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MONOTONICITY AND HYPOMONOTONICITY

Let T : X ⇒ X be a set-valued operator in a Hilbert space

DEFINITION We say that

(i) T is globally monotone on X if

〈v1 − v2, u1 − u2〉 ≥ 0 for all (u1, v1), (u2, v2) ∈ gphT

T is said to be globally maximal monotone on X if in addition we

have gphT = gphS whenever S is monotone with gphT ⊂ gphS

(ii) T globally hypomonotone on X if there is r > 0 such that

〈v1 − v2, u1 − u2〉 ≥ −r‖u1 − u2‖2 for all (u1, v1), (u2, v2) ∈ gphT
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(iii) T semilocally hypomonotone at x̄ ∈ domT if there exist a

neighborhood U of x̄ and a number r > 0 such that

〈v1 − v2, u1 − u2〉 ≥ −r‖u1 − u2‖2 for (u1, v1), (u2, v2) ∈ gphT ∩ (U ×X)

T is semilocally hypomonotone on a set Ω if it has this property

at every point x̄ ∈ Ω

Hypomonotonicity properties are not restrictive. In particular,

semilocal hypomonotonicity holds for Lipschitzian single-valued

mappings, for subdifferential mappings generated by the so-called

lower-C2 (subsmooth) functions on open sets, etc. The local hy-

pomonotonicity considered below holds for subdifferential map-

pings generated by any prox-regular and subdifferentially contin-

uous extended-real-valued function



CODERIVATIVES

Given T : X ⇒ X and (x̄, ȳ) ∈ gphT , the regular coderivative of

T at (x̄, ȳ) is defined by

D̂∗T (x̄, ȳ)(u) :=
{
v ∈ X

∣∣∣ lim sup
(x,y)→(x̄,ȳ)
y∈T (x)

〈u, x− x̄〉 − 〈v, y − ȳ〉
‖x− x̄‖+ ‖y − ȳ‖

≤ 0
}

The mixed limiting coderivative of T at (x̄, ȳ) is

D∗MT (x̄, ȳ)(ū) := w − Lim sup
(x,y)→(x̄,ȳ)

u→ū

D̂∗T (x, y)(u)

=
{
v

∣∣∣∣ ∃ seqs. (xk, yk)→ (x̄, ȳ), vk ∈ D̂∗T (xk, yk)(uk), uk → ū, vk
w→ v

}
The mixed coderivative D∗MT enjoys full pointwise calculus
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REG. CODERIVATIVE CHARACT. OF MAX MONOTONICITY

THEOREM Let T be a set-valued mapping with closed graph.

The following assertions are equivalent

(i) T is globally maximal monotone on X

(ii) T is globally hypomonotone on X and for any (u, v) ∈ gphT

〈z, w〉 ≥ 0 whenever z ∈ D̂∗T (u, v)(w)

If the domain of T is convex, then the global hypomonotonicity

in (ii) can be replaced by the semilocal one
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MIXED CODERIVATIVE CHARACT. OF MAX MONOTONICITY

THEOREM Let T be a set-valued mapping with closed graph.

The following assertions are equivalent

(i) T is globally maximal monotone on X

(ii) T is globally hypomonotone on X and for any (u, v) ∈ gphT

〈z, w〉 ≥ 0 whenever z ∈ D∗MT (u, v)(w)

If the domain of T is convex, then the global hypomonotonicity

in (ii) can be replaced by the semilocal one

Examples shows that the hypomonotonicity conditions are essen-

tial for coderivative characterizations of maximal monotonicity
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CHARACTERIZATIONS OF STRONG MAX MONOTONICITY

T : X ⇒ X is globally strongly maximal monotone with modulus
κ > 0 if it is maximal monotone and T −κI is globally monotone
COROLLARY Let T be of closed graph. Then the following
assertions are equivalent

(i) T is globally strongly maximal monotone with modulus κ > 0

(ii) T is globally hypomonotone on X and for any (u, v) ∈ gphT

〈z, w〉 ≥ κ‖w‖2 whenever z ∈ D̂∗T (u, v)(w), w ∈ X

(iii) T is globally hypomonotone on X and for any (u, v) ∈ gphT

〈z, w〉 ≥ κ‖w‖2 whenever z ∈ D∗MT (u, v)(w), w ∈ X
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If the domT is convex, the global hypomonotonicity in assertions

(ii) and (iii) can be equivalently replaced by the semilocal one



LOWER-C2 FUNCTIONS

A function f : IRn → IR is lower-C2 if for each x̄ ∈ IRn there is a
neighborhood V of x̄ on which f admits the representation

f(x) = max
t∈T

ft(x), x ∈ V

where ft are of class C2 on V , T is compact, and ft(x) and all
their partial derivatives in x through the second order depend
continuously on (t, x) ∈ T × V

This class of subsmooth functions is among the most favorable
classes of functions in variational analysis and optimization. In
particular, it includes maximum functions of the type

f(x) := max
{
f1(x), . . . , fm(x)

