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1. Non-Lipschitzian Reformulation

Consider the nonlinear programming problem (NLP):

min f (x)

s.t. gi(x) ≤ 0, i ∈ I := {1, . . . ,m},
hj(x) = 0, j ∈ J := {m + 1, . . . ,m + q},

where f, gi, hj : Rn → R are assumed to be smooth functions.

We denote by C the feasible set of (NLP).
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Karush-Kuhn-Tucker (KKT) condition for a local minimum x̄ of (NLP), orig-

inated with Kuhn and Tucker (1951) and Karush (1939), holds if there exists a

vector λ ∈ Rm+q, called a KKT multiplier, such that

∇f (x̄)+
∑
i∈I

λi∇gi(x̄)+
∑
j∈J

λj∇hj(x̄) = 0, λi ≥ 0, λigi(x̄) = 0 ∀i ∈ I.
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Second-Order Condition (SON), originated with Ioffe (1979), holds at a local

minimum x̄ of (NLP) if

sup
λ∈KKT(x̄)

〈w,∇2
xxL(x̄, λ)w〉 ≥ 0 ∀w ∈ V(x̄),

where KKT(x̄) is the set of all KKT multipliers at x̄ and the critical cone V(x̄)

at x̄ is definde by

V(x̄) :=

w ∈ Rn

∣∣∣∣∣∣∣∣
〈∇f (x̄), w〉 ≤ 0

〈∇gi(x̄), w〉 ≤ 0 ∀i ∈ I(x̄)

〈∇hj(x̄), w〉 = 0 ∀j ∈ J

 .
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Let φ : Rn → R+ ∪ {+∞} be a lower semicontinuous function such that

C = {x ∈ Rn | φ(x) = 0}.

The general penalty problem is

min
x∈Rn

f (x) + µφ(x).

Definition 1.1 We say that the penalty function f +µφ is exact at x̄ if, f +µφ

admits a local minimum at x̄ with some finite penalty parameter µ > 0.

Definition 1.2 We say that the penalty term φ is of KKT-type at x̄ if the KKT

condition holds at x̄ whenever the penalty function f + µφ is exact at x̄.
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Lower order penalty: Let 0 ≤ p ≤ 1 and 00 := 0. Let

S(x) =
∑
i∈I

max{gi(x), 0} +
∑
j∈J
|hj(x)| ∀x ∈ Rn,

while the lp penalty function associated with (NLP) is of the form

Fp(x) := f (x) + µSp(x).

• p = 1, F1(x) is the classical l1 penalty function, see Eremin (1967) and

Zangwill (1967).

• p < 1, Fp(x) is referred to as the lower order lp penalty function, first

introduced in Luo et al. (1996) for the study of MPEC and was rediscovered

from a unified augmented Lagrangian scheme by Huang and Yang (2003)

and Rubinov and Yang (2003).

The lp penalty problem (NLP(p)) is

min
x∈Rn

f (x) + µSp(x).
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l1 exact penalty function implies the KKT condition and the SON condition,

see Clarke (1983) and Rockafellar (1989), respectively.

Can lp(p < 1) exact penalty function be used for the KKT condition and the

SON condition ?
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2. First-order Necessary Conditions and KKT-
type Penalty Terms

If q = 0 and all gi’s are concave, then the KKT condition of (NLP) holds. See

Hestenes (1970).
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The generalized Clarke second-order directional derivative of a C1,1 function is

defined by

g◦◦(x;w) = lim sup
y→x, t→0+

∇g(y + tu)Tw −∇g(y)Tw

t
,

see Hiriart-Urruty et al (1984), Cominetti and Correa (1990), and Yang and

Jeyakumar (1992).

A C1,1 function g is concave if and only if

g◦◦(x;w) ≤ 0,∀x,w ∈ Rn.

