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Abstract

rL–density is a concept that can be applied to subsets of E×E∗, where E is a nonzero
real Banach space. We start our discussion of it in the more general situation of subsets
of SN spaces, where the notation is more concise. In the E × E∗ case, every closed
rL–dense monotone set is maximally monotone, but there exist maximally monotone
sets that are not rL–dense. The graph of the subdifferential of a proper, convex lower
semicontinuous function on E is rL–dense. The graphs of certain subdifferentials of
certain nonconvex functions are also rL–dense. (This follows from joint work with
Xianfu Wang.) The closed monotone and rL–dense sets have a number of very desir-
able properties, including a sum theorem under both natural and unnatural constraint
conditions, so rL–density satisfies the ideal calculus rules. We also give a generalization
of the Brezis–Browder theorem on linear relations.

Downloads

You can download files containing complete proofs and many references from the web.
I will give you the link at the end of the talk.
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— SN spaces, rL–density and maximal monotonicity—

Symmetric linear maps

Let B be a nonzero real Banach space. A linear map L:B → B∗ is symmetric if,
∀ b, c ∈ B, 〈b, Lc〉 =

〈
c, Lb

〉
. The quadratic form qL on B is defined by

qL(b) := 1
2

〈
b, Lb

〉
.

• We have the parallelogram law:
b, c ∈ B =⇒ 1

2qL(b− c) + 1
2qL(b+ c) = qL(b) + qL(c).

Definition of SN space

B
(
more precisely, (B,L)

)
is a symmetric nonexpansion space (SN space) if B is a

nonzero real Banach space and L:B → B∗ is a symmetric nonexpansive linear map
from B into B∗.

Examples of SN spaces

(a) If B is a Hilbert space then B is an SN space with Lc := c. Then qL(b) = 1
2‖b‖

2.
(b) If B is a Hilbert space then B is an SN space with Lc := −c. Then qL(b) = − 1

2‖b‖
2.

(c) R3 is an SN space with L(c1, c2, c3) := (c2, c1, c3). Then qL(b1, b2, b3) = b1b2 + 1
2b

2
3.

(d) R3 is not an SN space with L(c1, c2, c3) := (c2, c3, c1) since〈
(0, 1, 0), L(1, 0, 0)

〉
= 0 but

〈
(1, 0, 0), L(0, 1, 0)

〉
= 1.
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— SN spaces, rL–density and maximal monotonicity—

Definition of SN space

B
(
more precisely, (B,L)

)
is a symmetric nonexpansion space (SN space) if B is a

nonzero real Banach space and L:B → B∗ is a symmetric nonexpansive linear map
from B into B∗.

An example of an SN space motivated by monotonicity

(e) Let E be a nonzero Banach space and B := E × E∗ under the norm∥∥(x, x∗)
∥∥ :=

√
‖x‖2 + ‖x∗‖2.

Let
(
E × E∗, ‖ · ‖

)∗ = (E∗ × E∗∗, ‖ · ‖
)
, with

∥∥(y∗, y∗∗)
∥∥ :=

√
‖y∗‖2 + ‖y∗∗‖2 and〈

(x, x∗), (y∗, y∗∗)
〉

:= 〈x, y∗〉+ 〈x∗, y∗∗〉. ∀ (y, y∗) ∈ B, let
L(y, y∗) := (y∗, ŷ),

where ŷ is the canonical image of y in E∗∗. Since〈
(x, x∗), L(y, y∗)

〉
= 〈x, y∗〉+ 〈x∗, ŷ〉 = 〈y, x∗〉+ 〈y∗, x̂〉 =

〈
(y, y∗), L(x, x∗)

〉
,

B is an SN space, and
qL(x, x∗) = 〈x, x∗〉.

Any finite dimensional SN space of this form must have even dimension. Thus odd
dimensional cases of the examples considered on the previous slide cannot be of this
form. In contrast to the three examples on the previous slide, if E is not reflexive then
L is not surjective.
• E will always be a nonzero Banach space and so, with L as defined above, (E×E∗, L)
is an SN space. B will be an SN space.

3



— SN spaces, rL–density and maximal monotonicity—

Definition of L–positive set

Let A ⊂ B. We say that A is L–positive if A 6= ∅ and
b, c ∈ A =⇒ qL(b− c) ≥ 0.

