Phase Plotting for Hyperbolic Geometry

Scott B. Lindstrom and Paul Vrbik CARMA University of Newcastle

Tools and Mathematics: Instruments for Learning, November 2016 Last Revised November 29, 2016

<https://carma.newcastle.edu.au/scott/>

1 / 31

 OQ

Outline I

1 [Phase Plotting](#page-2-0)

- **[The Basic Idea](#page-2-0)**
- **•** [Some Examples](#page-3-0)
- **[Modulus Axis](#page-4-0)**
- **•** [History](#page-5-0)
- 2 [Differential Geometry](#page-6-0)
	- **o** [The Basics](#page-6-0)
	- [What Has Been Done](#page-7-0)
-
- 3 [Hyperbolic Geometry](#page-8-0)
	- **•** [Pseudosphere](#page-9-0)
	- **Poincaré Disc**
	- **•** [Beltrami Half-Sphere](#page-23-0)

[References](#page-30-0)

[The Basic Idea](#page-2-0) [Some Examples](#page-3-0) [Modulus Axis](#page-4-0)

The Basics

- Phase plotting is a way of visualizing complex functions $f: \mathbb{C} \to \mathbb{C}$.
- Where $f(r_1e^{i\theta_1})=r_2e^{i\theta_2}$, we plot the domain space, coloring points according to argument of image θ_2
- Top right: $z \rightarrow z$. Bottom right: $z \rightarrow z^3$.

[Some Examples](#page-3-0)

Some Examples

Figure: Left to right: $sinh(z)$, $z \cdot e^z$, $\zeta(z)$.

4 / 31

 QQ

K ロ X K (ラ X (ミ X X ミ X) ミ

[The Basic Idea](#page-2-0) [Some Examples](#page-3-0) [Modulus Axis](#page-4-0)

Recapturing the Modulus

- We can also plot in 3d to recapture the modulus information.
- Let $f(r_1e^{i\theta_1})=r_2e^{i\theta_2}$
- Again we plot over the domain space, coloring points according to argument of image θ_2
- We also give them vertical height corresponding to their modulus $r₂$.

Figure: Phase plots with modulus included. Left: $z \rightarrow z$, Right: $z \rightarrow z^2$.

[The Basic Idea](#page-2-0) [Some Examples](#page-3-0) [Modulus Axis](#page-4-0) **[History](#page-5-0)**

History

- Phase plotting is a relatively new tool.
- **•** Recent attention
	- Elias Wegert's "Visual Complex Functions" published in 2013 [\[2\]](#page-30-1)
	- "Complex Beauties" annual calendar (of which Jonathan Borwein was quite fond) [\[3\]](#page-30-2)
- Wegert's Matlab code is available for download on his site.

Figure: Left: Elias Wegert's "Visual Complex Functions." Right: Right: "Moment function of a 4-step Pplanar random walk" by Jonathan M. Borwein and Armin Straub from 2016 Complex Beauties calendar.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

[The Basics](#page-6-0) [What Has Been Done](#page-7-0)

Differential Geometry

- Conformal Mappings are mappings which preserve the angles at which lines meet (and signs thereof)
- **•** Direct Motions are mappings such that the distance between points is equal to the distance between their images.
- Parallel axiom: for a line L and point p there exists exactly one line through p which doesn't intersect L .
- Geometries which do not obey the parallel axiom:
	- Spherical Geometry (no lines through p)
	- Hyperbolic Geometry (more than one line through p)
	- Both have constant curvature *(intrinsic* property)
- The type of geometry determines how many types of direct motions there are.
- This is because conformal maps can be expressed as compositions of reflections across lines.

[The Basics](#page-6-0) [What Has Been Done](#page-7-0)

What Has Been Done

Phase plotting on the Riemann sphere has already been employed by Wegert.

Figure: Left: The construction of the Riemann Sphere with stereographic projection. Right: phase plotting for a Möbius transformation (direct motion) on the Riemann Sphere.

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

New in this Work

- We extend the notion of phase plotting to surfaces useful in visualizing hyperbolic geometry:
	- **•** Pseudosphere
	- **•** Poincaré Disc
	- Beltrami Half-Sphere
	- Klein Disc
- For the task, we had to redefine the hsv coloring rules for different representations of hyperbolic space.
- We did so using *Maple*.
	- We exploited *Maple's* texture plotter in order to cover 3d objects with colors.
	- This generates much nicer shapes than simply coloring individual points in space.

[Pseudosphere](#page-9-0) Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Pseudosphere

Figure: The conformal map from the pseudosphere to the hyperbolic upper half plane.

[Pseudosphere](#page-9-0) [Beltrami Half-Sphere](#page-23-0)

Pseudosphere

- The map is between the pseudosphere and a small area of the upper half plane
- If we colored according to the planar phase plotting rules, problems:
	- **•** Fewer colors for visualization
	- Coloring would be tied to Euclidean geometry rather than Hyperbolic geometry, warping perspective.
	- Unable to tell if points mapped out of visible region.
- Solution: defined a new coloring scheme unique to hyperbolic space.