See Yang (1994).
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Let

I(x̄) : = {i ∈ I | gi(x̄) = 0},
I(x̄, w) : = {i ∈ I | gi(x̄) = 0, 〈∇gi(x̄), w〉 = 0}.

Let LC(x̄) be the first-order linearized tangent cone to C at x̄ defined by

LC(x̄) :=

{
w ∈ Rn

∣∣∣∣∣ 〈∇gi(x̄), w〉 ≤ 0 ∀i ∈ I(x̄)

〈∇hj(x̄), w〉 = 0 ∀j ∈ J

}
.
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By calculating the upper Dini-derivative of F1/2(x) and using a second-order

Taylor expansion, Yang and Meng (2007) showed that S
1
2(x) is of KKT-type at

x̄, that is the KKT condition holds, if, for every w ∈ LC(x̄),

g◦◦i (x̄, w) ≤ 0, ∀i ∈ I(x̄, w), h◦◦j (x̄, w) = 0 ∀j ∈ J.

These results have been extended to semi-infinite program and generalized

semi-infinite program and the paper is submitted to a JOTA special issue ded-

icated to Elijah (Lucien) Polak’s 85th birthday. See Yang, Chen and Zhou

(2015).
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By calculating the contingent directional derivative of F1/2(x) at x̄, Meng and

Yang (2010) showed that if, for every w ∈ LC(x̄), there exists some z ∈ Rn

such that

〈∇gi(x̄), z〉 + 〈w,∇2gi(x̄)w〉 ≤ 0 ∀i ∈ I(x̄, w),

〈∇hj(x̄), z〉 + 〈w,∇2hj(x̄)w〉 = 0 ∀j ∈ J.
then the KKT condition holds.
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Meng and Yang (2015) employ the following tools from Variational Analysis,

see Rockafellar and Wets (1998). For any f : Rn → R and a point x̄ with f (x̄)

finite,

• For any w ∈ Rn, the subderivative of f at x̄ for w is defined by

df (x̄)(w) := lim inf
τ→0+, w′→w

f (x̄ + τw′)− f (x̄)

τ
.

• A vector v ∈ Rn is a regular subgradient of f at x̄, written v ∈ ∂̂f (x̄), if

f (x) ≥ f (x̄) + 〈v, x− x̄〉 + o(‖x− x̄‖).

• The relation between subderivative and regular subdifferential is

∂̂f (x̄) = {v ∈ Rn | 〈v, w〉 ≤ df (x̄)(w) ∀w ∈ domdf (x̄)}.
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Lemma 2.1 Suppose that the function ψ : Rn → R has a local minimum at x̄

with ψ(x̄) finite. Then we havea

[domdψ(x̄)]∗ ⊂ ∂̂ψ(x̄) ⊂ [kerdψ(x̄)]∗.

• The first inclusion is an equality if and only if ∂̂ψ(x̄) is a cone;

• The second inclusion is an equality if and only if

[domdψ(x̄)]∗ = [kerdψ(x̄)]∗.

• If the subderivative dψ(x̄) is a sublinear function as is true when ψ is reg-

ular at x̄ (see Definition 7.25 of Rockafellar and Wets (1998)), then

clpos(∂̂ψ(x̄)) = [kerdψ(x̄)]∗. (1)
aThe polar cone of A is defined by

A∗ = {z ∈ Rn|〈z, x〉 ≤ 0 ∀x ∈ A}.
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The closure operation cannot be removed from the left-hand side of (1) even if

ψ is convex.

Example 2.1 Consider at x̄ = (0, 0) the function

ψ(x) = max
0≤t≤1

g(x, t),

where g(x, t) = tx1 + t2x2 for all x ∈ R2 and t ∈ R. The equality

clpos(∂̂ψ(x̄)) = [kerdψ(x̄)]∗(= {x | 0 ≤ x2 ≤ x1})

holds, but when the closure operation is removed from the left-hand side, we

merely have

pos(∂̂ψ(x̄)) ( [kerdψ(x̄)]∗,

because

pos(∂̂ψ(x̄)) = {x | 0 ≤ x2 ≤ x1}\{x | x1 > 0, x2 = 0}.
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It is well-known, see Rockafellar and Wets (1998) that, for a polyhedral set P

at one of its points x̄, there exists a neighborhood V of x̄ such that

P ∩ V = [x̄ + TP (x̄)] ∩ V.

