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Inclusion Problems

Monotone Inclusion Problem

Let T : X ⇒ X ∗ be maximal monotone. Many nonlinear
problems are stated as:

Given z ∈ X ∗, find x ∈ X : z ∈ T (x) (P0)

Equivalently:

Given z ∈ X ∗, find x ∈ X : (x , z) ∈ G(T )

solving (P0) ! requires to know G(T )

3-28
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Main Ingredients I: multivalued mappings

For T : X ⇒ X ∗ we define
its graph as G(T ) := {(x , x∗) ∈ X × X ∗ : x∗ ∈ T (x)},
its domain as D(T ) := {x ∈ X : T (x) 6= ∅},
its range as R(T ) :=

⋃
{T (x) : x ∈ D(T )},

We say that T is
monotone if

〈y − x , y∗ − x∗〉 ≥ 0 ∀(x , x∗), (y , y∗) ∈ G(T ).

maximally monotone if T has no monotone extension in
the sense of graph inclusion.

4-28
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Main Ingredients II: subdifferentials

For ϕ : X → R∞ convex and lsc, we define
Domϕ := {x : ϕ(x) <∞}, and
we say that ϕ is proper when Domϕ 6= ∅.
the subdifferential of ϕ is the multivalued mapping
∂ϕ : X ⇒ X ∗ defined by

∂ϕ(x) := {x∗ ∈ X ∗ : ϕ(y)− ϕ(x) ≥ 〈x∗, y − x〉, ∀ y ∈ X},

when x ∈ Domϕ. Otherwise ∂ϕ(x) = ∅.
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Fenchel Young inequality

Let ϕ : X → R∞ be convex and lsc, ϕ∗ : X ∗ → R∞

ϕ∗(v) := sup
x∈X
{〈x , v〉 − ϕ(x)}

is the conjugate of ϕ. The Fenchel Young inequality states

ϕ(x) + ϕ∗(v) ≥ 〈x , v〉, ∀ x ∈ X , v ∈ X ∗

ϕ(x) + ϕ∗(v) = 〈x , v〉, ⇐⇒ v ∈ ∂ϕ(x).

Notation: ϕFY (x , v) := ϕ(x)+ϕ∗(v)

6-28
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Fitzpatrick Theory: the family H(T )

In 1988 Fitzpatrick defined the family H(T ) consisting of all
h : X × X ∗ → R∞ convex and lsc such that:

h(x , v) ≥ 〈x , v〉, ∀ x ∈ X , v ∈ X ∗

h(x , v) = 〈x , v〉, ⇐⇒ v ∈ T (x).

Given v this reformulates the monotone inclusion as an
optimization problem in X : Find x such that

h(x , v) = 0 = min
x

h(·, v)

7-28
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A key member of H(T )

Fitzpatrick defined FT : X × X ∗ → R∞ as

FT (x , x∗) := sup
(y ,y)∈G(T )

〈y , x∗〉+ 〈x − y , y∗〉

which verifies
FT ∈ H(T )

FT ≤ h ≤ (FT )∗ =: σT for all h ∈ H(T )

Historical note: N.V.Krylov defined in 1980 FT for T
point-to-point monotone in finite dimensions.
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Main Ingredients III: enlargement of the subdifferential

For ϕ : X → R∞ convex, lsc, let ε ≥ 0, then ∂εϕ : X ⇒ X ∗ is

∂εϕ(x) := {x∗ ∈ X ∗ : ϕ(y)−ϕ(x) ≥ 〈x∗, y−x〉−ε, ∀ y ∈ X},

if x ∈ Domϕ. Otherwise, ∂εϕ(x) = ∅.

