A new subfamily of enlargements of a maximally monotone operator

R.S.Burachik¹ J.E.Martínez Legaz² M.Rezaie³ M.Théra⁴

¹University of South Australia

^{2,3,4}Universidad Autónoma de Barcelona, University of Isfahan, University of Limoges

> Fitzpatrick Workshop SPCOM 2015, 10 February

> > ヘロト 人間ト 人団ト 人団ト

æ

Outline

- Preliminaries
- 3 The family $\mathcal{H}(T)$
- Inlargements of T
- **5** Case $T = \partial \varphi$

<ロト <回 > < 注 > < 注 > 、

ъ

Outline

- 3 The family $\mathcal{H}(T)$
- 4 Enlargements of T

<ロト <回 > < 注 > < 注 > 、

æ

Outline

Enlargements of T

ヘロン ヘ週ン ヘヨン ヘヨン

Outline

5 Case $T = \partial \varphi$

イロト 不得 とくほ とくほとう

Outline

イロト 不得 とくほ とくほとう

2

Inclusion Problems

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Monotone Inclusion Problem

Let $T : X \Rightarrow X^*$ be maximal monotone. Many nonlinear problems are stated as:

Given
$$z \in X^*$$
, find $x \in X$: $z \in T(x)$ (P₀)

Equivalently:

Given
$$z \in X^*$$
, find $x \in X$: $(x, z) \in G(T)$

solving $(P_0) \iff$ requires to know G(T)

Main Ingredients I: multivalued mappings

For $T: X \Longrightarrow X^*$ we define

- its graph as $G(T) := \{(x, x^*) \in X \times X^* : x^* \in T(x)\},\$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- its range as $R(T) := \bigcup \{T(x) : x \in D(T)\},\$

We say that T is

• monotone if

 $\langle y-x, y^*-x^*\rangle \geq 0$ $\forall (x,x^*), (y,y^*) \in G(T).$

(日) (圖) (E) (E) (E)

Main Ingredients I: multivalued mappings

For $T: X \rightrightarrows X^*$ we define

- its graph as $G(T) := \{(x, x^*) \in X \times X^* : x^* \in T(x)\},\$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- its range as $R(T) := \bigcup \{T(x) : x \in D(T)\},\$

We say that T is

• monotone if

 $\langle y-x, y^*-x^*\rangle \geq 0$ $\forall (x,x^*), (y,y^*) \in G(T).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Main Ingredients I: multivalued mappings

For $T: X \rightrightarrows X^*$ we define

- its graph as $G(T) := \{(x, x^*) \in X \times X^* : x^* \in T(x)\},\$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- its range as $R(T) := \bigcup \{T(x) : x \in D(T)\},\$

We say that *T* is

• monotone if

 $\langle y-x, y^*-x^*\rangle \geq 0$ $\forall (x,x^*), (y,y^*) \in G(T).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ □目 − ∽へ⊙

Main Ingredients I: multivalued mappings

For $T: X \rightrightarrows X^*$ we define

- its graph as $G(T) := \{(x, x^*) \in X \times X^* : x^* \in T(x)\},\$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- its range as $R(T) := \bigcup \{T(x) : x \in D(T)\},\$

We say that *T* is

• monotone if

 $\langle y-x, y^*-x^*\rangle \geq 0$ $\forall (x,x^*), (y,y^*) \in G(T).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ □目 − ∽へ⊙

Main Ingredients I: multivalued mappings

For $T: X \rightrightarrows X^*$ we define

- its graph as $G(T) := \{(x, x^*) \in X \times X^* : x^* \in T(x)\},\$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- its range as $R(T) := \bigcup \{T(x) : x \in D(T)\},\$

We say that T is

monotone if

 $\langle y-x, y^*-x^*\rangle \geq 0 \qquad \forall (x,x^*), (y,y^*) \in G(T).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Main Ingredients I: multivalued mappings

For $T: X \rightrightarrows X^*$ we define

- its graph as $G(T) := \{(x, x^*) \in X \times X^* : x^* \in T(x)\},\$
- its domain as $D(T) := \{x \in X : T(x) \neq \emptyset\},\$
- its range as $R(T) := \bigcup \{T(x) : x \in D(T)\},\$

We say that T is

monotone if

 $\langle y-x, y^*-x^*\rangle \geq 0 \qquad \forall (x,x^*), (y,y^*) \in G(T).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Main Ingredients II: subdifferentials

For $\varphi: {\it X} \rightarrow \mathbb{R}_\infty$ convex and lsc, we define

- $\operatorname{Dom} \varphi := \{x : \varphi(x) < \infty\}, \text{ and }$
- we say that φ is proper when $Dom\varphi \neq \emptyset$.
- the subdifferential of φ is the multivalued mapping
 ∂φ : X ⇒ X* defined by

 $\partial \varphi(x) := \{ x^* \in X^* : \varphi(y) - \varphi(x) \ge \langle x^*, y - x \rangle, \, \forall \, y \in X \},$

when $x \in \text{Dom}\varphi$. Otherwise $\partial \varphi(x) = \emptyset$.

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ― 国 - のへぐ

Main Ingredients II: subdifferentials

For $\varphi: X \to \mathbb{R}_\infty$ convex and lsc, we define

- $\operatorname{Dom} \varphi := \{x : \varphi(x) < \infty\}, \text{ and }$
- we say that φ is proper when $\text{Dom}\varphi \neq \emptyset$.
- the subdifferential of φ is the multivalued mapping
 ∂φ : X ⇒ X* defined by

 $\partial \varphi(x) := \{ x^* \in X^* : \varphi(y) - \varphi(x) \ge \langle x^*, y - x \rangle, \, \forall \, y \in X \},$

when $x \in \text{Dom}\varphi$. Otherwise $\partial \varphi(x) = \emptyset$.

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ― 国 - のへぐ

Main Ingredients II: subdifferentials

For $\varphi: X \to \mathbb{R}_\infty$ convex and lsc, we define

- $\operatorname{Dom} \varphi := \{x : \varphi(x) < \infty\}, \text{ and }$
- we say that φ is proper when $\text{Dom}\varphi \neq \emptyset$.
- the subdifferential of φ is the multivalued mapping
 ∂φ : X ⇒ X* defined by

$$\partial \varphi(\mathbf{x}) := \{\mathbf{x}^* \in \mathbf{X}^* : \varphi(\mathbf{y}) - \varphi(\mathbf{x}) \ge \langle \mathbf{x}^*, \mathbf{y} - \mathbf{x} \rangle, \, \forall \, \mathbf{y} \in \mathbf{X}\},$$

when $x \in \text{Dom}\varphi$. Otherwise $\partial \varphi(x) = \emptyset$.

Fenchel Young inequality

Let $\varphi: X \to \mathbb{R}_\infty$ be convex and lsc, $\varphi^*: X^* \to \mathbb{R}_\infty$

$$arphi^*(oldsymbol{v}) := \sup_{oldsymbol{x}\in oldsymbol{X}} \{ \langle oldsymbol{x}, oldsymbol{v}
angle - arphi(oldsymbol{x}) \}$$

is the *conjugate of* φ . The *Fenchel Young inequality* states

$$egin{array}{rcl} arphi(m{x})+arphi^*(m{v})&\geq&\langlem{x},m{v}
angle,\ orall\,m{x}\inm{X},m{v}\inm{X}^*\\ arphi(m{x})+arphi^*(m{v})&=&\langlem{x},m{v}
angle,\ &igoddots\ m{v}\in\partialarphi(m{x}). \end{array}$$

Notation: $\varphi^{FY}(x, v) := \varphi(x) + \varphi^*(v)$

Fitzpatrick Theory: the family $\mathcal{H}(T)$

In 1988 Fitzpatrick defined the family $\mathcal{H}(T)$ consisting of all $h: X \times X^* \to \mathbb{R}_{\infty}$ convex and lsc such that:

$$\begin{array}{rcl} h(x,v) & \geq & \langle x,v\rangle, \; \forall \; x \in X, v \in X^* \\ h(x,v) & = & \langle x,v\rangle, \; \Longleftrightarrow \; v \in T(x). \end{array}$$