We now introduce such a property for a convex set in an analogous way.

Definition 2.1 We say that a convex set C ⊂ Rn admits exactness of tangent

approximation (ETA, for short) at one of its points x̄, if ∃ a neighbourhood V

of x̄ such that

(clC) ∩ V = [x̄ + TC(x̄)] ∩ V.

Proposition 2.1 (Meng, Roshchina and Yang (2015)) Let C ⊂ Rn be closed

and convex. The following properties are equivalent:

(i) C is locally polyhedral at every x ∈ C , i.e., (C−{x})∩V is a polyhedron

for some polyhedral neighbourhood V of x.

(ii) C admits ETA at every x ∈ C .

(iii) pos(C − x) is closed for all x ∈ C .
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We recall the variational description of regular subgradients:

Lemma 2.2 (Rockafellar and Wets (1998), Proposition 8.5). A vector v belongs

to ∂̂f (x̄) if and only if, on some neighborhood of x̄, there is a function h ≤ f

with h(x̄) = f (x̄) such that h is differentiable at x̄ with∇h(x̄) = v. Moreover

h can be taken to be continuously differentiable with h(x) < f (x) for all x 6= x̄

near x̄.

Remark 2.1 This variational description is a contribution to the basics of vari-

ational analysis, as pointed out on p.347 of Rockafellar and Wets (1998).
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We can obtain from Lemmas 2.1 and 2.2 the following.

Theorem 2.1 (Meng and Yang (2015)) Consider the following conditions:

(i) [kerdφ(x̄)]∗ ⊂ LC(x̄)∗.

(ii) ∂̂φ(x̄) ⊂ LC(x̄)∗.

(iii) The penalty term φ is of KKT-type at x̄.

Then (i) =⇒ (ii)⇐⇒ (iii).
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[(iii) =⇒ (ii)]: Let v ∈ ∂̂φ(x̄). According to the variational description of

regular subgradients in (Rockafellar and Wets, 1998, Proposition 8.5), there

exist a neighborhood V of x̄ and a continuously differentiable function ψ :

Rn → R with ψ(x̄) = φ(x̄) = 0 and∇ψ(x̄) = v such that

ψ(x) ≤ φ(x), ∀x ∈ V.

Set f = −ψ. Clearly,

f (x) + φ(x) = −ψ(x) + φ(x) ≥ 0 = f (x̄) + φ(x̄), ∀x ∈ V.

That is, the penalty function f + φ admits a local minimum at x̄. Since φ is a

KKT-type penalty term at x̄, the KKT condition holds at x̄. Thus −∇f (x̄) ∈
LC(x̄)∗. Thus v ∈ LC(x̄)∗, and

∂̂φ(x̄) ⊆ LC(x̄)∗.
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Theorem 2.2 (Meng and Yang (2015)) Let 0 ≤ p < 1. Consider the following

conditions:

(i) [kerdSp(x̄)]∗ = LC(x̄)∗.

(ii) ∂̂Sp(x̄) = LC(x̄)∗.

(iii) Sp is a KKT-type penalty term at x̄.

Then (i) =⇒ (ii)⇐⇒ (iii).

• In the case of p = 0, (i) and (ii) are equivalent, and moreover Theorem 2.2

recovers a well-known result that the GCQ, i.e.

