A new subfamily of enlargements of a
maximally monotone operator

R.S.Burachik' J.E.Martinez Legaz? M.Rezaie®
M.Théra 4

TUniversity of South Australia

2,3.4Universidad Auténoma de Barcelona, University of Isfahan,
University of Limoges

Fitzpatrick Workshop
SPCOM 2015, 10 February

Burachik, Martinez Legaz, Rezaie, Théra A new subfamily of enlargements



Outline

0 Motivation

inez Legaz, Rezaie, Théra ew subfamily of enlargements



Outline

0 Motivation

@ Preliminaries

inez Legaz, Rezaie, Théra A new subfamily of enlargements



Outline

0 Motivation
@ Preliminaries

© The family #(T)

Burachik, inez Legaz, Rezaie, Théra A new subfamily of enlargements



Outline

0 Motivation
@ Preliminaries
© The family #(T)

e Enlargements of T

Burachik, Martinez Legaz, Rezaie, Théra A new subfamily of enlargements



Outline

0 Motivation

@ Preliminaries

© The family #(T)
e Enlargements of T

e Case T =0y

Burachik, Martinez Legaz, Rezaie, Théra A new subfamily of enlargements



Motivation

Inclusion Problems

Monotone Inclusion Problem

Let T : X = X* be maximal monotone. Many nonlinear
problems are stated as:

Given z € X*,findx € X :| ze T(x) (Po)

Equivalently:

Given z € X*,findx € X :| (x,z) € G(T)

solving (Py) <~ requires to know G(T)
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Main Ingredients |: multivalued mappings

For T : X = X* we define
@ itsgraphas G(T) := {(x,x*) € X x X*: x* € T(x)},
@ itsdomainas D(T) :={x € X : T(x) # 0},
@ itsrange as R(T) := U{T(x) : x € D(T)},

We say that T is
@ monotone if

y=xy"=x)=0  V(x,x),(y,y*) € G(T).

@ maximally monotone if T has no monotone extension in
the sense of graph inclusion.
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Preliminaries

Main Ingredients Il: subdifferentials

For ¢ : X — R, convex and Isc, we define
@ Domyp := {x : ¢(x) < oo}, and
@ we say that ¢ is proper when Domy # ().

@ the subdifferential of ¢ is the multivalued mapping
0y : X = X* defined by

aSD(X) = {X* € X" @(y) - QO(X) > <X*7y_X>a \V/y € X}’

when x € Domgp. Otherwise dp(x) = 0.
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Preliminaries

Fenchel Young inequality

Let o : X — R, be convex and Isc, ¢p* : X* — R

¢ (v) = flel)r?{% V) —(x)}

is the conjugate of . The Fenchel Young inequality states

o(X)+*(v) > (x,v), VxeX,veX*
P+ (V) = (XV), < vedp(x).

Notation: | ofY(x, v) := @(x)+¢*(v)




The family H(T)

Fitzpatrick Theory: the family #(T)

In 1988 Fitzpatrick defined the family #(T) consisting of all
h: X x X* — Ry convex and Isc such that:
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The family H(T)

Fitzpatrick Theory: the family #(T)

In 1988 Fitzpatrick defined the family #(T) consisting of all
h: X x X* — Ry convex and Isc such that:

(x,v), VxeX,veX*
(x,v), <= veT(x).

h(x, v)
h(x, v)

v

Given v this reformulates the monotone inclusion as an
optimization problem in X: Find x such that

h(x,v)=0= mXin h(-,v)
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The family H(T)

A key member of H(T)

Fitzpatrick defined F7 : X x X* - R, as

Fr(x,x*):= sup (Y, x" )+ Xx—-y,y")
(y.y)eG(T)

which verifies
@ Fre H(T)
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The family H(T)

A key member of H(T)

Fitzpatrick defined F7 : X x X* - R, as

Fr(x,x*):= sup (Y, x" )+ Xx—-y,y")
(y.y)eG(T)

which verifies
@ Fre H(T)
@ Fr < h< (]:T)* =:orforallhe H(T)

Historical note: N.V.Krylov defined in 1980 F7 for T
point-to-point monotone in finite dimensions.
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The family H(T)

Main Ingredients lll: enlargement of the subdifferential

For ¢ : X — R convex, Isc, lete > 0, then d.¢ : X = X* is

© Jep(x) = {x" € X* 1 p(y)—p(x) = (X", y —X) =&, Vy € X},
if x € Domy. Otherwise, d.¢(x) = 0.
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For ¢ : X — R convex, Isc, lete > 0, then d.¢ : X = X* is