Examples of L–positive sets

(a) B is a Hilbert space with Lc := c: every nonempty subset of B is L–positive.
(b) B is a Hilbert space with Lc := −c: the L–positive subsets of B are the singletons.
(e) E is a nonzero Banach space, B := E × E∗ and, L(x, x∗) := (x∗, x̂). Let
∅ 6= A ⊂ B. Then A is L–positive when

(x, x∗), (y, y∗) ∈ A =⇒ 〈x− y, x∗ − y∗〉 ≥ 0.
That is to say,

A is L–positive ⇐⇒ A is a monotone subset of E × E∗.

General notation

• Let X be a vector space and f : X 7→ ]−∞,∞ ]. Then dom f := {x ∈ X: f(x) ∈ R}.
• f is proper if dom f 6= ∅.
• PC(X) is the set of all proper convex functions f : X 7→ ]−∞,∞ ].
• If X is a Banach space, PCLSC(X) := {f ∈ PC(X): f is lower semicontinuous}.
• If f, g:X → [−∞,∞], then

{
X|f = g

}
is the “equality set” {x ∈ X|f(x) = g(x)}.
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— SN spaces, rL–density and maximal monotonicity—

SN space notation

• If (B,L) is a Banach SN space, PCq(B) := {f ∈ PC(B): f ≥ qL on B}.
• If (B,L) is a Banach SN space, PCLSCq(B) := {f ∈ PCLSC(B): f ≥ qL on B}.

The L–positive set given by a convex function

If f ∈ PCq(B) and
{
B|f = qL

}
6= ∅ then

{
B|f = qL

}
is an L–positive subset of B.

Proof. Let b, c ∈ B, f(b) = qL(b) and f(c) = qL(c). Then, from the parallelogram
law, the quadraticity of qL, and the convexity of f ,

1
2qL(b− c) = qL(b) + qL(c)− 1

2qL(b+ c) = qL(b) + qL(c)− 2qL
(

1
2 (b+ c)

)
≥ f(b) + f(c)− 2f

(
1
2 (b+ c)

)
≥ 0. �
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— SN spaces, rL–density and maximal monotonicity—

Definition of the function rL

Let b ∈ B. Then rL(b) := 1
2‖b‖

2 + qL(b).

• Since ‖L‖ ≤ 1, b ∈ B =⇒ 1
2‖b‖

2 ≥ −qL(b). Consequently
b ∈ B =⇒ rL(b) ≥ 0.

Examples of the function rL

(a) B is a Hilbert space with Lb := b. Then
rL(b) = ‖b‖2.

(b) B is a Hilbert space with Lb := −b. Then
rL(b) = 0.

(e) E is a nonzero Banach space, B := E × E∗ and, L(x, x∗) := (x∗, x̂). Then
rL(x, x∗) = 1

2‖x‖
2 + 〈x, x∗〉+ 1

2‖x
∗‖2.

Definition of rL–density

Let A ⊂ B. Then A is rL–dense if
∀ b ∈ B, inf rL(A− b) = 0.

• This means: ∀ b ∈ B and ε > 0 ∃ a ∈ A such that rL(a− b) < ε.

6



— SN spaces, rL–density and maximal monotonicity—

Definition of rL–density

Let A ⊂ B. Then A is rL–dense if
∀ b ∈ B, inf rL(A− b) = 0.

• This means: ∀ b ∈ B and ε > 0 ∃ a ∈ A such that rL(a− b) < ε.

Theorem: rL–density implies maximality

Let A be a closed rL–dense L–positive subset of B. Then A is maximally L–positive
(in the obvious sense).

Proof. Suppose that b ∈ B and A ∪ {b} is L–positive. Let ε > 0. By hypothesis,
∃ a ∈ A such that rL(a− b) < ε.

Thus
1
2‖a− b‖

2 + qL(a− b) < ε.

Since A ∪ {b} is L–positive, qL(a− b) ≥ 0, and so
1
2‖a− b‖

2 ≤ ε.

However, A is closed. Thus, letting ε→ 0, we have
b ∈ A. �

• As we will see later, the converse of the above result is false. There are maximally
L–positive subsets of E × E∗ that are not rL–dense.
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— SN spaces, rL–density and maximal monotonicity—

Definition of the function sL

Let b∗ ∈ B∗. We define sL(b∗) ∈ [−∞,∞ ] by
sL(b∗) := supb∈B

[
〈b, b∗〉 − qL(b)− 1

2‖Lb− b
∗‖2
]
.