TC(x̄)∗ = LC(x̄)∗

is the weakest one ensuring KKT conditions, as kerdS0(x̄) = TC(x̄).
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• In the case of 0 < p < 1, we are not aware of the equivalence of (i) and (ii),

although they are the same in many situations.
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The degenerate KKT multiplier set at x̄ is defined by

KKT0(x̄) :=

ρ
∣∣∣∣∣∣∣
∑
i∈I

ρi∇gi(x̄) +
∑
j∈J

ρj∇hj(x̄) = 0

ρi ≥ 0 ∀i ∈ I(x̄), ρi = 0 ∀i ∈ I\I(x̄)


The second subderivative of f at x̄ for v and w is defined by, see Rockafellar

and Wets (1998)

d2f (x̄|v)(w) := lim inf
τ→0+, w′→w

f (x̄ + τw′)− f (x̄)− τ〈v, w〉
1
2
τ 2

.

By definition, it is straightforward to verify that

d2S(x̄|0)(w) = 2[dS
1
2(x̄)(w)]2.
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By a direct calculation using the chain rule for second subderivatives of piece-

wise linear-quadratic functions a, we have

dS
1
2(x̄)(w) = +∞ ∀w 6∈ LC(x̄),

and if w ∈ LC(x̄), we have

dS
1
2(x̄)(w)

=

√
1

2
d2S(x̄|0)(w)

=

√
2

2

√√√√√ max
ρ∈KKT0(x̄), ‖ρ‖∞=1

〈∑
i∈I

ρi∇2gi(x̄) +
∑
j∈J

ρj∇2hj(x̄)

w,w〉,
∂̂S

1
2(x̄) = {v | 〈v, w〉 ≤ dS

1
2(x̄)(w) ∀w}.

But we cannot give an explicit formula for ∂̂S
1
2(x̄).

aSee Chapter 13 of Rockafellar and Wets (1998).
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Proposition 2.2 S
1
2 is of KKT-type at x̄ if one of the two following conditions is

satisfied:

(i) For every w ∈ LC(x̄), it follows that

max
λ∈KKT0(x̄)

∑
i∈I

λi〈w,∇2gi(x̄)w〉 +
∑
j∈J

λj〈w,∇2hj(x̄)w〉
 = 0. (2)

(ii) kerdS
1
2(x̄) = LC(x̄).

Moreover, we have (i)⇐⇒ (ii).
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• Condition (2) is newly obtained, and we have

MFCQ =⇒ (2),

because the MFCQ at x̄⇐⇒ KKT0(x̄) = {0}.

Example 2.2 Let x̄ = (0, 0) and let

C =

{
x ∈ Rn

∣∣∣∣∣ x2
1x2 ≤ 0

x2
2 − x1 ≤ 0

}
.

• (2) holds and KKT0(x̄) = R+ × {0}.
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R+ × (−R+) if 0 < p ≤ 1

5
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5
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3
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R+ ×R if 1
3
< p ≤ 1.
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3. Second-order Necessary Conditions via Ex-
act Penalty Functions

Denote the set of all KKT multipliers at x̄ by KKT(x̄) and the critical cone at

x̄ by

V(x̄) :=

w ∈ Rn

∣∣∣∣∣∣∣∣
〈∇f (x̄), w〉 ≤ 0

〈∇gi(x̄), w〉 ≤ 0 ∀i ∈ I(x̄)

〈∇hj(x̄), w〉 = 0 ∀j ∈ J

 .

The second-order necessary condition (for short, SON), originated with Ioffe

(1979), holds at a local minimum x̄ of (NLP) if

sup
λ∈KKT(x̄)

〈w,∇2
xxL(x̄, λ)w〉 ≥ 0 ∀w ∈ V(x̄),

where the convention sup ∅ := −∞ is used.
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The parabolic subderivative of f at x̄ for w with respect to z is defined by, see

Rockafellar and Wets (1998)

d2f (x̄)(w | z) := lim inf
τ→0+, z′→z

f (x̄ + τw + 1
2
τ 2z′)− f (x̄)− τdf (x̄)(w)