Given v this reformulates the monotone inclusion as an optimization problem in X: Find x such that

$$h(x,v)=0=\min_{x}h(\cdot,v)$$

イロン 不得 とくほ とくほ とうほ

Fitzpatrick Theory: the family $\mathcal{H}(T)$

In 1988 Fitzpatrick defined the family $\mathcal{H}(T)$ consisting of all $h: X \times X^* \to \mathbb{R}_{\infty}$ convex and lsc such that:

$$\begin{array}{rcl} h(x,v) & \geq & \langle x,v\rangle, \; \forall \; x \in X, v \in X^* \\ h(x,v) & = & \langle x,v\rangle, \; \Longleftrightarrow \; v \in T(x). \end{array}$$

Given v this reformulates the monotone inclusion as an optimization problem in X: Find x such that

$$h(x,v) = 0 = \min_{x} h(\cdot,v)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Fitzpatrick Theory: the family $\mathcal{H}(T)$

In 1988 Fitzpatrick defined the family $\mathcal{H}(T)$ consisting of all $h: X \times X^* \to \mathbb{R}_{\infty}$ convex and lsc such that:

$$\begin{array}{rcl} h(x,v) & \geq & \langle x,v\rangle, \; \forall \; x \in X, v \in X^* \\ h(x,v) & = & \langle x,v\rangle, \; \Longleftrightarrow \; v \in T(x). \end{array}$$

Given v this reformulates the monotone inclusion as an optimization problem in X: Find x such that

$$h(x,v)=0=\min_{x}h(\cdot,v)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

A key member of $\mathcal{H}(T)$

Fitzpatrick defined $\mathcal{F}_{\mathcal{T}}: X \times X^* \to \mathbb{R}_\infty$ as

$$\mathcal{F}_{\mathcal{T}}(x,x^*) := \sup_{(y,y)\in G(\mathcal{T})} \langle y,x^*
angle + \langle x-y,y^*
angle$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

which verifies

•
$$\mathcal{F}_T \in \mathcal{H}(T)$$

• $\mathcal{F}_T \leq h \leq (\mathcal{F}_T)^* =: \sigma_T \text{ for all } h \in \mathcal{H}(T)$

A key member of $\mathcal{H}(T)$

Fitzpatrick defined $\mathcal{F}_{\mathcal{T}}: X \times X^* \to \mathbb{R}_\infty$ as

$$\mathcal{F}_{\mathcal{T}}(x,x^*) := \sup_{(y,y)\in G(\mathcal{T})} \langle y,x^*
angle + \langle x-y,y^*
angle$$

イロン 不得 とくほ とくほ とうほ

which verifies

•
$$\mathcal{F}_T \in \mathcal{H}(T)$$

• $\mathcal{F}_T \leq h \leq (\mathcal{F}_T)^* =: \sigma_T \text{ for all } h \in \mathcal{H}(T)$

A key member of $\mathcal{H}(T)$

Fitzpatrick defined $\mathcal{F}_{\mathcal{T}}: X \times X^* \to \mathbb{R}_\infty$ as

$$\mathcal{F}_{\mathcal{T}}(x,x^*) := \sup_{(y,y)\in G(\mathcal{T})} \langle y,x^*
angle + \langle x-y,y^*
angle$$

イロン 不得 とくほ とくほ とうほ

which verifies

•
$$\mathcal{F}_T \in \mathcal{H}(T)$$

• $\mathcal{F}_T \leq h \leq (\mathcal{F}_T)^* =: \sigma_T \text{ for all } h \in \mathcal{H}(T)$

A key member of $\mathcal{H}(T)$

Fitzpatrick defined $\mathcal{F}_{\mathcal{T}}: X \times X^* \to \mathbb{R}_\infty$ as

$$\mathcal{F}_{\mathcal{T}}(x,x^*) := \sup_{(y,y)\in G(\mathcal{T})} \langle y,x^*
angle + \langle x-y,y^*
angle$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

which verifies

•
$$\mathcal{F}_T \in \mathcal{H}(T)$$

• $\mathcal{F}_T \leq h \leq (\mathcal{F}_T)^* =: \sigma_T \text{ for all } h \in \mathcal{H}(T)$

Main Ingredients III: enlargement of the subdifferential

For $\varphi: X \to \mathbb{R}_{\infty}$ convex, lsc, let $\varepsilon \geq 0$, then $\partial_{\varepsilon} \varphi: X \rightrightarrows X^*$ is

∂_εφ(x) := {x* ∈ X* : φ(y)−φ(x) ≥ ⟨x*, y−x⟩−ε, ∀y ∈ X},
if x ∈ Domφ. Otherwise, ∂_εφ(x) = Ø.

 $\check{\partial} \varphi(\varepsilon, x) := \partial_{\varepsilon} \varphi(x)$ Brøndsted-Rockafellar enlargement (1965) $\check{\partial} \varphi$ characterized by *Fenchel Young ineq.*:

 $\langle x,v\rangle \leq \varphi^{FY}(x,v) = \varphi(x) + \varphi^*(v) \leq \langle x,v\rangle + \varepsilon \iff v \in \check{\partial}\varphi(\varepsilon,x).$

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ♥

Main Ingredients III: enlargement of the subdifferential

For $\varphi: X \to \mathbb{R}_{\infty}$ convex, lsc, let $\varepsilon \geq 0$, then $\partial_{\varepsilon} \varphi: X \rightrightarrows X^*$ is

∂_εφ(x) := {x* ∈ X* : φ(y)−φ(x) ≥ ⟨x*, y−x⟩−ε, ∀y ∈ X},
if x ∈ Domφ. Otherwise, ∂_εφ(x) = Ø.

 $\check{\partial} \varphi(\varepsilon, x) := \partial_{\varepsilon} \varphi(x)$ Brøndsted-Rockafellar enlargement (1965) $\check{\partial} \varphi$ characterized by *Fenchel Young ineq.*:

 $\langle x,v\rangle \leq \varphi^{FY}(x,v) = \varphi(x) + \varphi^*(v) \leq \langle x,v\rangle + \varepsilon \iff v \in \check{\partial}\varphi(\varepsilon,x).$

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ♥

Main Ingredients III: enlargement of the subdifferential

For $\varphi: X \to \mathbb{R}_{\infty}$ convex, lsc, let $\varepsilon \geq 0$, then $\partial_{\varepsilon} \varphi: X \rightrightarrows X^*$ is

• $\partial_{\varepsilon}\varphi(\mathbf{x}) := \{\mathbf{x}^* \in \mathbf{X}^* : \varphi(\mathbf{y}) - \varphi(\mathbf{x}) \ge \langle \mathbf{x}^*, \mathbf{y} - \mathbf{x} \rangle - \varepsilon, \ \forall \ \mathbf{y} \in \mathbf{X}\},\$

 $\text{ if } x \in \mathrm{Dom} \varphi. \text{ Otherwise, } \partial_{\varepsilon} \varphi(x) = \emptyset.$

 $\check{\partial}\varphi(\varepsilon, \mathbf{x}) := \partial_{\varepsilon}\varphi(\mathbf{x})$ Brøndsted-Rockafellar enlargement (1965) $\check{\partial}\varphi$ characterized by *Fenchel Young ineq.*:

 $\langle X, V \rangle \leq \varphi^{FY}(X, V) = \varphi(X) + \varphi^*(V) \leq \langle X, V \rangle + \varepsilon \iff V \in \check{\partial} \varphi(\varepsilon, X).$

Main Ingredients III: enlargement of the subdifferential

For $\varphi: X \to \mathbb{R}_{\infty}$ convex, lsc, let $\varepsilon \ge 0$, then $\partial_{\varepsilon} \varphi: X \rightrightarrows X^*$ is

•
$$\partial_{\varepsilon}\varphi(\mathbf{x}) := \{\mathbf{x}^* \in \mathbf{X}^* : \varphi(\mathbf{y}) - \varphi(\mathbf{x}) \ge \langle \mathbf{x}^*, \mathbf{y} - \mathbf{x} \rangle - \varepsilon, \ \forall \ \mathbf{y} \in \mathbf{X}\},\$$

 $\text{ if } x \in \mathrm{Dom} \varphi. \text{ Otherwise, } \partial_{\varepsilon} \varphi(x) = \emptyset.$

 $\check{\partial}\varphi(\varepsilon, \mathbf{x}) := \partial_{\varepsilon}\varphi(\mathbf{x})$ Brøndsted-Rockafellar enlargement (1965) $\check{\partial}\varphi$ characterized by *Fenchel Young ineq.*:

$$\langle x,v
angle \leq arphi^{FY}(x,v) = arphi(x) + arphi^*(v) \leq \langle x,v
angle + arepsilon \iff v \in \check{\partial} arphi(arepsilon,x).$$

Additive enlargements Mutual additivity New enlargements

The family $\mathbb{E}(T)$ of enlargements of T

$E:\mathbb{R}_+ imes X ightrightarrow X^*$ is in $\mathbb{E}(T)$ when

(*E*₁) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon \ge 0, x \in X$; (*E*₂) If $0 \le \varepsilon_1 \le \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$; (*E*₃) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1,$ $\bar{x} := \alpha_1 x^1 + \alpha_2 x^2, \bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and $\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 (v^1 - v^2, x^1 - x^2)$, then

 $\overline{\varepsilon} \geq 0$ and $\overline{v} \in E(\overline{\varepsilon}, \overline{x})$.