∂̆ϕ(ε, x) := ∂εϕ(x) Brøndsted-Rockafellar enlargement (1965)

∂̆ϕ characterized by Fenchel Young ineq.:

〈x , v〉 ≤ ϕFY (x , v) = ϕ(x) + ϕ∗(v) ≤ 〈x , v〉+ ε ⇐⇒ v ∈ ∂̆ϕ(ε, x).
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Additive enlargements
Mutual additivity
New enlargements

The family E(T ) of enlargements of T
E : R+ × X ⇒ X ∗ is in E(T ) when

(E1) T (x) ⊂ E(ε, x) for all ε ≥ 0, x ∈ X ;
(E2) If 0 ≤ ε1 ≤ ε2 , then E(ε1, x) ⊂ E(ε2, x) for all x ∈ X ;
(E3) The transportation formula holds: Whenever

v1 ∈ E(ε1, x1), v2 ∈ E(ε2, x2), α1, α2 ≥ 0, α1 + α2 = 1,
x̄ := α1x1 + α2x2, v̄ := α1v1 + α2v2 and
ε̄ := α1ε1 + α2ε2 + α1α2〈v1 − v2, x1 − x2〉, then

ε̄ ≥ 0 and v̄ ∈ E(ε̄, x̄).

Example: ∂̆ϕ ∈ E(∂ϕ)
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Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

From enlargements to convex functions:

(E3)⇐⇒ G̃(E) convex,

where

G(E) := {(x , v , ε) : v ∈ E(ε, x)}
↘

G̃(E) := {(x , v , ε+〈x , v〉) : v ∈ E(ε, x)}
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The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

From E(T ) to H(T )

E ∈ Enl(T )⇐⇒ G̃(E) is the


epigraph of a lsc.
convex function
on X × X ∗.

This convex function is given by

hE (x , v) := inf{ t : (x , v , t) ∈ G̃(E)}

Moreover, hE ∈ H(T ) for all E ∈ E(T )!
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Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

From H(T ) to E(T )

Given h ∈ H(T ) define Lh : R+ × X ⇒ X ∗ as

Lh(ε, x) := {v ∈ X ∗ : h(x , v) ≤ 〈x , v〉+ ε}

Then Lh ∈ E(T ) for all h ∈ H(T )!

H(T ) ←→
bijection

E(T ) B.-Svaiter, 2002.
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Case T = ∂ϕ

Recall ϕFY (x , v) = ϕ(x) + ϕ∗(v), then ϕFY ∈ H(∂ϕ)

14-28



Motivation
Preliminaries

The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

Extreme members in the families

H(T ) has a smallest and a largest element
FT ≤ h ≤ σT = (FT )∗, E(T ) has largest element:

T BE (ε, x) := {v ∈ X ∗ : 〈x − y , v − u〉 ≥ −ε, ∀ (y ,u) ∈ G(T )},

and smallest T SE (ε, x) = ∩E∈E(T )E(ε, x),

Related through LFT = T BE , and LσT = T SE

hT SE = σT , and hT BE = FT

Question: Can we identify a property that singles out “nice”
enlargements?
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Case T = ∂ϕ

Additive enlargements
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New enlargements

Additivity

E ∈ E(T ) is additive, if

v1 ∈ E(ε1, x1), v2 ∈ E(ε1, x2)︸ ︷︷ ︸
⇓

〈v1 − v2, x1 − x2〉 ≥ −(ε1 + ε2).

Set Ea(T ) := {E ∈ E(T ) : E additive}

∂̆ϕ is additive, i.e., ∂̆ϕ ∈ Ea(∂ϕ)

T SE is always additive, but T BE may not!

Additivity detects those elements in E(T ) which have
something in common with ∂̆ϕ!
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The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

Additivity as a mutual relation/maximal property
E ∈ Ea(T ) is maximally additive (max-add, for short), if

∃ Ê ∈ Ea(T ) : E(ε, x) ⊂ Ê(ε, x),∀ ε ≥ 0, ∀ x ∈ X︸ ︷︷ ︸
⇓

E = Ê

E1,E2 ∈ E(T ) are mutually additive, if

v1 ∈ E1(ε1, x1), v2 ∈ E2(ε1, x2)︸ ︷︷ ︸
⇓

〈v1 − v2, x1 − x2〉 ≥ −(ε1 + ε2).

Denoted as E1 ∼a E2 =⇒ E ∼a E iff E ∈ Ea(T )
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Case T = ∂ϕ
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Example of Max-Additivity

If T = ∂ϕ then ∂̆ϕ is max-add (Svaiter, 2000)

If T arbitrary, then T SE is always additive, but not necesarily
max-add!