1
2
τ 2

.
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For any w and z, let

I(x̄, w) := {i ∈ I(x̄) | 〈w,∇gi(x̄)〉 = 0},
I(x̄, w, z) := {i ∈ I(x̄, w) | 〈z,∇gi(x̄)〉 + 〈w,∇2gi(x̄)w〉 = 0},

and let the second-order linearized tangent set to C at x̄ in the direction w ∈
LC(x̄) be given by

L2
C(x̄ | w) :=

{
z

∣∣∣∣∣ 〈∇gi(x̄), z〉 + 〈w,∇2gi(x̄)w〉 ≤ 0 ∀i ∈ I(x̄, w)

〈∇hj(x̄), z〉 + 〈w,∇2hj(x̄)w〉 = 0 ∀j ∈ J

}
.
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Let w ∈ TA(x̄). The second-order tangent set to A at x̄ is

T 2
A(x̄ | w) := {z|∃tk ↓ 0 and zk → z such that x̄+tkw+

1

2
t2kzk ∈ A for all k}.
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• l1 exactness =⇒ (SON). See Corollary 4.5 of Rockafellar (1989), where

more general results on second-order necessary conditions were obtained

for a convex composite optimisation problem by virtue of twice epi-

derivative and a basic constraint qualification.
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For the l1 exact penalty function, we can show

L2
C(x̄ | w) = kerd2S(x̄)(w | ·) ∀w ∈ LC(x̄),

by applying a second-order Taylor expansion.
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On the other hand, Kawasaki (1988) introduced the following second-order

Guinard constraint qualification (SGCQ)

L2
C(x̄ | w) = clconv[T 2

C(x̄ | w)] ∀w ∈ V(x̄).

As we have

T 2
C(x̄ | w) = kerd2S0(x̄)(w | ·), ∀w ∈ TC(x̄),

the SGCQ reduces to

L2
C(x̄ | w) = clconv[kerd2S0(x̄)(w | ·)] ∀w ∈ V(x̄).
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So, we are looking at the following second-order constraint qualification:

L2
C(x̄ | w) ⊂ clconv[kerd2φ(x̄)(w | ·)] ∀w ∈ V(x̄).
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Theorem 3.1 (Meng and Yang (2015)) Let x̄ be a local minimum of (NLP).

Suppose that the penalty function f + µφ is exact at x̄. If

L2
C(x̄ | w) ⊂ clconv[kerd2φ(x̄)(w | ·)] ∀w ∈ V(x̄), (3)

then the SON condition holds, and in particular when L2
C(x̄ | w) = ∅, the

supremum in the SON condition is +∞.
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Let x̄ ∈ C and let φ = Sp.

We shall give sufficient conditions in terms of the original data for the inclusion

L2
C(x̄ | w) ⊂ kerd2Sp(x̄)(w | ·) ∀w ∈ LC(x̄) (4)

to hold, which is slightly stronger than (3) since in general kerd2Sp(x̄)(w | ·)
is not a closed and convex set and V(x̄) ( LC(x̄).
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Theorem 3.2 (Meng and Yang (2015)) Let x̄ be a local minimum of (NLP).

Suppose that the lp penalty function is exact at x̄. If, in addition, one of the

following conditions is satisfied:

(i) p ∈ (2
3
, 1],

(ii) p = 2
3

and, for every z ∈ L2
C(x̄ | w), it follows that

〈w,∇2gi(x̄)z〉 +
1

3
g

(3)
i (x̄)(w,w,w) ≤ 0 ∀ i ∈ I(x̄, w, z),

〈w,∇2hj(x̄)z〉 +
1

3
h

(3)
j (x̄)(w,w,w) = 0 ∀ j ∈ J,

(iii) p ∈ [0, 2
3
), q = 0 (i.e., there is no equality constraint) and, for every

z ∈ L2
C(x̄ | w) with (w, z) 6= 0, it follows that

〈w,∇2gi(x̄)z〉 +
1

3
g

(3)
i (x̄)(w,w,w) < 0 ∀ i ∈ I(x̄, w, z),

then (4) holds and so does the SON condition.
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4. Interior-Point `p-Penalty Method

Consider the lp(p ≤ 1) penalty problem of the following form with inequality

constraints only

min
x∈Rn

ρf (x) +
∑
i∈I

(max{gi(x), 0})p.