Additive enlargements Mutual additivity New enlargements

The family $\mathbb{E}(T)$ of enlargements of T

- $E:\mathbb{R}_+ imes X
 ightrightarrow X^*$ is in $\mathbb{E}(T)$ when
- (*E*₁) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon \ge 0, x \in X$;
- (*E*₂) If $0 \le \varepsilon_1 \le \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;
 - E_3) The transportation formula holds: Whenever
 - $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1,$ $\bar{x} := \alpha_1 x^1 + \alpha_2 x^2, \bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and $\bar{z} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \varepsilon_1 + \alpha_2 v^2$ then

 $ararepsilon:=lpha_1arepsilon_1+lpha_2arepsilon_2+lpha_1lpha_2\langle v^1-v^2,x^1-x^2
angle$, then

 $\overline{\varepsilon} \geq 0$ and $\overline{v} \in E(\overline{\varepsilon}, \overline{x})$.

Additive enlargements Mutual additivity New enlargements

The family $\mathbb{E}(T)$ of enlargements of T

 $E:\mathbb{R}_+ imes X
ightrightarrow X^*$ is in $\mathbb{E}(T)$ when

(*E*₁) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon \ge 0, x \in X$;

(*E*₂) If $0 \le \varepsilon_1 \le \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(E₃) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1,$ $\bar{x} := \alpha_1 x^1 + \alpha_2 x^2, \bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and $\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle v^1 - v^2, x^1 - x^2 \rangle$, then

 $\overline{\varepsilon} \geq 0$ and $\overline{v} \in E(\overline{\varepsilon}, \overline{x})$.

Additive enlargements Mutual additivity New enlargements

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The family $\mathbb{E}(T)$ of enlargements of T

 $E : \mathbb{R}_+ \times X \rightrightarrows X^*$ is in $\mathbb{E}(T)$ when

(*E*₁) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon \ge 0, x \in X$;

(*E*₂) If $0 \le \varepsilon_1 \le \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(*E*₃) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1,$ $\bar{x} := \alpha_1 x^1 + \alpha_2 x^2, \bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and $\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle v^1 - v^2, x^1 - x^2 \rangle$, then

 $\overline{\varepsilon} \geq 0$ and $\overline{v} \in E(\overline{\varepsilon}, \overline{x})$.

Additive enlargements Mutual additivity New enlargements

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The family $\mathbb{E}(T)$ of enlargements of T

 $E : \mathbb{R}_+ \times X \rightrightarrows X^*$ is in $\mathbb{E}(T)$ when

(*E*₁) $T(x) \subset E(\varepsilon, x)$ for all $\varepsilon \ge 0, x \in X$;

(*E*₂) If $0 \le \varepsilon_1 \le \varepsilon_2$, then $E(\varepsilon_1, x) \subset E(\varepsilon_2, x)$ for all $x \in X$;

(*E*₃) The transportation formula holds: Whenever $v^1 \in E(\varepsilon_1, x^1), v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1,$ $\bar{x} := \alpha_1 x^1 + \alpha_2 x^2, \bar{v} := \alpha_1 v^1 + \alpha_2 v^2$ and $\bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle v^1 - v^2, x^1 - x^2 \rangle$, then

 $\overline{\varepsilon} \geq 0$ and $\overline{v} \in E(\overline{\varepsilon}, \overline{x})$.

Additive enlargements Mutual additivity New enlargements

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The family $\mathbb{E}(T)$ of enlargements of T

 $\begin{array}{l} E: \mathbb{R}_+ \times X \rightrightarrows X^* \text{ is in } \mathbb{E}(T) \text{ when} \\ (E_1) \quad T(x) \subset E(\varepsilon, x) \text{ for all } \varepsilon \geq 0, x \in X; \\ (E_2) \quad \text{If } 0 \leq \varepsilon_1 \leq \varepsilon_2 \text{ , then } E(\varepsilon_1, x) \subset E(\varepsilon_2, x) \text{ for all } x \in X; \\ (E_3) \quad \text{The transportation formula holds: Whenever} \\ \quad v^1 \in E(\varepsilon_1, x^1), \ v^2 \in E(\varepsilon_2, x^2), \alpha_1, \alpha_2 \geq 0, \quad \alpha_1 + \alpha_2 = 1, \\ \quad \bar{x} := \alpha_1 x^1 + \alpha_2 x^2, \ \bar{v} := \alpha_1 v^1 + \alpha_2 v^2 \text{ and} \\ \quad \bar{\varepsilon} := \alpha_1 \varepsilon_1 + \alpha_2 \varepsilon_2 + \alpha_1 \alpha_2 \langle v^1 - v^2, x^1 - x^2 \rangle, \text{ then} \end{array}$

 $\overline{\varepsilon} \geq 0$ and $\overline{v} \in E(\overline{\varepsilon}, \overline{x})$.

Additive enlargements Mutual additivity New enlargements

From enlargements to convex functions:

$$(E_3) \iff \widetilde{G}(E) \text{ convex},$$

where

$$\begin{array}{rcl} G(E) & := & \{(x,v,\varepsilon) \, : \, v \in E(\varepsilon,x)\} \\ & \searrow \\ & \overleftarrow{G}(E) & := & \{(x,v,\varepsilon{+}\langle x,v\rangle) \, : \, v \in E(\varepsilon,x)\} \end{array}$$

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ― 国 - のへぐ

Additive enlargements Mutual additivity New enlargements

From $\mathbb{E}(T)$ to $\mathcal{H}(T)$

$E\in \mathit{Enl}(T) \Longleftrightarrow \widetilde{G}(E)$ is the \langle	epigraph of a lsc. convex function on $X \times X^*$.
--	--

This convex function is given by

$$h_E(x,v) := \inf\{t : (x,v,t) \in \widetilde{G}(E)\}$$

Moreover, $h_E \in \mathcal{H}(T)$ for all $E \in \mathbb{E}(T)$!

Additive enlargements Mutual additivity New enlargements

From $\mathbb{E}(T)$ to $\mathcal{H}(T)$

$E\in \mathit{Enl}(T) \Longleftrightarrow \widetilde{G}(E)$ is the \sim	$\begin{cases} epigraph of a lsc. \\ convex function \\ on X \times X^*. \end{cases}$
---	---

This convex function is given by

$$h_E(x,v) := \inf\{t : (x,v,t) \in \widetilde{G}(E)\}$$

Moreover, $h_E \in \mathcal{H}(T)$ for all $E \in \mathbb{E}(T)$!

Additive enlargements Mutual additivity New enlargements

イロン 不得 とくほ とくほ とうほ

From $\mathbb{E}(T)$ to $\mathcal{H}(T)$

$E \in Enl(T) \iff \widetilde{G}(E)$ is the $\left\{ e^{i H} \left\{ e^{i H} \right\} \right\}$	(epigraph of a lsc. convex function on $X \times X^*$.
---	---

This convex function is given by

$$h_{E}(x,v) := \inf\{t : (x,v,t) \in \widetilde{G}(E)\}$$

Moreover, $h_E \in \mathcal{H}(T)$ for all $E \in \mathbb{E}(T)$!