Max-additivity detects those elements in Ea(T ) which have
even more in common with ∂̆ϕ!
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The family H(T )
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Case T = ∂ϕ
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Example of mutual additivity

If T arbitrary, then T SE and T BE are always mutually additive
(Svaiter, 2000)

Questions: How to identify additive elements E(T )? How to
identify max-add elements whithin Ea(T )? How to characterize
mutual additivity?

We will address these using convex functions!
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Mutual additivity
New enlargements

From convex functions to T and viceversa

Let f : X × X ∗ → R∞ be convex, Fitzpatrick (1988) defined
Tf : X ⇒ X ∗ as

Tf (x) := {v ∈ X ∗ : (v , x) ∈ ∂f (x , v)} F

Fitzpatrick proved that Tf mon, and for T monotone and f := FT :
∀ x ∈ X , T (x) ⊆ TFT (x).

T maximal =⇒ T = TFT

Can recover T as a diagonal slice of the ∂FT !

Question: What happens if we use ∂̆f inF?
Can we still recover T ?
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Case T = ∂ϕ
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Operator A

Let h ∈ H(T ), define J : H(T )→ H(T ) as

J h(x , v) := h∗(v , x)

I.e., J h swaps the variables of h∗ Define A : H(T )→ H(T ) as

Ah :=
h + J h

2

Fact: Ah ∈ H(T ) if h ∈ H(T ).

21-28



Motivation
Preliminaries

The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

Operator A

Let h ∈ H(T ), define J : H(T )→ H(T ) as

J h(x , v) := h∗(v , x)

I.e., J h swaps the variables of h∗ Define A : H(T )→ H(T ) as

Ah :=
h + J h

2

Fact: Ah ∈ H(T ) if h ∈ H(T ).

21-28



Motivation
Preliminaries

The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

An induced subfamily of enlargements

Let T be max-mon and fix h ∈ H(T ). We define
T̆h : R+ × X ⇒ X ∗ as

T̆h(ε, x) := {v ∈ X ∗ : (v , x) ∈ ∂̆h(2ε, x , v)} F

Th(x) = T̆h(0, x) = T
T̆h = LAh, so T̆h ∈ E(T ).

Define EH(T ) := {E ∈ E(T ) : E = T̆h for some h ∈ H(T )}

Question: EH(T ) has special properties, not shared by other
elements of E(T )?
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Additive enlargements
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Characterizing Mutual and Maximal Additivity

Let E ,E ′ ∈ E(T ), consider hE ,hE ′ ∈ H(T ) the corresponding
functions (i.e., E = LhE and E ′ = LhE′ )

E ∼a E ′ iff J hE ≤ hE ′ . Hence, E ∈ Ea(T ) iff J hE ≤ hE .
hE = J hE iff E is max-add

In particular, E ∼a LJ hE

Since LJ hE is the largest enlargement mutually additive
with E , it is the “additive complement” of E .
E is max-add iff it coincides with its additive complement.

23-28



Motivation
Preliminaries

The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

Characterizing Mutual and Maximal Additivity

Let E ,E ′ ∈ E(T ), consider hE ,hE ′ ∈ H(T ) the corresponding
functions (i.e., E = LhE and E ′ = LhE′ )

E ∼a E ′ iff J hE ≤ hE ′ . Hence, E ∈ Ea(T ) iff J hE ≤ hE .
hE = J hE iff E is max-add

In particular, E ∼a LJ hE

Since LJ hE is the largest enlargement mutually additive
with E , it is the “additive complement” of E .
E is max-add iff it coincides with its additive complement.

23-28



Motivation
Preliminaries

The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

Characterizing Mutual and Maximal Additivity

Let E ,E ′ ∈ E(T ), consider hE ,hE ′ ∈ H(T ) the corresponding
functions (i.e., E = LhE and E ′ = LhE′ )

E ∼a E ′ iff J hE ≤ hE ′ . Hence, E ∈ Ea(T ) iff J hE ≤ hE .
hE = J hE iff E is max-add

In particular, E ∼a LJ hE

Since LJ hE is the largest enlargement mutually additive
with E , it is the “additive complement” of E .
E is max-add iff it coincides with its additive complement.