We introduce the following p-order relaxation constrained problema:

(RCP) min
x,s

φp(x, s; ρ) := ρf (x) +
∑
i∈I

si

s.t. si ≥ 0 and s
1/p
i − gi(x) ≥ 0, i ∈ I.

• (RCP) shares the same differentiability as (NLP);

• It can be shown that the lp penalty problem for (RCP) is always exact. For

the case p = 1, see Curtis (2010).
aSee Tian, Yang and Meng (2014), Interior-point l1/2 penalty function method, JIMO (to appear)
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The primal-dual interior-point method is used to solve the p-order relaxation

problem (RCP), which is to solve a sequence of logarithmic barrier subprob-

lems

(LBCP) min
x,s

ρf (x) +
∑
i∈I

si − µ
∑
i∈I

logsi − µ1/p
∑
i∈I

log
(
s

1/p
i − gi(x)

)
s.t. si > 0 and s1/p

i − gi(x) > 0, i ∈ I,

where µ > 0 is the barrier parameter.

• Barrier parameter µ1/p is set for the term
∑
i∈I

log
(
s

1/p
i −gi(x)

)
, which provides

better numerical results than µ and can be justified by the first-order conditions.
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The first-order necessary conditions of the barrier subproblem (LBCP) are given

as follows

ρ∇f (x) + A(x)y = 0, (5a)

e− 1/pY s1/p−1 − u = 0, (5b)

Y
(
s1/p − c(x)

)− µ1/pe = 0, (5c)

Us− µe = 0. (5d)

where y, u ∈ Rm are Lagrange multipliers, Y := diag(y), U := diag(u) and

A(x) := [∇g1(x), · · · ,∇gm(x)].

• Modified Newton method is used for finding a search direction, see Benson,

Shanno and Vanderbei (2004).
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Numerical Experiments

• We refer to our algorithm as IPLOP method, which stands for the Interior-

Point Lower-Order Penalty method;

• We use 266 inequality constrained problems from the CUTEr collection,

COPS, MITT and GLOBAL Library test sets as our test problems;

• The existing interior-point `1-penalty method (PIPAL-a and PIPAL-c meth-

ods in PIPAL1.0 developed by Curtis (2010)) is used to compare the perfor-

mance with the proposed method;
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Using the performance profiles of Dolan and Moré (2002), we plot the fol-

lowing figures. For example, the plots πs(τ ) in the left one denote the scaled

performance profile

πs(τ ) :=
no. of problems p̂ where log2(rp̂,s) ≤ τ

total no. of problems
, τ ≥ 0,

where log2(rp̂,s) is the scaled performance ratio between the iteration number

to solve problem p̂ by solver s over the fewest iteration number required by

the solvers of the IPLOP method with different p. It is clear that πs(τ ) is the

probability for solver s that a scaled performance ratio log2(rp̂,s) is within a

factor τ ≥ 0 of the best possible ratio.
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• The left one is plotted by the the number of iterations;

• The right one is plotted by the values of 1
ρ
.
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• The left one is plotted by the the number of iterations;

• The right one is plotted by the values of 1
ρ
.
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5. Conclusions

In this talk, we partly answer the question as whether and how optimality con-
ditions of NLPs can be derived from exactness of penalty functions.

• We define KKT-type penalty terms, and give their characterizations and

some sufficient conditions.

• We derive the SON condition from exactness of penalty functions.

• We design an interior point lp penalty method.
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