Additive enlargements Mutual additivity New enlargements

イロン 不得 とくほ とくほ とうほ

From $\mathbb{E}(T)$ to $\mathcal{H}(T)$

$E \in Enl(T) \iff \widetilde{G}(E)$ is the $\left\{ e^{i H} \left\{ e^{i H} \right\} \right\}$	(epigraph of a lsc. convex function on $X \times X^*$.
---	---

This convex function is given by

$$h_{E}(x,v) := \inf\{t : (x,v,t) \in \widetilde{G}(E)\}$$

Moreover, $h_E \in \mathcal{H}(T)$ for all $E \in \mathbb{E}(T)$!

Additive enlargements Mutual additivity New enlargements

From $\mathcal{H}(T)$ to $\mathbb{E}(T)$

Given $h \in \mathcal{H}(T)$ define $L^h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$L^{h}(\varepsilon, x) := \{ v \in X^{*} : h(x, v) \le \langle x, v \rangle + \varepsilon \}$

Then $L^h \in \mathbb{E}(T)$ for all $h \in \mathcal{H}(T)$!

$$\mathcal{H}(T) \underset{bijection}{\longleftrightarrow} \mathbb{E}(T)$$

B.-Svaiter, 2002.

Additive enlargements Mutual additivity New enlargements

From $\mathcal{H}(T)$ to $\mathbb{E}(T)$

Given $h \in \mathcal{H}(T)$ define $L^h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$$L^h(\varepsilon, \mathbf{x}) := \{ \mathbf{v} \in \mathbf{X}^* : h(\mathbf{x}, \mathbf{v}) \le \langle \mathbf{x}, \mathbf{v} \rangle + \varepsilon \}$$

Then $L^h \in \mathbb{E}(T)$ for all $h \in \mathcal{H}(T)$!

$$\mathcal{H}(T) \underset{\textit{bijection}}{\longleftrightarrow} \mathbb{E}(T)$$

B.-Svaiter, 2002.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Additive enlargements Mutual additivity New enlargements

From $\mathcal{H}(T)$ to $\mathbb{E}(T)$

Given $h \in \mathcal{H}(T)$ define $L^h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$$L^h(\varepsilon, \mathbf{x}) := \{ \mathbf{v} \in \mathbf{X}^* : h(\mathbf{x}, \mathbf{v}) \le \langle \mathbf{x}, \mathbf{v} \rangle + \varepsilon \}$$

Then $L^h \in \mathbb{E}(T)$ for all $h \in \mathcal{H}(T)$!

$$\mathcal{H}(\mathsf{T}) \underset{\textit{bijection}}{\longleftrightarrow} \mathbb{E}(\mathsf{T})$$

B.-Svaiter, 2002.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Additive enlargements Mutual additivity New enlargements

From $\mathcal{H}(T)$ to $\mathbb{E}(T)$

Given $h \in \mathcal{H}(T)$ define $L^h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as

$$L^h(\varepsilon, \mathbf{x}) := \{ \mathbf{v} \in \mathbf{X}^* : h(\mathbf{x}, \mathbf{v}) \le \langle \mathbf{x}, \mathbf{v} \rangle + \varepsilon \}$$

Then $L^h \in \mathbb{E}(T)$ for all $h \in \mathcal{H}(T)$!

$$\mathcal{H}(T) \underset{bijection}{\longleftrightarrow} \mathbb{E}(T)$$
 B.-Svaiter, 2002.

Additive enlargements Mutual additivity New enlargements

Case $T = \partial \varphi$

Recall $\varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v)$, then $\varphi^{FY} \in \mathcal{H}(\partial \varphi)$

Additive enlargements Mutual additivity New enlargements

イロト 不得 とくほ とくほ とうほ

Extreme members in the families

 $\mathcal{H}(T)$ has a smallest and a largest element $\mathcal{F}_T \leq h \leq \sigma_T = (\mathcal{F}_T)^*, \mathbb{E}(T)$ has largest element:

$$T^{BE}(\varepsilon, x) := \{ v \in X^* : \langle x - y, v - u \rangle \ge -\varepsilon, \forall (y, u) \in G(T) \},\$$

and smallest $T^{SE}(\varepsilon, x) = \bigcap_{E \in \mathbb{E}(T)} E(\varepsilon, x)$,

Related through $L^{\mathcal{F}_{\mathcal{T}}} = T^{BE}$, and $L^{\sigma_{\mathcal{T}}} = T^{SE}$

$$h_{TSE} = \sigma_T$$
, and $h_{TBE} = \mathcal{F}_T$

Additive enlargements Mutual additivity New enlargements

イロン 不得 とくほ とくほ とうほ

Extreme members in the families

 $\mathcal{H}(T)$ has a smallest and a largest element $\mathcal{F}_T \leq h \leq \sigma_T = (\mathcal{F}_T)^*, \mathbb{E}(T)$ has largest element:

$$T^{BE}(\varepsilon, x) := \{ v \in X^* : \langle x - y, v - u \rangle \ge -\varepsilon, \forall (y, u) \in G(T) \},$$

and smallest $T^{SE}(\varepsilon, x) = \bigcap_{E \in \mathbb{E}(T)} E(\varepsilon, x)$,

Related through $L^{\mathcal{F}_{\mathcal{T}}} = T^{BE}$, and $L^{\sigma_{\mathcal{T}}} = T^{SE}$

$$h_{TSE} = \sigma_T$$
, and $h_{TBE} = \mathcal{F}_T$

Additive enlargements Mutual additivity New enlargements

Extreme members in the families

 $\mathcal{H}(T)$ has a smallest and a largest element $\mathcal{F}_T \leq h \leq \sigma_T = (\mathcal{F}_T)^*, \mathbb{E}(T)$ has largest element:

$$\mathcal{T}^{\mathcal{BE}}(arepsilon, \mathbf{x}) := \{ \mathbf{v} \in \mathbf{X}^* \ : \ \langle \mathbf{x} - \mathbf{y}, \mathbf{v} - \mathbf{u}
angle \geq -arepsilon, \ orall \left(\mathbf{y}, \mathbf{u}
ight) \in \mathbf{G}(\mathbf{T}) \},$$

and smallest $T^{SE}(\varepsilon, x) = \bigcap_{E \in \mathbb{E}(T)} E(\varepsilon, x)$,

Related through $L^{\mathcal{F}_{\mathcal{T}}} = T^{BE}$, and $L^{\sigma_{\mathcal{T}}} = T^{SE}$

$$h_{TSE} = \sigma_T$$
, and $h_{TBE} = \mathcal{F}_T$

Additive enlargements Mutual additivity New enlargements

Extreme members in the families

 $\mathcal{H}(T)$ has a smallest and a largest element $\mathcal{F}_T \leq h \leq \sigma_T = (\mathcal{F}_T)^*, \mathbb{E}(T)$ has largest element:

$$T^{BE}(arepsilon, \mathbf{x}) := \{ \mathbf{v} \in \mathbf{X}^* : \langle \mathbf{x} - \mathbf{y}, \mathbf{v} - \mathbf{u}
angle \geq -arepsilon, \, orall (\mathbf{y}, \mathbf{u}) \in \mathbf{G}(\mathbf{T}) \},$$

and smallest $T^{SE}(\varepsilon, x) = \bigcap_{E \in \mathbb{E}(T)} E(\varepsilon, x)$,

Related through $L^{\mathcal{F}_{\mathcal{T}}} = T^{BE}$, and $L^{\sigma_{\mathcal{T}}} = T^{SE}$

$$h_{TSE} = \sigma_T$$
, and $h_{TBE} = \mathcal{F}_T$

Additive enlargements Mutual additivity New enlargements

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Extreme members in the families

 $\mathcal{H}(T)$ has a smallest and a largest element $\mathcal{F}_T \leq h \leq \sigma_T = (\mathcal{F}_T)^*, \mathbb{E}(T)$ has largest element:

$$\mathcal{T}^{\mathcal{BE}}(arepsilon, \mathbf{x}) := \{ \mathbf{v} \in \mathbf{X}^* \ : \ \langle \mathbf{x} - \mathbf{y}, \mathbf{v} - \mathbf{u}
angle \geq -arepsilon, \ orall \left(\mathbf{y}, \mathbf{u}
ight) \in \mathcal{G}(\mathcal{T}) \},$$

and smallest $T^{SE}(\varepsilon, x) = \bigcap_{E \in \mathbb{E}(T)} E(\varepsilon, x)$,

Related through $L^{\mathcal{F}_{\mathcal{T}}} = T^{BE}$, and $L^{\sigma_{\mathcal{T}}} = T^{SE}$

$$h_{T^{SE}} = \sigma_T$$
, and $h_{T^{BE}} = \mathcal{F}_T$

Additivity

• $E \in \mathbb{E}(T)$ is *additive*, if

$$\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\downarrow \downarrow}$$

$$\langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2)$$

Additive enlargements

(日)

Set $\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \}$

 $\check{\partial \varphi}$ is additive, i.e., $\check{\partial \varphi} \in \mathbb{E}_a(\partial \varphi)$

 T^{SE} is always additive, but T^{BE} may not!