The reason for this strange definition will appear on the next slide.

Examples of the function sL

(a) B is a Hilbert space with Lb := b. Then
sL(b∗) = 1

2‖b
∗‖2.

(e) E is a nonzero Banach space, B := E × E∗ and, L(x, x∗) := (x∗, x̂). Then
sL(x∗, x∗∗) = sup(y,y∗)∈E×E∗

[
〈y, x∗〉+ 〈y∗, x∗∗〉−〈y, y∗〉− 1

2‖y
∗−x∗‖2− 1

2‖ŷ−x
∗∗‖2

]
.

Mercifully, this simplifies to the formula
∀ (x∗, x∗∗) ∈ E∗ × E∗∗, sL(x∗, x∗∗) = 〈x∗, x∗∗〉. ( )
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— SN spaces, rL–density and maximal monotonicity—

Criterion for
{
B|f = qL

}
to be rL–dense in B

Let f ∈ PCLSCq(B). Then:{
B|f = qL

}
is rL–dense in B ⇐⇒ f∗ ≥ sL on B∗.

Proof. One can prove that both conditions above are equivalent to
∀ c ∈ B, infb∈B

[
(f − qL)(b) + rL(b− c)

]
≤ 0.

The proof of the equivalence with the left hand condition uses a completeness argument.
The proof of the equivalence with the right hand condition uses Rockafellar’s version
of the Fenchel duality theorem on the two functions f and gc, where

gc(b) := −qL(b) + rL(b− c) = −〈b, Lc〉+ qL(c) + 1
2‖b− c‖

2,

which is continuous and convex. The definition of sL was obtained by working
backwards from this proof. For more details, see the material on the web. �
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— SN spaces, rL–density and maximal monotonicity—

Polar subspace

• If Y is a linear subspace of a Banach space X, Y 0 is the “polar subspace of Y ”, that
is to say the linear subspace

{
x∗ ∈ X∗: 〈Y, x∗〉 = {0}

}
of X∗.

Theorem on the rL-density of linear subspaces

Let (B,L) be an SN space and A be a closed linear L–positive subspace of B. Then
A is rL-dense in B ⇐⇒ sup sL(A0) ≤ 0.

Comment. We will see later that the above result leads to a generalization of the
Brezis–Browder theorem on the monotonicity of the adjoint relation.
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— SN spaces, rL–density and maximal monotonicity—

• We have shown how f ∈ PCq(B) leads to the L–positive set, {B|f = qL}.
• We now consider the converse problem: given an L–positive set, A, we show how to
obtain a convex function, ΦA, on B.

A convex function given by an L–positive set

Let A be an L–positive subset of B. We define ΦA: B 7→ ]−∞,∞ ] by
ΦA(b) := supA

[
Lb− qL

]
= supa∈A

[
〈a, bLb〉 − qL(a)

]
.

Nice property of ΦA
Let A be a maximally L–positive subset of B. Then

ΦA ∈ PCLSCq(B) and
{
B|ΦA = qL

}
= A.

Criterion for
{
B|f = qL

}
to be rL–dense in B

Let f ∈ PCLSCq(B). Then:{
B|f = qL

}
is rL–dense in B ⇐⇒ f∗ ≥ sL on B∗.

Theorem on the rL–density of an L–positive set

A be a closed L–positive subset of B. Then A is rL–dense in B if, and only if, A is
maximally L–positive and ΦA∗ ≥ sL on B∗.

Proof. Immediate from the two results above with f := ΦA. �
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— SN spaces, rL–density and maximal monotonicity—

Theorem on the rL–density of an L–positive set

A be a closed L–positive subset of B. Then A is rL–dense in B if, and only if, A is
maximally L–positive and ΦA∗ ≥ sL on B∗.

Definition of the Fitzpatrick extension

Let A be a closed, rL–dense L–positive subset of B and sL ◦ L = qL. The Fitzpatrick
extension of A is the set AF :=

{
B∗|ΦA∗ = sL

}
.

• The reason that we use the word “extension” is that frequently L−1AF = A.