}
where each function fi is of class C2
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SUBDIFFERENTIALS

Let f : IRn → IR := (−∞,∞] with x̄ ∈ dom f

(i) The (basic, limiting) first-order subdifferential of f at x̄ is

∂f(x̄) :=
{
v ∈ IRn

∣∣∣∣ ∃xk → x̄, f(xk)→ f(x̄), vk → v s.t.

lim inf
x→xk

f(x)− f(xk)− 〈v, x− xk〉
‖x− xk‖

≥ 0
}

(ii) The basic second-order subdifferential of f at x̄ relative to

the subgradient v̄ ∈ ∂f(x̄) is

∂2f(ū, v̄)(w) :=
(
D∗∂f

)
(ū, v̄)(w), w ∈ IRn

7



(iii) The modified or combined second-order subdifferential of f

at x̄ relative to the subgradient v̄ is

∂̃2f(x̄, v̄)(w) :=
(
D̂∗∂f

)
(x̄, v̄)(w), w ∈ IRn

For C2 function we have

∂2f(x̄, v̄)(w) = ∂̃2f(x̄, v̄)(w) =
{
∇2f(x̄)∗w

}
=
{
∇2f(x̄)w

}
in terms of the classical (symmetric) Hessian.

Well-developed calculus is available for ∂2f in rather general set-

tings of prox-regular functions



SECOND-ORDER CHARACTERIZATIONS OF CONVEXITY

THEOREM Let f : IRn → IR be a lower-C2 function. Then the

following assertions are equivalent

(i) f is convex on IRn

(ii) For each (u, v) ∈ gph ∂f we have

〈z, w〉 ≥ 0 whenever z ∈ ∂2f(u, v)(w), w ∈ IRn

(iii) For each (u, v) ∈ gph ∂f we have

〈z, w〉 ≥ 0 whenever z ∈ ∂̃2f(u, v)(w), w ∈ IRn
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SECOND-ORDER CHARACT. OF STRONG CONVEXITY

f is strongly convex on IRn with modulus κ > 0 if

f
(
tλx+ (1− λ)y

)
≤ tf(x) + (1− λ)f(y)−

κ

2
λ(1− λ)‖x− y‖2, x, y ∈ IRn

whenever λ ∈ (0,1)

COROLLARY If f is lower C2, the following are equivalent

(i) f is strongly convex on IRn with modulus κ

(ii) We have the second-order subdifferential condition

〈z, w〉 ≥ κ‖w‖2 for all z ∈ ∂2f(u, v)(w), (u, v) ∈ gph ∂f, w ∈ IRn
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(iii) We have the modified second-order subdifferential condition

〈z, w〉 ≥ κ‖w‖2 for all z ∈ ∂̃2f(u, v)(w), (u, v) ∈ gph ∂f, w ∈ IRn



LOCAL MONOTONICITY

DEFINITION Let T : X ⇒ X be a set-valued operator in a

Hilbert space, and let (x̄, v̄) ∈ gphT . We say that

(i) T is locally strongly monotone around (x̄, v̄) with modulus

κ > 0 if there is a neighborhood U × V of (x̄, v̄) such that

〈v1 − v2, u1 − u2〉 ≥ κ‖u1 − u2‖2 for all (u1, v1), (u2, v2) ∈ gphT ∩ (U × V )

(ii) T is locally strongly maximal monotone around (x̄, v̄) with

modulus κ > 0 if there is a neighborhood U × V such that the

above inequality holds and that gphT ∩(U×V ) = gphS∩(U×V )

for any monotone operator S with gphT ∩ (U × V ) ⊂ gphS
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(iii) T is locally hypomonotone around (x̄, v̄) if there is a neigh-

borhood U × V of this point and r > 0 such that

〈v1 − v2, u1 − u2〉 ≥ −r‖u1 − u2‖2, (u1, v1), (u2, v2) ∈ gphT ∩ (U × V )



NEIGH. CHARACT. OF LOCAL STRONG MAX MONOTONICITY

Theorem Let T : X ⇒ X be of closed graph around the point

(x̄, v̄) ∈ gphT . The following are equivalent

(i) T is locally strongly maximal monotone around (x̄, v̄) with

modulus κ > 0

(ii) T is locally hypomonotone around (x̄, v̄) and there is η > 0

such that

〈z, w〉 ≥ κ‖w‖2 for all z ∈ D̂∗T (u, v)(w), (u, v) ∈ gphT ∩Bη(x̄, v̄)

The conditions in (ii) ensure the strong metric regularity of T

around (x̄, v̄) with modulus κ−1
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POINTWISE CHARACT. OF LOCAL STRONG MAX MONOTON.

Theorem Let T : IRn → IRn be Lipschitz continuous around x̄.

The following are equivalent

(i) T is locally strongly monotone around (x̄, T (x̄)) with some

modulus κ > 0

(ii) D∗T (x̄) is positive-definite in the sense that

〈z, w〉 > 0 whenever z ∈ D∗T (x̄)(w), w 6= 0
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