Additivity

• $E \in \mathbb{E}(T)$ is *additive*, if

$$\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\downarrow \downarrow}$$

$$\langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2)$$

Additive enlargements

Set $\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \}$

 $\check{\partial \varphi}$ is additive, i.e., $\check{\partial \varphi} \in \mathbb{E}_a(\partial \varphi)$

 T^{SE} is always additive, but T^{BE} may not!

Additivity

• $E \in \mathbb{E}(T)$ is *additive*, if

$$\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\Downarrow} \\ \langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2).$$

Additive enlargements

Set $\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \}$

 $\check{\partial \varphi}$ is additive, i.e., $\check{\partial \varphi} \in \mathbb{E}_a(\partial \varphi)$

T^{SE} is always additive, but T^{BE} may not!

Additivity

• $E \in \mathbb{E}(T)$ is *additive*, if

$$\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\Downarrow} \\ \langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2).$$

Additive enlargements

Set $\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \}$

 $\check{\partial \varphi}$ is additive, i.e., $\check{\partial \varphi} \in \mathbb{E}_a(\partial \varphi)$ T^{SE} is always additive, but T^{BE} may not!

Additivity

• $E \in \mathbb{E}(T)$ is *additive*, if

$$\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\Downarrow} \\ \langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2).$$

Additive enlargements

Set $\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \}$

 $\check{\partial \varphi}$ is additive, i.e., $\check{\partial \varphi} \in \mathbb{E}_a(\partial \varphi)$ T^{SE} is always additive, but T^{BE} may not!

Additivity

• $E \in \mathbb{E}(T)$ is *additive*, if

$$\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\Downarrow} \\ \langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2).$$

Additive enlargements

Set $\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \}$

 $\check{\partial \varphi}$ is additive, i.e., $\check{\partial \varphi} \in \mathbb{E}_a(\partial \varphi)$ T^{SE} is always additive, but T^{BE} may not!

Additivity

• $E \in \mathbb{E}(T)$ is *additive*, if

$$\underbrace{v_1 \in E(\varepsilon_1, x_1), v_2 \in E(\varepsilon_1, x_2)}_{\Downarrow}$$

$$\langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2).$$

Additive enlargements

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Set $\mathbb{E}_a(T) := \{ E \in \mathbb{E}(T) : E \text{ additive} \}$

 $\check{\partial \varphi}$ is additive, i.e., $\check{\partial \varphi} \in \mathbb{E}_a(\partial \varphi)$

 T^{SE} is always additive, but T^{BE} may not!

Additive enlargements Mutual additivity New enlargements

Additivity as a mutual relation/maximal property

• $E \in \mathbb{E}_a(T)$ is *maximally additive* (*max-add*, for short), if

$$\underbrace{\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \ge 0, \forall x \in X}_{\substack{\Downarrow \\ E = \hat{E}}}$$

• $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$\underbrace{v_1 \in E_1(\varepsilon_1, x_1), v_2 \in E_2(\varepsilon_1, x_2)}_{\downarrow\downarrow}$$
$$\langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2).$$

Denoted as $E_1\sim_a E_2 \implies E\sim_a E$ iff $E\in \mathbb{E}_a(T)$

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ♥

Additive enlargements Mutual additivity New enlargements

Additivity as a mutual relation/maximal property

• $E \in \mathbb{E}_a(T)$ is *maximally additive* (*max-add*, for short), if

$$\underbrace{\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \ge 0, \forall x \in X}_{\substack{\Downarrow \\ E = \hat{E}}}$$

• $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$\underbrace{\frac{v_1 \in E_1(\varepsilon_1, x_1), v_2 \in E_2(\varepsilon_1, x_2)}{\Downarrow}}_{\langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2)}$$

Denoted as $E_1 \sim_a E_2 \implies E \sim_a E$ iff $E \in \mathbb{E}_a(T)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Additive enlargements Mutual additivity New enlargements

Additivity as a mutual relation/maximal property

• $E \in \mathbb{E}_a(T)$ is *maximally additive* (*max-add*, for short), if

$$\underbrace{\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \ge 0, \forall x \in X}_{\substack{\Downarrow \\ E = \hat{E}}}$$

• $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$\underbrace{\frac{v_1 \in E_1(\varepsilon_1, x_1), v_2 \in E_2(\varepsilon_1, x_2)}{\Downarrow}}_{\langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2)}$$

Denoted as $E_1 \sim_a E_2 \implies E \sim_a E$ iff $E \in \mathbb{E}_a(T)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Additive enlargements Mutual additivity New enlargements

Additivity as a mutual relation/maximal property

• $E \in \mathbb{E}_a(T)$ is *maximally additive* (*max-add*, for short), if

$$\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \ge 0, \forall x \in X$$
$$\overset{\Downarrow}{E = \hat{E}}$$

• $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$\underbrace{ \underbrace{ v_1 \in E_1(\varepsilon_1, x_1), v_2 \in E_2(\varepsilon_1, x_2)}_{\Downarrow} }_{\langle v_1 - v_2, x_1 - x_2 \rangle \geq -(\varepsilon_1 + \varepsilon_2).}$$

Denoted as $E_1\sim_a E_2 \implies E\sim_a E$ iff $E\in \mathbb{E}_a(T)$

◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

Additive enlargements Mutual additivity New enlargements

Additivity as a mutual relation/maximal property

• $E \in \mathbb{E}_a(T)$ is *maximally additive* (*max-add*, for short), if

$$\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \ge 0, \forall x \in X$$
$$\overset{\Downarrow}{E = \hat{E}}$$

• $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$\underbrace{ \underbrace{v_1 \in E_1(\varepsilon_1, x_1), v_2 \in E_2(\varepsilon_1, x_2)}_{\Downarrow}}_{\langle v_1 - v_2, x_1 - x_2 \rangle \ge -(\varepsilon_1 + \varepsilon_2).}$$

Denoted as $E_1 \sim_a E_2 \implies E \sim_a E$ iff $E \in \mathbb{E}_a(T)$

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ♥

Additive enlargements Mutual additivity New enlargements

Additivity as a mutual relation/maximal property

• $E \in \mathbb{E}_a(T)$ is *maximally additive* (*max-add*, for short), if

$$\exists \hat{E} \in \mathbb{E}_{a}(T) : E(\varepsilon, x) \subset \hat{E}(\varepsilon, x), \forall \varepsilon \ge 0, \forall x \in X$$
$$\overset{\Downarrow}{E = \hat{E}}$$

• $E_1, E_2 \in \mathbb{E}(T)$ are *mutually additive*, if

$$\underbrace{ \begin{matrix} \mathbf{v}_1 \in E_1(\varepsilon_1, x_1), \ \mathbf{v}_2 \in E_2(\varepsilon_1, x_2) \\ \\ \downarrow \\ \langle \mathbf{v}_1 - \mathbf{v}_2, x_1 - x_2 \rangle \geq -(\varepsilon_1 + \varepsilon_2). \end{matrix} }_{\Downarrow}$$

Denoted as $E_1 \sim_a E_2 \implies E \sim_a E$ iff $E \in \mathbb{E}_a(T)$

Additive enlargements Mutual additivity New enlargements

イロト イポト イヨト イヨト 三日

Example of Max-Additivity

If $T = \partial \varphi$ then $\check{\partial \varphi}$ is max-add (Svaiter, 2000)

If T arbitrary, then T^{SE} is always additive, but not necesarily max-add!