Remember ( )
For all (x∗, x∗∗) ∈ E∗ × E∗∗, sL(x∗, x∗∗) = 〈x∗, x∗∗〉. ( )

Multifunction notation
• For the rest of this paper, we will suppose that B = E × E∗, as in case (e).
• If S: E ⇒ E∗ let D(S) := {x ∈ E: Sx 6= ∅} and R(S) :=

⋃
x∈E Sx.

• If S: E ⇒ E∗ let ϕS := ΦG(S). ϕS is known as the “Fitzpatrick function” of S.
• If S: E ⇒ E∗ we say that S is closed if G(S) is a closed subset of E × E∗.
• If S: E ⇒ E∗ we say that S is rL–dense if G(S) is an rL–dense subset of E × E∗.
• If S: E ⇒ E∗ is closed, monotone and rL–dense, we define SF: E∗ ⇒ E∗∗, by
G(SF) := G(S)F. Using ( ), x∗∗ ∈ SF(x∗) ⇐⇒ ϕS

∗(x∗, x∗∗) = sL(x∗, x∗∗) =
〈x∗, x∗∗〉. We will call SF the Fitzpatrick extension of S.
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— SN spaces, rL–density and maximal monotonicity—

The tail. . .

Let E = `1, and define T : `1 → `∞ = E∗ by

(Tx)n =
∑∞

k=n
xk.

T is the “tail” operator. Then T is maximally monotone but not rL–dense.

Proof. It is well known that T is maximally monotone. Let
e∗ := (1, 1, . . .) ∈ `1∗ = `∞.

Let x ∈ `1, and write σ = 〈x, e∗〉 =
∑
n≥1 xn. Clearly, ‖x‖ ≥ σ. Since Tx ∈ c0, we also

have ‖Tx− e∗‖ = supn |(Tx)n − 1| ≥ limn |(Tx)n − 1| = 1. Thus
〈x, Tx〉 =

∑
n≥1 xn

∑
k≥n xk =

∑
n≥1 x

2
n +

∑
n≥1

∑
k>n xnxk

≥ 1
2

∑
n≥1 x

2
n +

∑
n≥1

∑
k>n xnxk = 1

2σ
2.

It follows that
rL
(
(x, Tx)− (0, e∗)

)
= 1

2‖x‖
2 + 1

2‖Tx− e
∗‖2 + 〈x, Tx− e∗〉

≥ 1
2σ

2 + 1
2 + 〈x, Tx〉 − σ ≥ 1

2σ
2 + 1

2 + 1
2σ

2 − σ
= σ2 + 1

2 − σ ≥
1
4 .

Consequently, T is not rL–dense. �
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— SN spaces, rL–density and maximal monotonicity—

Criterion for
{
B|f = qL

}
to be rL–dense in B

Let f ∈ PCLSCq(B). Then:{
B|f = qL

}
is rL–dense in B ⇐⇒ f∗ ≥ sL on B∗.

Remember ( )
For all (x∗, x∗∗) ∈ E∗ × E∗∗, sL(x∗, x∗∗) = 〈x∗, x∗∗〉. ( )

Theorem on subdifferentials

Let k ∈ PCLSC(E). Then ∂k is rL–dense in E × E∗.

Proof. Define f ∈ PCLSC(E × E∗) by f(x, x∗) := k(x) + k∗(x∗). From the Fenchel–
Young inequality,

f(x, x∗) ≥ 〈x, x∗〉 = qL(x, x∗),
so f ∈ PCLSCq(E × E∗). By direct computation, ∀ (x∗, x∗∗) ∈ E∗ × E∗∗,

f∗(x∗, x∗∗) := k∗(x∗) + k∗∗(x∗∗).
From the Fenchel–Young inequality again and ( ),

f∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉 = sL(x∗, x∗∗).
From the criterion above,

{
E × E∗|f = qL

}
is rL–dense in E × E∗.

But this set is exactly G(∂k). �

Comment. Since G(∂k) is closed, this result is a strict generalization of Rockafellar’s
theorem on the maximal monotonicity of subdifferentials.
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— SN spaces, rL–density and maximal monotonicity—

A brief digression to non convex subdifferentials and non monotone sets
(joint work with Xianfu Wang)

Weak subdifferentials

A weak subdifferential, ∂w, is a rule that associates with each proper lower semicon-
tinuous function f : E → ]−∞,∞ ] a multifunction ∂wf : E ⇒ E∗ such that,
• 0 ∈ ∂wf(x) if f attains a strict global minimum at x.
• ∂w(f + h)(x) ⊆ ∂wf(x) + ∂h(x) whenever h is a continuous convex real function on
E (here ∂h is the subdifferential of h of convex analysis).