© Jep(x) = {x" € X* 1 p(y)—p(x) = (X", y —X) =&, Vy € X},
if x € Domy. Otherwise, d.¢(x) = 0.

v

dp(e, X) := d-pp(x) Brondsted-Rockafellar enlargement (1965)

dy characterized by Fenchel Young ineq.:

X, v) <Y (x,v) = o(x) + o*(v) < (X, V)+e < vedp(e,x).
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Additive enlargements
Mutual additivity
Enlargements of T New enlargements

The family E(T) of enlargements of T

E: Ry xX =2 X*isinE(T) when
(Ey) T(x) C E(e,x)foralle > 0,x € X;
(E2) 1f0 < ey <ep,then E(eq,X) C E(eg,x) for all x € X;

(E3) The transportation formula holds: Whenever
V! S E(&‘1,X1)7 v2 S E(EQ,XZ),OM, as >0, a1 +as=1,
= a1 X' + apx?, V= aqv! + apv? and
Fi= ey + agea + aqan (vl — v2 xT — x?), then

I

£>0and v e E(, X).|

Example: dp € E(dyp)
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Additive enlargements
Mutual additivity
Enlargements of T New enlargements

From enlargements to convex functions:

(E3) = é(E) convex,
where
G(E) = {(x,v,e) : ve E(e,x)}
pY
G(E) = {(x,v,e+(x,Vv)) : veE(e,x)}
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Enlargements of T

From E(T) to H(T)
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From E(T) to H(T)

epigraph of a Isc.

E € Enl(T) < G(E) isthe { convex function
on X x X*.

This convex function is given by

he(x,v) :=inf{t : (x,v,t) € G(E)}

Moreover, hg € H(T) forall E € E(T)!
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Additive enlargements
Mutual additivity
Enlargements of T New enlargements

From H(T) to E(T)

Given h € H(T) define L" : R, x X = X* as

LM, x):={ve X" : h(x,v) < (x,v)+¢}

Then Lh € E(T) for all h € H(T)!

H(T) «— E(T) B.-Svaiter, 2002.

bijection
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Additive enlargements
Mutual additivity
Enlargements of T New enlargements

Recall oY (x, v) = o(x) + ¢*(v), then oY € H(9)
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Additive enlargements
Mutual additivity
Enlargements of T New enlargements

Extreme members in the families

H(T) has a smallest and a largest element
Fr <h<or=(Fr)" E(T) has largest element:

TEE(e,x)i={ve X : (x—y,v—u)>—¢ VY (y,u) € G(T)},
and smallest T5E (e, x) = Necr(r)E(e, X),

Related through LT = TBE and L7 = TSE

hTSE =0T, and hTBE =Fr

Question: Can we identify a property that singles out “nice”
enlargements?
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@ E € E(T)is additive, if

Vi € E(61,X1), Vo € E(61,X2)

U
(Vi — Vo, X1 — X2) > — (&1 + €2).

Set Ea(T) := {E € E(T) : E additive}

dy is additive, i.e., dp € E4(dyp)
TSE is always additive, but TBE may not!

Additivity detects those elements in E( T) which have
something in common with dy!
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Additivity as a mutual relation/maximal property
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Enlargements of T New enlargements
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If T = 9y then dy is max-add (Svaiter, 2000)
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Additive enlargements
Mutual additivity
Enlargements of T New enlargements

Example of Max-Additivity

If T = 9y then dy is max-add (Svaiter, 2000)

If T arbitrary, then TSE is always additive, but not necesarily
max-add!

Max-additivity detects those elements in E,(T) which have
even more in common with 9!
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Additive enlargements
Mutual additivity
Enlargements of T New enlargements

Example of mutual additivity

If T arbitrary, then TSE and TBF are always mutually additive
(Svaiter, 2000)

Questions: How to identify additive elements E(T)? How to
identify max-add elements whithin E4(T)? How to characterize
mutual additivity?

We will address these using convex functions!
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Additive enlargements
Mutual additivity
Enlargements of T New enlargements

From convex functions to 7 and viceversa

Let f: X x X* — R, be convex, Fitzpatrick (1988) defined
Ti: X = X* as

Ti(x) :={ve X : (v,x)edf(x,v)} *
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From convex functions to 7 and viceversa

Let f: X x X* — R, be convex, Fitzpatrick (1988) defined
Ti: X = X* as

Ti(x) :={ve X : (v,x)edf(x,v)} *

Fitzpatrick proved that T mon, and for T monotone and f := F7:
@ Vxe X, T(x)C Tr(x).
@ T maximal = T = Tz,
Can recover T as a diagonal slice of the 0.7 7!