Max-additivity detects those elements in $\mathbb{E}_a(T)$ which have even more in common with $\tilde{\partial}\varphi$!

Additive enlargements Mutual additivity New enlargements

イロト イポト イヨト イヨト 三日

Example of Max-Additivity

If $T = \partial \varphi$ then $\check{\partial \varphi}$ is max-add (Svaiter, 2000)

If T arbitrary, then T^{SE} is always additive, but not necesarily max-add!

Max-additivity detects those elements in $\mathbb{E}_a(T)$ which have even more in common with $\tilde{\partial}\varphi$!

Additive enlargements Mutual additivity New enlargements

Example of Max-Additivity

If $T = \partial \varphi$ then $\check{\partial \varphi}$ is max-add (Svaiter, 2000)

If T arbitrary, then T^{SE} is always additive, but not necesarily max-add!

Max-additivity detects those elements in $\mathbb{E}_a(T)$ which have even more in common with $\check{\partial}\varphi$!

Additive enlargements Mutual additivity New enlargements

Example of mutual additivity

If T arbitrary, then T^{SE} and T^{BE} are always mutually additive (Svaiter, 2000)

Questions: How to identify additive elements $\mathbb{E}(T)$? How to identify max-add elements whithin $\mathbb{E}_a(T)$? How to characterize mutual additivity?

We will address these using convex functions!

Additive enlargements Mutual additivity New enlargements

From convex functions to T and viceversa

Let $f: X \times X^* \to \mathbb{R}_{\infty}$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$T_f(x) := \{ v \in X^* : (v, x) \in \partial f(x, v) \} \quad \bigstar$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

- $\forall x \in X, \ T(x) \subseteq T_{\mathcal{F}_{\mathcal{T}}}(x).$
- T maximal $\implies T = T_{\mathcal{F}_T}$

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Additive enlargements Mutual additivity New enlargements

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

From convex functions to T and viceversa

Let $f: X \times X^* \to \mathbb{R}_{\infty}$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$T_f(x) := \{ v \in X^* : (v, x) \in \partial f(x, v) \} \quad \bigstar$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

- $\forall x \in X, T(x) \subseteq T_{\mathcal{F}_{\mathcal{T}}}(x).$
- T maximal $\implies T = T_{\mathcal{F}_T}$

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Additive enlargements Mutual additivity New enlargements

From convex functions to T and viceversa

Let $f: X \times X^* \to \mathbb{R}_{\infty}$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$\mathcal{T}_f(x) := \{ v \in X^* : (v, x) \in \partial f(x, v) \} \quad \bigstar$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

•
$$\forall x \in X, T(x) \subseteq T_{\mathcal{F}_{\mathcal{T}}}(x).$$

• T maximal $\implies T = T_{\mathcal{F}_T}$

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Additive enlargements Mutual additivity New enlargements

From convex functions to T and viceversa

Let $f: X \times X^* \to \mathbb{R}_{\infty}$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$\mathcal{T}_f(x) := \{ v \in X^* : (v, x) \in \partial f(x, v) \} \quad \bigstar$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

•
$$\forall x \in X, T(x) \subseteq T_{\mathcal{F}_{\mathcal{T}}}(x).$$

• T maximal $\implies T = T_{\mathcal{F}_T}$

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Additive enlargements Mutual additivity New enlargements

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

From convex functions to T and viceversa

Let $f: X \times X^* \to \mathbb{R}_{\infty}$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$\mathcal{T}_f(x) := \{ v \in X^* : (v, x) \in \partial f(x, v) \} \quad \bigstar$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

- $\forall x \in X, T(x) \subseteq T_{\mathcal{F}_{\mathcal{T}}}(x).$
- T maximal $\implies T = T_{\mathcal{F}_T}$

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Additive enlargements Mutual additivity New enlargements

From convex functions to T and viceversa

Let $f: X \times X^* \to \mathbb{R}_{\infty}$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$\mathcal{T}_f(x) := \{ v \in X^* : (v, x) \in \partial f(x, v) \} \quad \bigstar$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

- $\forall x \in X, T(x) \subseteq T_{\mathcal{F}_{\mathcal{T}}}(x).$
- T maximal $\implies T = T_{\mathcal{F}_T}$

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Additive enlargements Mutual additivity New enlargements

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

From convex functions to T and viceversa

Let $f: X \times X^* \to \mathbb{R}_{\infty}$ be convex, Fitzpatrick (1988) defined $T_f: X \rightrightarrows X^*$ as

$$\mathcal{T}_f(x) := \{ v \in X^* : (v, x) \in \partial f(x, v) \} \quad \bigstar$$

Fitzpatrick proved that T_f mon, and for T monotone and $f := \mathcal{F}_T$:

•
$$\forall x \in X, T(x) \subseteq T_{\mathcal{F}_{\mathcal{T}}}(x).$$

• T maximal $\implies T = T_{\mathcal{F}_T}$

Can recover T as a diagonal slice of the $\partial \mathcal{F}_T$!

Question: What happens if we use ∂f in \bigstar ? Can we still recover *T*?

Additive enlargements Mutual additivity New enlargements

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Operator \mathcal{A}

Let $h \in \mathcal{H}(T)$, define $\mathcal{J} : \mathcal{H}(T) \to \mathcal{H}(T)$ as

 $\mathcal{J}h(x,v):=h^*(v,x)$

I.e., $\mathcal{J}h$ swaps the variables of h^* Define $\mathcal{A} : \mathcal{H}(T) \to \mathcal{H}(T)$ as

 $\mathcal{A}h:=\frac{h+\mathcal{J}h}{2}$

Fact: $Ah \in H(T)$ if $h \in H(T)$.

Additive enlargements Mutual additivity New enlargements

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Operator \mathcal{A}

Let $h \in \mathcal{H}(T)$, define $\mathcal{J} : \mathcal{H}(T) \to \mathcal{H}(T)$ as

 $\mathcal{J}h(x,v):=h^*(v,x)$

I.e., $\mathcal{J}h$ swaps the variables of h^* Define $\mathcal{A} : \mathcal{H}(T) \to \mathcal{H}(T)$ as

$$\mathcal{A}h:=\frac{h+\mathcal{J}h}{2}$$

Fact: $Ah \in H(T)$ if $h \in H(T)$.

Additive enlargements Mutual additivity New enlargements

An induced subfamily of enlargements

Let *T* be max-mon and fix $h \in \mathcal{H}(T)$. We define $\check{T}_h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as

 $\check{T}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \check{\partial}h(2\varepsilon, x, v) \} \quad \bigstar$

• $T_h(x) = \check{T}_h(0, x) = T$ • $\check{T}_h = L^{\mathcal{A}h}$, so $\check{T}_h \in \mathbb{E}(T)$.

Define $\mathbb{E}_{\mathcal{H}}(T) := \{ E \in \mathbb{E}(T) : E = \check{T}_h \text{ for some } h \in \mathcal{H}(T) \}$

Additive enlargements Mutual additivity New enlargements

An induced subfamily of enlargements

Let *T* be max-mon and fix $h \in \mathcal{H}(T)$. We define $\check{T}_h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as $\check{T}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \check{\partial}h(2\varepsilon, x, v) \}$ • $T_h(x) = \check{T}_h(0, x) = T$ • $\check{T}_h = L^{\mathcal{A}h}$, so $\check{T}_h \in \mathbb{E}(T)$.

Define $\mathbb{E}_{\mathcal{H}}(T) := \{ E \in \mathbb{E}(T) : E = \check{T}_h \text{ for some } h \in \mathcal{H}(T) \}$

Additive enlargements Mutual additivity New enlargements

An induced subfamily of enlargements

Let *T* be max-mon and fix $h \in \mathcal{H}(T)$. We define $\check{T}_h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as $\check{T}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \check{\partial}h(2\varepsilon, x, v) \}$ • $T_h(x) = \check{T}_h(0, x) = T$ • $\check{T}_h = L^{\mathcal{A}h}$, so $\check{T}_h \in \mathbb{E}(T)$.

