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“Generalized Equations” / “Variational Inequalities”

extending the classical paradigm of solving a system of equations

Variational inequality problem — in finite dimensions

For C ⊂ IRn nonempty closed convex, F : IRn → IRn continuous,
determine x ∈ C such that −F (x) ∈ NC (x)

i.e., F (x)·(x ′ − x) ≥ 0 ∀x ′ ∈ C

Modeling territory: optimality conditions, equilibrium conditions

Reduction to equation case: NC (x) = {0} when x ∈ intC
=⇒ in case of C = IRn, −F (x) ∈ NC (x) ⇐⇒ F (x) = 0



Extending to a “Stochastic Environment”?

Underlying probability space: (Ξ,A,P)

Problem elements subjected to uncertainty: ξ ∈ Ξ

• C (ξ) ⊂ IRn closed convex 6= ∅, depending measurably on ξ

• F (x , ξ) : IRn × Ξ→ IRn continuous in x , measurable in ξ

BUT WHAT “PROBLEM” IS TO BE SOLVED?

Key question: which comes first, decision or observation?

Observation first: knowing ξ, respond by deciding x(ξ)
−F (x(ξ), ξ) ∈ NC(ξ)(x(ξ)) a.s. a “random” V.I. problem?

Decision first: a single x must cope in advance with all ξ
−F (x , ξ) ∈ NC(ξ)(x) a.s. but is this hopeless to “solve”?

Conceptual limitation: anyway, why not more interaction?
maybe with information revealed and responded to in stages?



Review of Modeling Motivations for −F (x) ∈ NC (x)

Elementary optimization: minimizing g(x) over x ∈ C
−∇g(x) ∈ NC (x) −→ first-order optimality, take F = ∇g

Lagrangian V.I.: for l(y , z) on Y × Z closed convex

−∇y l(y , z) ∈ NY (y), ∇z l(y , z) ∈ NZ (z), corresponding to

x = (x , y), C = Y × Z , F (x) = (∇y l(y , z),−∇z l(y , z))

−→ this encompasses KKT conditions in NLP and much more!

Hierachical optimization/equilibrium:
• agent choosing u ∈ U “controls” agenta(s) determining (y , z)
• minimization of g(u, y , z) over u ∈ U is desired

−∇ug(u, y , z)∈NU(u), −(∇y l(u, y , z),−∇z l(u, y , z))∈NY×Z (y , z)

−→ modeled as a variational inequality in x = (u, y , z) by taking:

C = U×Y×Z , F (x) = (∇ug(u, y , z),∇y l(u, y , z),−∇z l(u, y , z))



Back to Issues in S.V.I. Problem Formulation

Popular research focus: “solving” −F (x , ξ) ∈ NC(ξ)(x) a.s.
like finding a common solution to many optimization problems!

Fallback approach 1: “take expectations on both sides”

solve −Eξ[F (x , ξ) ] ∈ ND(x) for D =
{
x
∣∣ x ∈ C (ξ) a.s.

}
solving a single V.I., but ad hoc? what interpretation?

Fallback approach 2: “find a best approximate solution”

minimize Eξ[ f (x , ξ) ] for some error or “gap” function f
not really “solving a V.I.” and why useful to accomplish?

Imperatives for what a“stochastic variational inequality” should be

Formulations must be able to extend to a stochastic setting
the modeling capabilities of ordinary variational inequalities!

applications in stochastic programming? stochastic equilibrium?



Passing Instead to a Function Space Framework

Response function set-up

• Consider x(·) : ξ 7→ x(ξ) in a space Lpn = Lp(Ξ,A,P; IRn)

pair Lpn with Lqn, taking 〈 x(·), v(·) 〉 = Eξ[ 〈x(ξ), v(ξ)〉 ]

• Introduce the closed convex set

C =
{
x(·) ∈ Lpn

∣∣ x(ξ) ∈ C (ξ) a.s.
}

• Introduce F as taking x(·) ∈ Lpn to an element F(x(·)) ∈ Lqn,

F(x(·)) : ξ 7→ F (x(ξ)), ξ) maybe under more assumptions

Important formula to record:

−F(x(·)) ∈ NC(x(·)) ⇐⇒ − F (x(ξ), ξ) ∈ NC(ξ)(x(ξ)) a.s.

but this true V.I. in Lpn isn’t what we really want to solve

The challenge: adapt somehow to x(ξ) NOT depending on ξ



Constancy as a Function Space Constraint

Substitute V.I. to investigate?

−F(x(·)) ∈ NCconst(x(·)) for Cconst =
{
x(·) ∈ C

∣∣ x(·) ≡ x const
}

Insight from stochastic optimization: a likely formula is

NCconst(x(·)) =
{
v(·)− w(·)

∣∣ v(·) ∈ NC(x(·)), Eξ[w(ξ)] = 0
}

w(·) ∈ Lqn serves as a Lagrange multiplier for constancy!