Question: What happens if we use 9f in %?
Can we still recover T?
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Operator A

Let he H(T), define 7 : H(T) — H(T) as
Jh(x,v):=h*(v,x)

l.e., J h swaps the variables of h*
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Operator A

Let he H(T), define 7 : H(T) — H(T) as
Jh(x,v):=h*(v,x)
l.e., J h swaps the variables of h* Define A : H(T) — H(T) as

_ h+Jh

Ah: 5

Fact: Ahe H(T)if he H(T).
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An induced subfamily of enlargements

Let T be max-mon and fix h € #(T). We define
Th: R x X = X* as

Th(e,x) :={v e X* : (v,x) € Oh(2e,x,v)} *
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Th: R x X = X* as

Th(e,x) :={v e X* : (v,x) € Oh(2e,x,v)} *

® Tp(x)=Th(0,x)=T
o Tp=LA soTyeE(T).

Define By (T) := {E € B(T) : E = T, for some h € H(T)}
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An induced subfamily of enlargements

22-28

Let T be max-mon and fix h € #(T). We define
Th: R x X = X* as

Th(e,x) :={v e X* : (v,x) € Oh(2e,x,v)} *

® Tp(x)=Th(0,x)=T
o Tp=LA soTyeE(T).

Define By (T) := {E € B(T) : E = T, for some h € H(T)}

Question: E«(T) has special properties, not shared by other
elements of E(T)?
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Characterizing Mutual and Maximal Additivity

Let E, E' € E(T), consider hg, hg: € H(T) the corresponding
functions (i.e., E = L"¢ and E’ = L")

@ E~y E'iff The < her. Hence, E € E4(T) iff The < hg.
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Let E, E' € E(T), consider hg, hg: € H(T) the corresponding
functions (i.e., E = L"¢ and E’ = L")

@ E~, E'iff The < he. Hence, E € Ey(T) iff The < he.
@ hg = Jhg iff E is max-add

@ In particular, E ~, L7he

@ Since L7"E is the largest enlargement mutually additive
with E, it is the “additive complement” of E.
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Characterizing Mutual and Maximal Additivity

Let E, E' € E(T), consider hg, hg: € H(T) the corresponding
functions (i.e., E = L"¢ and E’ = L")

@ E~, E'iff The < he. Hence, E € Ey(T) iff The < he.
@ hg = Jhg iff E is max-add

@ In particular, E ~, L7he

@ Since L7"E is the largest enlargement mutually additive
with E, it is the “additive complement” of E.

@ E is max-add iff it coincides with its additive complement.

23-28
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Conmutative diagram

Taking conjugates in H(T) is order reversing, and its effect in
E(T) is to map E into its additive complement.

J
H(T) H(T)
h Jh
L L
L Lh
E — LJhe
E(T) E(T)

Fixed points of 7 correspond to max-add elements!
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Relation w/previous facts

Recall oY (x, v) = ¢(x) + ¢*(v), since JoF¥ = oY we
confirm the fact that
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Relation w/previous facts

Recall oY (x, v) = ¢(x) + ¢*(v), since JoF¥ = oY we
confirm the fact that

dy is max-add

Previous result extends the known fact (Svaiter 2000):

TSE ., TBE
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Additive enlargements
Mutual additivity
Enlargements of T New enlargements

New enlargements are additive

Let h € H(T). The following hold:

o ThecEyT)

e T,is max-add iff 7Ah = Ah

@ Hence, if 7h = hthen T is max-add

26-28



Case T = 9¢p

Fix h € H(dp) and h < o + p* = oFY
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Case T = 9¢p

Fix h € H(dp) and h < o + p* = oFY
@ Ve > 0, x € Domy we have
Th(e/2,x) C dp(e, x)
o If h= oY we must have dp = T rv.

o Ifh= ./T&P
Tr,,(c/2,x) C p(e, x)

Hence, we can use the Fitzpatrick function 75, to obtain an
enlargement smaller than d¢

27-28



Case T = 9¢

Open problems

@ Does the subfamily E4(T) contain all additive
enlargements of T?
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