Define $\mathbb{E}_{\mathcal{H}}(T) := \{ E \in \mathbb{E}(T) : E = \check{T}_h \text{ for some } h \in \mathcal{H}(T) \}$

Additive enlargements Mutual additivity New enlargements

An induced subfamily of enlargements

Let *T* be max-mon and fix $h \in \mathcal{H}(T)$. We define $\check{T}_h : \mathbb{R}_+ \times X \rightrightarrows X^*$ as $\check{T}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \check{\partial}h(2\varepsilon, x, v) \}$ • $T_h(x) = \check{T}_h(0, x) = T$ • $\check{T}_h = L^{\mathcal{A}h}$, so $\check{T}_h \in \mathbb{E}(T)$.

Define $\mathbb{E}_{\mathcal{H}}(T) := \{ E \in \mathbb{E}(T) : E = \check{T}_h \text{ for some } h \in \mathcal{H}(T) \}$

Additive enlargements Mutual additivity New enlargements

An induced subfamily of enlargements

Let *T* be max-mon and fix
$$h \in \mathcal{H}(T)$$
. We define
 $\check{T}_h : \mathbb{R}_+ \times X \Rightarrow X^*$ as
 $\check{T}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \check{\partial}h(2\varepsilon, x, v) \}$
• $T_h(x) = \check{T}_h(0, x) = T$
• $\check{T}_h = L^{\mathcal{A}h}$, so $\check{T}_h \in \mathbb{E}(T)$.

Define $\mathbb{E}_{\mathcal{H}}(T) := \{ E \in \mathbb{E}(T) : E = \check{T}_h \text{ for some } h \in \mathcal{H}(T) \}$

Additive enlargements Mutual additivity New enlargements

An induced subfamily of enlargements

Let *T* be max-mon and fix
$$h \in \mathcal{H}(T)$$
. We define
 $\check{T}_h : \mathbb{R}_+ \times X \Rightarrow X^*$ as
 $\check{T}_h(\varepsilon, x) := \{ v \in X^* : (v, x) \in \check{\partial}h(2\varepsilon, x, v) \}$
• $T_h(x) = \check{T}_h(0, x) = T$
• $\check{T}_h = L^{\mathcal{A}h}$, so $\check{T}_h \in \mathbb{E}(T)$.

Define $\mathbb{E}_{\mathcal{H}}(T) := \{ E \in \mathbb{E}(T) : E = \check{T}_h \text{ for some } h \in \mathcal{H}(T) \}$

Additive enlargements Mutual additivity New enlargements

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^{h_E}$ and $E' = L^{h_{E'}}$)

E ~_a E' iff Jh_E ≤ h_{E'}. Hence, E ∈ E_a(T) iff Jh_E ≤ h_E.
h_E = Jh_E iff E is max-add

ullet In particular, $E\sim_a L^{\mathcal{J}h_{E}}$

- Since L^{ThE} is the largest enlargement mutually additive with E, it is the "additive complement" of E.
- E is max-add iff it coincides with its additive complement.

Additive enlargements Mutual additivity New enlargements

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^{h_E}$ and $E' = L^{h_{E'}}$)

- E ~_a E' iff Jh_E ≤ h_{E'}. Hence, E ∈ E_a(T) iff Jh_E ≤ h_E.
 h_E = Jh_E iff E is max-add
- In particular, $E \sim_a L^{\mathcal{J}h_E}$
- Since L^{Jh_E} is the largest enlargement mutually additive with E, it is the "additive complement" of E.
- E is max-add iff it coincides with its additive complement.

Additive enlargements Mutual additivity New enlargements

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^{h_E}$ and $E' = L^{h_{E'}}$)

- E ~_a E' iff Jh_E ≤ h_{E'}. Hence, E ∈ E_a(T) iff Jh_E ≤ h_E.
 h_E = Jh_E iff E is max-add
- In particular, $E \sim_a L^{\mathcal{J}h_E}$
- Since L^{Jh_E} is the largest enlargement mutually additive with E, it is the "additive complement" of E.
- E is max-add iff it coincides with its additive complement.

Additive enlargements Mutual additivity New enlargements

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^{h_E}$ and $E' = L^{h_{E'}}$)

E ~_a E' iff Jh_E ≤ h_{E'}. Hence, E ∈ E_a(T) iff Jh_E ≤ h_E.
h_F = Jh_F iff E is max-add

• In particular, $E \sim_a L^{\mathcal{J}h_E}$

- Since $L^{\mathcal{J}h_E}$ is the largest enlargement mutually additive with *E*, it is the "additive complement" of *E*.
- E is max-add iff it coincides with its additive complement.

Additive enlargements Mutual additivity New enlargements

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^{h_E}$ and $E' = L^{h_{E'}}$)

• $E \sim_a E'$ iff $\mathcal{J}h_E \leq h_{E'}$. Hence, $E \in \mathbb{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$.

•
$$h_E = \mathcal{J}h_E$$
 iff *E* is max-add

- In particular, $E \sim_a L^{\mathcal{J}h_E}$
- Since $L^{\mathcal{J}h_E}$ is the largest enlargement mutually additive with *E*, it is the "additive complement" of *E*.
- E is max-add iff it coincides with its additive complement.

Additive enlargements Mutual additivity New enlargements

Characterizing Mutual and Maximal Additivity

Let $E, E' \in \mathbb{E}(T)$, consider $h_E, h_{E'} \in \mathcal{H}(T)$ the corresponding functions (i.e., $E = L^{h_E}$ and $E' = L^{h_{E'}}$)

• $E \sim_a E'$ iff $\mathcal{J}h_E \leq h_{E'}$. Hence, $E \in \mathbb{E}_a(T)$ iff $\mathcal{J}h_E \leq h_E$.

•
$$h_E = \mathcal{J}h_E$$
 iff *E* is max-add

- In particular, $E \sim_a L^{\mathcal{J}h_E}$
- Since L^{Jh_E} is the largest enlargement mutually additive with *E*, it is the "additive complement" of *E*.
- E is max-add iff it coincides with its additive complement.

Additive enlargements Mutual additivity New enlargements

・ロト ・回 ト ・ヨト ・ヨト … ヨ

Conmutative diagram

Taking conjugates in $\mathcal{H}(T)$ is order reversing, and its effect in $\mathbb{E}(T)$ is to map *E* into its additive complement.

Fixed points of \mathcal{J} correspond to max-add elements!

Additive enlargements Mutual additivity New enlargements

Relation w/previous facts

Recall $\varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v)$, since $\mathcal{J}\varphi^{FY} = \varphi^{FY}$ we confirm the fact that

 $\check{\partial \varphi}$ is max-add

Previous result extends the known fact (Svaiter 2000):

$$T^{SE} \sim_a T^{BE}$$

Additive enlargements Mutual additivity New enlargements

Relation w/previous facts

Recall $\varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v)$, since $\mathcal{J}\varphi^{FY} = \varphi^{FY}$ we confirm the fact that

 $ec{\partial arphi}$ is max-add

Previous result extends the known fact (Svaiter 2000):

$$T^{SE} \sim_a T^{BE}$$

イロン 不得 とくほ とくほ とうほ

Additive enlargements Mutual additivity New enlargements

Relation w/previous facts

Recall $\varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v)$, since $\mathcal{J}\varphi^{FY} = \varphi^{FY}$ we confirm the fact that

 $ec{\partial arphi}$ is max-add

Previous result extends the known fact (Svaiter 2000):

$$T^{SE} \sim_a T^{BE}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Additive enlargements Mutual additivity New enlargements

Relation w/previous facts

Recall $\varphi^{FY}(x, v) = \varphi(x) + \varphi^*(v)$, since $\mathcal{J}\varphi^{FY} = \varphi^{FY}$ we confirm the fact that

 $ec{\partial arphi}$ is max-add

Previous result extends the known fact (Svaiter 2000):

$$T^{SE} \sim_a T^{BE}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Additive enlargements Mutual additivity New enlargements

