page-97-0) $T = \partial \varphi$

Open problems

- Does the subfamily $\mathbb{E}_{H}(T)$ contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{H}(T)$ are max-add when $h = f/h$. Are these all the max-add enlargements of *T*?

- Can we characterize *h* such that $J Ah = Ah$?
- In which cases has $\mathbb{E}_{H}(T)$ a single element?
- When are the max-add elements unique?

[Motivation](#page-6-0) [Preliminaries](#page-7-0) [The family](#page-17-0) $H(T)$ [Enlargements of](#page-28-0) *T* [Case](#page-97-0) $T = \partial \varphi$

Open problems

- Does the subfamily $\mathbb{E}_{H}(T)$ contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{H}(T)$ are max-add when $h = f/h$. Are these all the max-add enlargements of *T*?

- Can we characterize *h* such that $J Ah = Ah$?
- In which cases has $\mathbb{E}_{H}(T)$ a single element?
- When are the max-add elements unique?