Conjecture: −F(x(·)) ∈ NCconst(x(·)) ⇐⇒{
x(·) ≡ x const and ∃w(·) ∈ Lqn, Eξ[w(ξ)] = 0,
such that − F (x , ξ) + w(ξ) ∈ NC(ξ)(x) a.s.

Example: if C (ξ) ≡ D, this is equivalent to −Eξ[F (x , ξ)]∈ND(x)!

Justification hurdle: a “constraint qualification” is needed, and
that may require working in L∞n , BUT generally L1

n 6= L∞n ∗
however there’s no trouble in the finitely stochastic case



Multistage Format

Pattern of “decisions” and “observations” in N stages:
x1, ξ1, x2, ξ2, . . . , xN , ξN with xk ∈ IRnk , ξk ∈ Ξk

x = (x1, . . . , xN) ∈ IRn, ξ = (ξ1, . . . , ξN) ∈ Ξ = Ξ1 × · · ·ΞN

Nonanticipativity constraint

xk can respond to ξ1, . . . , ξk−1 but not to ξk , . . . , ξN :
x(ξ) = (x1, x2(ξ1), x3(ξ1, ξ2), . . . , xN(ξ1, ξ2, . . . , ξN−1))

Nonanticipativity subspace: N ⊂ L∞n
N =

{
x(·)

∣∣ xk(·) depends only on ξ1, . . . , ξk−1

}
−→ x(·) is nonanticipative ⇐⇒ x(·) ∈ N

Martingale subspace: M⊂ L1
n

M =
{
w(·)

∣∣Eξk ,...,ξN [wk(ξ1, . . . , ξk−1, ξk . . . , ξN)] = 0
}

−→ in particular Eξ[w1(ξ)] = 0 and wN(ξ) ≡ 0

Complementarity: M = N⊥, N =M⊥
Single-stage example: N ←→ x(·) const, M←→ E [w(·)] = 0



Proposed S.V.I. Problem Formulation

Other model ingredients as before:
C =

{
x(·)

∣∣ x(ξ) ∈ C (ξ) a.s.
}

, F(x(·)) : ξ 7→ F (x(ξ)), ξ)
but with C ⊂ L∞n , F : L∞n → L1

n, Cconst upgraded to C ∩ N

Stochastic variational inequalities — fundamentally

Basic form: −F(x(·)) ∈ NC∩N (x(·)) “expandable to”: (?)

Extensive form: x(·) ∈ N and ∃w(·) ∈M such that
−F (x(ξ), ξ) + w(ξ) ∈ NC(ξ)(x(ξ)) a.s.

or equivalently as a V.I. on x(·) and w(·) jointly:
−(F(x(·)) + w(·),−x(·)) ∈ NC×M(x(·),w(·))

Stochastic variational inequalities — more broadly

−F(x(·)) ∈ NK∩N (x(·)) for a closed convex set K ⊂ C
along with “Lagrange muliplier elaborations” of this

Orientation: reducing such a V.I. to basic or extensive form



S.V.I. Basic Form Versus Extensive Form

Outlook on the relationship:
• In the extensive form, w(·) is a nonanticipativity multiplier
• Invoking a multiplier rule requires a constraint qualification
• Otherwise the two conditions on x(·) should be equivalent
• Equivalence corresponds to confirming that

NC∩N (x(·)) = NC(x(·)) + NN (x(·)), using NN (x(·)) ≡M

The finitely stochastic case: (Ξ,A,P) with Ξ finite, A = 2Ξ

• L∞n , L1
n, finite-dimensional, both identifiable as one “Ln”

• relative interiors can serve in constraint qualifications

The more general stochastic case:
• L1

n ⊂ L∞n ∗, 6=, with L∞n ∗\L1
n consisting of “singular elements”

• Singular elements could spoil the calculation of NC∩N (x(·))
• Some way must be found to confine normals to L1

n, not L∞n ∗
• It will come from a 1976 Rock./Wets paper in multistage S.P.



Equivalence Results, First Part

Review of technical assumptions: behind C and F
• C (ξ) 6= ∅, closed, convex, depending measurably on ξ
• F (x , ξ) continuous in x , measurable and integrable in ξ

the integrability ensures that F(x(·)) ∈ L1
n

Sufficiency Theorem

If x(·) solves the S.V.I. in extensive form in partnership with some
w(·), then x(·) also solves the corresponding S.V.I. in basic form

Necessity Theorem for the Finitely Stochastic Case

Suppose that the following constraint qualification is satisfied:

∃ x̂(·) ∈ N such that x̂(ξ) ∈ riC (ξ) a.s.