Comment. The abstract subdifferential introduced by Thibault and Zagrodny gives
a weak subdifferential. This implies that a number of other subdifferentials that have
been introduced over the years also give weak subdifferentials. In particular, the Clarke-
Rockafellar subdifferential is a weak subdifferential. Also, Mordukhovich’s limiting
subdifferential is a weak subdifferential if we confine our attention to Asplund spaces.

The rL–density of weak subdifferentials

Let ∂w be a weak subdiferential and k: E → R be proper, lower semicontinuous and
bounded below by a continuous affine functional. Then

∂wk is rL–dense in E × E∗.
Comment. Of course, ∂wk is not necessarily monotone if k is not convex.

For the rest of this talk, we return to the monotone case.
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— SN spaces, rL–density and maximal monotonicity—

Sufficient conditions for rL–density

Let S: E ⇒ E∗ be maximally monotone.

• If R(S) = E∗ then S is rL–dense.

• If E is reflexive then S is rL–dense

• If X and Y are nonempty sets, define π1: X×Y 7→ X and π2: X×Y 7→ Y by
π1(x, y) := x and π2(x, y) := y.

Theorem on domain and range

Let S: E ⇒ E∗ be closed, monotone and rL–dense. Then

D(S) = π1(domϕS) and R(S) = π2(domϕS).
Consequently,

D(S) and R(S) are convex.

Comments. Gossez gave an example of a maximally monotone multifunction for
which R(S) is not convex.
An example of a maximally monotone multifunction for which D(S) is not convex
would lead to a counterexample for the sum problem!

16



— SN spaces, rL–density and maximal monotonicity—

A negative alignment criterion for rL–density

Let S: E ⇒ E∗ be closed and monotone. Then

S is rL–dense

m

∀ (w,w∗) ∈ E × E∗, ∃ τ ≥ 0 and a sequence {(sn, s∗n)}n≥1 in G(S) such that

lim
n→∞

‖sn − w‖ = τ, lim
n→∞

‖s∗n − w∗‖ = τ and lim
n→∞

〈sn − w, s∗n − w∗〉 = −τ2.

Comments. (⇑) is obvious. (⇓) is more delicate because the boundedness of the
sequence is not obvious. For more details, see the material on the web.
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— SN spaces, rL–density and maximal monotonicity—

Definition of type (ANA)

Let S: E ⇒ E∗ be maximally monotone. Then S is of type (ANA) if, whenever
(w,w∗) ∈ E × E∗ \G(S), there exists (s, s∗) ∈ G(S) such that s 6= w, s∗ 6= w∗, and

〈s− w, s∗ − w∗〉
‖s− w‖‖s∗ − w∗‖

is as near as we please to −1.

• This was a property originally proved for subifferentials.
• We do not have an example of a maximally monotone multifunction that is not of
type (ANA).

Theorem on type (ANA)

Let S: E ⇒ E∗ be closed, monotone and rL–dense. Then S is maximally monotone of
type (ANA).

Proof. Immediate from the properties of τ on the previous slide. �

18



— SN spaces, rL–density and maximal monotonicity—

Partial episums

• Let X and Y be nonzero Banach spaces and f, g ∈ PCLSC(X × Y ). Then we define
the functions f ⊕2 g and f ⊕1 g by

(f ⊕2 g)(x, y) := inf
{
f(x, y − η) + g(x, η): η ∈ Y

}
and (f ⊕1 g)(x, y) := inf

{
f(x− ξ, y) + g(ξ, y): ξ ∈ X

}
.

• We substitute the symbol ⊕e2 for ⊕2 and ⊕e1 for ⊕1 if the infimum is exact, that
is to say, can be replaced by a minimum.

A bivariate version of the Fenchel duality theorem

Let f, g ∈ PCLSC(X × Y ), f ⊕2 g ∈ PC(X × Y ) and⋃
λ>0 λ

[
π1 dom f − π1 dom g

]
be a closed subspace of X.