New enlargements are additive

Let $h \in \mathcal{H}(T)$. The following hold:

• $\check{T}_h \in \mathbb{E}_a(T)$

• \check{T}_h is max-add iff $\mathcal{J}\mathcal{A}h = \mathcal{A}h$

Additive enlargements Mutual additivity New enlargements

New enlargements are additive

Let $h \in \mathcal{H}(T)$. The following hold:

• $\breve{T}_h \in \mathbb{E}_a(T)$

• \check{T}_h is max-add iff $\mathcal{J}\mathcal{A}h = \mathcal{A}h$

Additive enlargements Mutual additivity New enlargements

New enlargements are additive

Let $h \in \mathcal{H}(T)$. The following hold:

•
$$\breve{T}_h \in \mathbb{E}_a(T)$$

• \check{T}_h is max-add iff $\mathcal{J}\mathcal{A}h = \mathcal{A}h$

Additive enlargements Mutual additivity New enlargements

New enlargements are additive

Let $h \in \mathcal{H}(T)$. The following hold:

•
$$\breve{T}_h \in \mathbb{E}_a(T)$$

• \check{T}_h is max-add iff $\mathcal{J}\mathcal{A}h = \mathcal{A}h$

Additive enlargements Mutual additivity New enlargements

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

New enlargements are additive

Let $h \in \mathcal{H}(T)$. The following hold:

•
$$\check{T}_h \in \mathbb{E}_a(T)$$

•
$$\check{T}_h$$
 is max-add iff $\mathcal{J}\mathcal{A}h = \mathcal{A}h$

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

• $\forall \varepsilon > 0, x \in \text{Dom}\varphi$ we have

 $\check{T}_h(arepsilon/2,x)\subseteq\check{\partialarphi}(arepsilon,x)$

If h = φ^{FY} we must have δφ = Ť_{φ^{FY}}.
 If h = F_{∂φ}
 Ť_{F∂φ}(ε/2, x) ⊆ δφ(ε, x)

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial \varphi}$ to obtain an enlargement smaller than $\tilde{\partial \varphi}$

ヘロン 人間 とくほ とくほとう

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

• $\forall \varepsilon > 0, x \in \text{Dom}\varphi$ we have

 $\breve{T}_h(arepsilon/2,x)\subseteq \breve{\partial arphi}(arepsilon,x)$

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial \varphi}$ to obtain an enlargement smaller than $\tilde{\partial \varphi}$

(ロ) (四) (ヨ) (ヨ) (ヨ)

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

• $\forall \varepsilon > 0, x \in Dom \varphi$ we have

$$\breve{T}_h(arepsilon/2,x)\subseteqec{\partial}arphi(arepsilon,x)$$

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial \varphi}$ to obtain an enlargement smaller than $\check{\partial \varphi}$

(ロ) (四) (ヨ) (ヨ) (ヨ)

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

• $\forall \varepsilon > 0, x \in Dom \varphi$ we have

$$\breve{T}_h(arepsilon/2,x)\subseteqec{\partial}arphi(arepsilon,x)$$

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial \varphi}$ to obtain an enlargement smaller than $\partial \varphi$

イロト イロト イヨト イヨト 三日

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

• $\forall \varepsilon > 0, x \in Dom \varphi$ we have

$$\breve{T}_h(arepsilon/2,x)\subseteqec{\partial}arphi(arepsilon,x)$$

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial \varphi}$ to obtain an enlargement smaller than $\partial \varphi$

イロト イロト イヨト イヨト 三日

Fix $h \in \mathcal{H}(\partial \varphi)$ and $h \leq \varphi + \varphi^* = \varphi^{FY}$

• $\forall \varepsilon > 0, x \in Dom \varphi$ we have

$$reve{T}_h(arepsilon/2,x)\subseteqec{\partial}arphi(arepsilon,x)$$

Hence, we can use the Fitzpatrick function $\mathcal{F}_{\partial \varphi}$ to obtain an enlargement smaller than $\partial \varphi$

- Does the subfamily E_H(T) contain all additive enlargements of T?
- We have also seen that elements of 𝔅_𝔑(𝔅) are max-add when *h* = 𝔅. Are these all the max-add enlargements of 𝔅?
- Can we characterize h such that $\mathcal{J}Ah = Ah$?
- In which cases has $\mathbb{E}_{\mathcal{H}}(T)$ a single element?
- When are the max-add elements unique?

- Does the subfamily E_H(T) contain all additive enlargements of T?
- We have also seen that elements of 𝔅_𝔑(𝔅) are max-add when *h* = 𝔅. Are these all the max-add enlargements of 𝔅?
- Can we characterize h such that $\mathcal{J}Ah = Ah$?
- In which cases has $\mathbb{E}_{\mathcal{H}}(T)$ a single element?
- When are the max-add elements unique?

- Does the subfamily 𝔼_H(*T*) contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{\mathcal{H}}(T)$ are max-add when $h = \mathcal{J}h$. Are these all the max-add enlargements of *T*?
- Can we characterize h such that $\mathcal{J}Ah = Ah$?
- In which cases has $\mathbb{E}_{\mathcal{H}}(T)$ a single element?
- When are the max-add elements unique?

- Does the subfamily 𝔼_H(*T*) contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{\mathcal{H}}(T)$ are max-add when $h = \mathcal{J}h$. Are these all the max-add enlargements of *T*?
- Can we characterize h such that $\mathcal{J}Ah = Ah$?
- In which cases has $\mathbb{E}_{\mathcal{H}}(T)$ a single element?
- When are the max-add elements unique?

- Does the subfamily 𝔼_H(*T*) contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{\mathcal{H}}(T)$ are max-add when $h = \mathcal{J}h$. Are these all the max-add enlargements of *T*?
- Can we characterize *h* such that $\mathcal{JAh} = \mathcal{Ah}$?
- In which cases has $\mathbb{E}_{\mathcal{H}}(T)$ a single element?
- When are the max-add elements unique?

- Does the subfamily 𝔼_H(*T*) contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{\mathcal{H}}(T)$ are max-add when $h = \mathcal{J}h$. Are these all the max-add enlargements of *T*?
- Can we characterize *h* such that $\mathcal{JAh} = \mathcal{Ah}$?
- In which cases has $\mathbb{E}_{\mathcal{H}}(T)$ a single element?
- When are the max-add elements unique?

- Does the subfamily 𝔼_H(*T*) contain all additive enlargements of *T*?
- We have also seen that elements of $\mathbb{E}_{\mathcal{H}}(T)$ are max-add when $h = \mathcal{J}h$. Are these all the max-add enlargements of *T*?
- Can we characterize *h* such that $\mathcal{JAh} = \mathcal{Ah}$?
- In which cases has $\mathbb{E}_{\mathcal{H}}(T)$ a single element?
- When are the max-add elements unique?

Open problems

- Does the subfamily E_H(T) contain all additive enlargements of T?
- We have also seen that elements of $\mathbb{E}_{\mathcal{H}}(T)$ are max-add when $h = \mathcal{J}h$. Are these all the max-add enlargements of *T*?
- Can we characterize *h* such that $\mathcal{J}Ah = Ah$?
- In which cases has $\mathbb{E}_{\mathcal{H}}(T)$ a single element?
- When are the max-add elements unique?

Open problems

- Does the subfamily E_H(T) contain all additive enlargements of T?
- We have also seen that elements of $\mathbb{E}_{\mathcal{H}}(T)$ are max-add when $h = \mathcal{J}h$. Are these all the max-add enlargements of *T*?
- Can we characterize *h* such that $\mathcal{J}Ah = Ah$?
- In which cases has $\mathbb{E}_{\mathcal{H}}(T)$ a single element?
- When are the max-add elements unique?

Open problems

- Does the subfamily E_H(T) contain all additive enlargements of T?
- We have also seen that elements of $\mathbb{E}_{\mathcal{H}}(T)$ are max-add when $h = \mathcal{J}h$. Are these all the max-add enlargements of *T*?
- Can we characterize *h* such that $\mathcal{J}Ah = Ah$?
- In which cases has $\mathbb{E}_{\mathcal{H}}(T)$ a single element?
- When are the max-add elements unique?