In that case, if x(·) solves the S.V.I. in basic form then x(·) with
some w(·) also solves the corresponding S.V.I. in extensive form

this relies on calculus rules of finite-dimensional convex analysis



Additional Assumptions for the General Stochastic Case

Constraint boundedness — for the mapping C : ξ 7→ C (ξ)

∃ ρ > 0 such that C (ξ) ⊂ ρIB a.s. (IB = unit ball in IRn)

on the side, this guarantees C 6= ∅ in L∞n
Induced constraints? the choice of xk in stage k can respond

only to (x1, . . . , xk−1) and (ξ1, . . . , ξk−1), and hence is limited to

C k(x1, . . . , xk−1, ξ) =
{
xk
∣∣ ∃(xk+1, . . . xN)

such that (x1, . . . , xk−1, xk , xk+1, . . . xN) ∈ C (ξ)
}

If this depends on future (ξk , . . . , ξN) it is necessary to constrain
xk to the essential intersection with respect to such information

Constraint nonanticipativity — no “induced constraints”

C k(x1, . . . , xk−1, ξ) does not depend on (ξk , . . . , ξN)



Equivalence Results, Second Part

Necessity Theorem for the General Stochastic Case

Assume constraint boundedness and nonanticipativity, and
suppose the following constraint qualification is satisfied:

∃ x̂(·) ∈ N , ε > 0 such that x̂(ξ) + εIB ⊂ intC (ξ) a.s.

In that case, if x(·) solves the S.V.I. in basic form, then x(·) with
some w(·) also solves the corresponding S.V.I. in extensive form

Method of proof: −F(x(·)) ∈ NC∩N (y(·)) says that
x(·) ∈ argminy(·)

{
〈F(x(·)), y(·)〉

∣∣ y(·) ∈ C ∩ N
}

• Recall that 〈F(x(·)), y(·)〉 = Eξ[ 〈F (x(ξ), ξ), y(ξ)〉 ]

• Introduce f (y , ξ) = 〈F (x(ξ), ξ), y〉+ δC(ξ)(y)

• Thus translate −F(x(·)) ∈ NC∩N (x(·)) into multistage S.P.:

x(·) ∈ argmin
{
Eξ[f (y(ξ), ξ)]

∣∣ y(·) ∈ N
}

• Get w(·) ∈M from result of that subject in Rock./Wets [1976]



Lagrangian Representations of Constraint Normals

Basic constraint system:

x(ξ) ∈ C (ξ) ⇐⇒ x(ξ) ∈ X and G (x(ξ), ξ) ∈ D

for X ∈ IRn, D ⊂ IRm closed convex and G : IRn × Ξ→ IRm

Multiplier rule: when D is a cone with polar Y there can be
under a constraint qualification a Lagrangian formula

v(ξ) ∈ NC(ξ)(x(ξ)) ⇐⇒ ∃ y(ξ) ∈ Y such that
v(ξ)−〈y(ξ),∇xG (x(ξ), ξ)〉∈NX (x(ξ)), G (x(ξ), ξ)∈NY (y(ξ))

Lagrangian S.V.I. representation

Then for X =
{
x(·)

∣∣ x(ξ) ∈ X a.s.
}

and Y=
{
y(·)

∣∣ y(ξ) ∈ Y a.s.
}

the V.I. −F(x(·)) ∈ NC∩N (x(·) becomes a V.I. in (x(·), y(·)):

−(F(x(·))+〈y(·),∇xG (x(·), ·)〉,−G (x(·), ·))∈N(X∩N )×Y(x(·), y(·))

this is actually an S.V.I. of basic type with “y(·) = xN+1(·)”!



Constraints Added to Basic Constraints

Expectation constraints: define K ⊂ C ⊂ L∞n by adding

Eξ[gi (x(ξ), ξ)]

{
≤ 0 for i = 1, . . . , r ,
= 0 for i = r + 1, . . . ,m

and as S.V.I. consider instead −F(x(·)) ∈ NK∩N (x(·))

Reduction tactic: introduce multipliers λi for these constraints
λ = (λ1, . . . , λm) ∈ Λ = [0,∞)r × (−∞,∞)m−r

Multiplier rule: under a constraint qualification
v(·) ∈ NK(x(·)) ⇐⇒ ∃λ ∈ Λ such that
v(·)−

∑m
i=1 λi∇xgi (x(·), ·) ∈ NC(x(·)) and G (x(·)) ∈ NΛ(λ)

where G (x(·)) = Eξ[ (g1(x(ξ), ξ), . . . , gm(x(ξ), ξ)) ]

Reduced version of −F(x(·)) ∈ NK∩C(x(·)) in these circumstances

−(F(x(·)) +
∑m

i=1 λi∇xgi (x(·), ·),−G (x(·)) ∈ N(C∩N )×Λ(x(·), λ)

this is actually an S.V.I. of basic type with “x1 augmented by λ”!
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