Then (f ⊕2 g)∗ = f∗⊕e1 g∗ on X∗ × Y ∗.

• If S, T : E ⇒ E∗ then, ∀x ∈ E, (S + T )x :=
{
x∗ + y∗: x∗ ∈ Sx, y∗ ∈ Tx

}
.

• S + T is known as the “Minkowski sum” of S and T .

19



— SN spaces, rL–density and maximal monotonicity—

Composite sum theorem

Let S, T : E ⇒ E∗ be closed, monotone and rL–dense. Then (a)=⇒(b)=⇒(c)=⇒(d):
(a) D(S) ∩ intD(T ) 6= ∅.
(b)

⋃
λ>0 λ

[
D(S)−D(T )

]
= E.

(c)
⋃
λ>0 λ

[
π1 domϕS − π1 domϕT

]
is a closed subspace of E.

(d) S + T is closed, monotone and rL–dense.

Composite parallel sum theorem

Let S, T : E ⇒ E∗ be closed, monotone and rL–dense. Then (a)=⇒(b)=⇒(c)=⇒(d):
(a) R(S) ∩ intR(T ) 6= ∅.
(b)

⋃
λ>0 λ

[
R(S)−R(T )

]
= E∗.

(c)
⋃
λ>0 λ

[
π2 domϕS − π2 domϕT

]
is a closed subspace of E∗.

(d) The multifunction y 7→ (SF + T F)−1(ŷ) is closed, monotone and rL–dense.

Comments. The two results above follow from the bivariate version of Fenchel dual-
ity. They are not immediate. These results are in stark contrast to the situation for
maximally monotone multifunctions. Is is apparently still unknown whether S + T is
maximally monotone when S and T are maximally monotone and D(S)∩ intD(T ) 6= ∅.
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— SN spaces, rL–density and maximal monotonicity—

Composite sum theorem

Let S, T : E ⇒ E∗ be closed, monotone and rL–dense. Then (a)=⇒(b)=⇒(c)=⇒(d):
(a) D(S) ∩ intD(T ) 6= ∅.
(b)

⋃
λ>0 λ

[
D(S)−D(T )

]
= E.

(c)
⋃
λ>0 λ

[
π1 domϕS − π1 domϕT

]
is a closed subspace of E.

(d) S + T is closed, monotone and rL–dense.

Composite parallel sum theorem

Let S, T : E ⇒ E∗ be closed, monotone and rL–dense. Then (a)=⇒(b)=⇒(c)=⇒(d):
(a) R(S) ∩ intR(T ) 6= ∅.
(b)

⋃
λ>0 λ

[
R(S)−R(T )

]
= E∗.

(c)
⋃
λ>0 λ

[
π2 domϕS − π2 domϕT

]
is a closed subspace of E∗.

(d) The multifunction y 7→ (SF + T F)−1(ŷ) is closed, monotone and rL–dense.

Another comment. If S: E ⇒ E∗ is closed, monotone and rL–dense then it can be
proved that SF: E∗ ⇒ E∗∗ is maximally monotone. This does not seem to be very
easy. Our proof depends on the following result of Simon Fitzpatrick and myself:

On the biconjugate of a maximum
Let X be a nonzero Banach space, m ≥ 1, g0 ∈ PCLSC(X) and g1, . . . , gm be convex
and continuous on X. Then

(g0 ∨ · · · ∨ gm)∗∗ = g0
∗∗ ∨ · · · ∨ gm∗∗.
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— SN spaces, rL–density and maximal monotonicity—

First subdifferential perturbation theorem

Let S: E ⇒ E∗ be closed, monotone and rL–dense. Let k ∈ PCLSC(E) and either
D(S)∩ int dom k 6= ∅ or intD(S)∩dom k 6= ∅. Then the multifunction S+∂k is closed,
monotone and rL–dense.

Second subdifferential perturbation theorem

Let S: E ⇒ E∗ be closed, monotone and rL–dense. Let k ∈ PCLSC(E) and either
R(S) ∩ int dom k∗ 6= ∅ or intR(S) ∩ dom k∗ 6= ∅. Then the multifunction

y 7→ (SF + ∂k∗)−1(ŷ)
is closed, monotone and rL–dense.