23-28



Motivation
Preliminaries

The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

Characterizing Mutual and Maximal Additivity

Let E ,E ′ ∈ E(T ), consider hE ,hE ′ ∈ H(T ) the corresponding
functions (i.e., E = LhE and E ′ = LhE′ )

E ∼a E ′ iff J hE ≤ hE ′ . Hence, E ∈ Ea(T ) iff J hE ≤ hE .
hE = J hE iff E is max-add

In particular, E ∼a LJ hE

Since LJ hE is the largest enlargement mutually additive
with E , it is the “additive complement” of E .
E is max-add iff it coincides with its additive complement.

23-28



Motivation
Preliminaries

The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

Characterizing Mutual and Maximal Additivity

Let E ,E ′ ∈ E(T ), consider hE ,hE ′ ∈ H(T ) the corresponding
functions (i.e., E = LhE and E ′ = LhE′ )

E ∼a E ′ iff J hE ≤ hE ′ . Hence, E ∈ Ea(T ) iff J hE ≤ hE .
hE = J hE iff E is max-add

In particular, E ∼a LJ hE

Since LJ hE is the largest enlargement mutually additive
with E , it is the “additive complement” of E .
E is max-add iff it coincides with its additive complement.

23-28



Motivation
Preliminaries

The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

Characterizing Mutual and Maximal Additivity

Let E ,E ′ ∈ E(T ), consider hE ,hE ′ ∈ H(T ) the corresponding
functions (i.e., E = LhE and E ′ = LhE′ )

E ∼a E ′ iff J hE ≤ hE ′ . Hence, E ∈ Ea(T ) iff J hE ≤ hE .
hE = J hE iff E is max-add

In particular, E ∼a LJ hE

Since LJ hE is the largest enlargement mutually additive
with E , it is the “additive complement” of E .
E is max-add iff it coincides with its additive complement.

23-28



Motivation
Preliminaries

The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

Conmutative diagram

Taking conjugates in H(T ) is order reversing, and its effect in
E(T ) is to map E into its additive complement.

H(T )

J

−−−−−−−−−−−−−→ H(T )y h
↓
Lh

y J h
↓

LJ h

E(T )
E → LJ hE

−−−−−−−−−−−−→ E(T )

Fixed points of J correspond to max-add elements!

24-28



Motivation
Preliminaries

The family H(T )

Enlargements of T
Case T = ∂ϕ

Additive enlargements
Mutual additivity
New enlargements

Relation w/previous facts

Recall ϕFY (x , v) = ϕ(x) + ϕ∗(v), since JϕFY = ϕFY we
confirm the fact that

∂̆ϕ is max-add

Previous result extends the known fact (Svaiter 2000):

T SE ∼a T BE
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New enlargements are additive

Let h ∈ H(T ). The following hold:

T̆h ∈ Ea(T )

T̆h is max-add iff JAh = Ah

Hence, if J h = h then T̆h is max-add
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Enlargements of T
Case T = ∂ϕ

Fix h ∈ H(∂ϕ) and h ≤ ϕ+ ϕ∗ = ϕFY

∀ ε > 0, x ∈ Domϕ we have

T̆h(ε/2, x) ⊆ ∂̆ϕ(ε, x)

If h = ϕFY we must have ∂̆ϕ = T̆ϕFY .
If h = F∂ϕ

T̆F∂ϕ
(ε/2, x) ⊆ ∂̆ϕ(ε, x)

Hence, we can use the Fitzpatrick function F∂ϕ to obtain an
enlargement smaller than ∂̆ϕ
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The family H(T )

Enlargements of T
Case T = ∂ϕ

Open problems

Does the subfamily EH(T ) contain all additive
enlargements of T ?
We have also seen that elements of EH(T ) are max-add
when h = J h. Are these all the max-add enlargements of
T?
Can we characterize h such that JAh = Ah?
In which cases has EH(T ) a single element?
When are the max-add elements unique?
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