Comments. The first subdifferential perturbation theorem follows easily from the
composite sum theorem. The second subdifferential perturbation theorem follows with
a little more difficulty from the composite parallel sum theorem.
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Strong maximality

Let S: E ⇒ E∗ be monotone. We say that S is strongly maximally monotone if:
(a) Whenever C is a nonempty w(E∗, E)–compact convex subset of E∗, w ∈ E and,

∀ (s, s∗) ∈ G(S), ∃ w∗ ∈ C such that 〈s− w, s∗ − w∗〉 ≥ 0
then S(w) ∩ C 6= ∅.
(b) Whenever C is a nonempty w(E,E∗)–compact convex subset of E, w∗ ∈ E∗ and,

∀ (s, s∗) ∈ G(S), ∃ w ∈ C such that 〈s− w, s∗ − w∗〉 ≥ 0

then w∗ ∈ S(C).

Strong maximality theorem

Let S: E ⇒ E∗ be closed, monotone and rL–dense. Then S is strongly maximally
monotone.

Comments. Of course, if C is a singleton, these statements become exactly the
statement of maximal monotonicity.
(a) follows from the First subdifferential perturbation theorem with k a support
functional, and (b) follows from the Second subdifferential perturbation theorem with
k an indicator function.
This was another property originally proved for subifferentials.
We do not have an example of a maximally monotone multifunction that is not strongly
maximal.
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Type (FP)

Let S: E ⇒ E∗ be monotone. We say that S is of type (FP) provided that the following
holds: if U is an open convex subset of E∗, U ∩R(S) 6= ∅, (w,w∗) ∈ E × U and

〈s− w, s∗ − w∗〉 ≥ 0 whenever (s, s∗) ∈ A and s∗ ∈ U
then (w,w∗) ∈ G(S).

• If we take U = E∗, we can see that every monotone multifunction of type (FP) is
maximally monotone.
• This concept was originally introduced by Fitzpatrick and Phelps. Their term for it
was “locally maximal monotone”.

Type (FP) criterion for rL–density

Let S: E ⇒ E∗ be closed and monotone. Then S is of type (FP) ⇐⇒ S is rL–dense.

Comments. “⇐=” follows from the Second subdifferential perturbation theorem with
k a support functional.
“=⇒” follows from an adaptation of a proof of Bauschke, Borwein, Wang and Yao.
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Polar subspace

• If Y is a linear subspace of a Banach space X, Y 0 is the “polar subspace of Y ”, that
is to say the linear subspace

{
x∗ ∈ X∗: 〈Y, x∗〉 = {0}

}
of X∗.

Theorem on the rL-density of linear subspaces

Let (B,L) be an SN space and A be a closed linear L–positive subspace of B. Then
A is rL-dense in B ⇐⇒ sup sL(A0) ≤ 0.

• Let A be a linear subspace of E × E∗
(
that is to say a linear relation

)
. The adjoint

subspace (adjoint linear relation), AT, of E∗∗ × E∗, is defined by:
(y∗∗, y∗) ∈ AT ⇐⇒ for all (a, a∗) ∈ A, 〈a, y∗〉 = 〈a∗, y∗∗〉.

(We use the notation “AT” rather than the more usual “A∗” to avoid confusion with
the dual space of A.) It is clear that

(y∗∗, y∗) ∈ AT ⇐⇒ (y∗,−y∗∗) ∈ A0.

Our next result extends the Brezis-Browder theorem to nonreflexive spaces.

Generalization of results of Bauschke, Borwein, Wang and Yao

Let A be a closed linear monotone subspace of E × E∗. Then the three conditions
below are equivalent:

A is rL–dense.
AT is a monotone subspace of E∗∗ × E∗.

AT is a maximally monotone subspace of E∗∗ × E∗.
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Type (NI)

Let S: E ⇒ E∗ be monotone. We say that S is of type (NI) if
∀ (x∗, x∗∗) ∈ E∗ × E∗∗, inf(s,s∗)∈G(S)〈s∗ − x∗, ŝ− x∗∗〉 ≤ 0.

Type (NI) criterion for rL–density

Let S: E ⇒ E∗ be closed and monotone. Then S is rL–dense ⇐⇒ S is maximally
monotone of type (NI).
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Downloads

You can download files containing related materials and complete references from
<www.math.ucsb.edu/∼simons/SNRL.html>.

Note that you must type the whole address. See the next slide.
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