Figure: Colors change along tractrices rather than E[ucl](#page-9-0)i[de](#page-11-0)[a](#page-9-0)[n s](#page-10-0)[u](#page-11-0)[b](#page-8-0)[s](#page-9-0)[pa](#page-17-0)[c](#page-18-0)[e](#page-7-0)[s.](#page-8-0) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{31}$

[Pseudosphere](#page-9-0) Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Figure: Computing a direct motion (h-rotation) in hyperbolic space. Here $M = I_{L_2} \circ I_{L_1}$ where L_1 and L_2 correspond to circles in $\mathbb C$ centered at 0 and [2](#page-18-0) π with radius 2 π . The Möbius transformat[ion](#page-10-0) [is](#page-12-0) [4](#page-10-0) $*\,\pi^2/(2*\pi-z)$ $*\,\pi^2/(2*\pi-z)$ $*\,\pi^2/(2*\pi-z)$ $*\,\pi^2/(2*\pi-z)$ $*\,\pi^2/(2*\pi-z)$ $*\,\pi^2/(2*\pi-z)$. QQ

[Pseudosphere](#page-9-0) Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Pseudosphere: h-rotation

- The regions sent out of view are the regions we expected to be sent out of view.
- The rainbow spectrum is now rotated, as hyperbolic space has been rotated.
- Notice how non-tractrix lines are now visible!

[Pseudosphere](#page-9-0) Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Figure: Direct motion: a limit rotation. $M = I_{L_2} \circ I_{L_1}$ where L_1 and L_2 correspond to circles in $\mathbb C$ centered at $\frac{3}{2}\pi$ and 2π with radii $\frac{1}{2}\pi, \pi$ respectively[.](#page-14-0) The Möbius transformation is $\pi^2/(-z+2\pi)$ $\pi^2/(-z+2\pi)$ $\pi^2/(-z+2\pi)$ $\pi^2/(-z+2\pi)$. QQ

[Pseudosphere](#page-9-0) Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Pseudosphere: limit rotation

- **o** The center of the rotation is at the right rear
- Much of foreground is green; these points have all been pulled towards the right rear.
- Only some points starting inside the circle for L_1 are mapped to the left rear.

[Pseudosphere](#page-9-0) Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Figure: Direct motion: an h-translation. $M = I_{L_2} \circ I_{L_1}$ where L_1 and L_2 correspond to circles in $\mathbb C$ centered at π with radii $\frac{1}{3}\pi, \frac{1}{2}\pi$ respectively. The Möbius transformation is $\frac{9}{4}z - \frac{5}{4}\pi$. イロト 不優 ト 不重 ト 不重 トー 重 QQ

[Pseudosphere](#page-9-0) Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Pseudosphere: limit rotation

- We see tractrices sent to tractrices
- Some points are translated out of view.
- Space appears to contract, but has not actually done so. If we made our translation by reflecting across tractrix lines, this effect would not be visible.

[Pseudosphere](#page-9-0) [Beltrami Half-Sphere](#page-23-0)

Pseudosphere: Tractrix "Height"

- One can use a simple "hack" of the interface to determine the tractrix height of the image points.
- Simply compose the map:

$$
F(z) = \frac{2\pi}{\alpha} \cdot \log(\Im(z)) + \exp(1) \cdot i
$$

on the motion in question.

• Here the color spectrum begins at tractrix edge; α is chosen to be the tractrix height at which it terminates.

Figure: F composed on identity map where $\alpha = 2$.

Poincaré Disc

Poincaré Disc

Figure: Left: Construction of the Poincaré Disc. Right: phase plotting on Poincaré Disc as defined by our rule.

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Poincaré Disc

- We adopt a new plotting rule
- Still colors tractrix generators in a single color
	- Pre-images of h-lines are still h-lines
	- **e** Consistent with Pseudosphere
- **o** The trick is subtle.
- Where T is inversion map f user function, HSV map for p in disc is: 1 $\frac{1}{2\pi}$ arg \circ \mathcal{T} \circ \Re e \circ f \circ \mathcal{T} .

Figure: Phase plotting on Poincaré Disc.

イロト イ押 トイヨ トイヨ トー

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Poincaré Disc

Figure: Left: h-translation $z \rightarrow z + 2$. Right: h-rotation $z\rightarrow (4\pi^2)/(2\pi-z)$ corresponding to inversion in 2 circles radius 2π centered at $0, 2\pi$. Notice that the preimages of lines are still lines.

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Poincaré Disc

Figure: Left: a limit rotation $z \to \pi(2\pi - 3z)/(\pi - 2z)$ corresponds to inversion in circles of radius π centered at 0 and 2π . Right: a map which is not a direct motion: $z \rightarrow z^3$.

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Poincaré Disc

Figure: Two more maps which are not direct motions. Left: $z \rightarrow \sinh(z)$. Right: $z \rightarrow \sin(z)$.

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Beltrami Half-Sphere

Figure: Left: Construction of the Beltrami Half-Sphere (first step) and Klein Disc (second step). Right: phase plotting on Beltrami Half-Sphere for $z \rightarrow z$.

- The Beltrami half-sphere is constructed via a lower stereographic projection of the Pöincare disc.
- Phase plotting rule is inherited from Pö[inc](#page-22-0)[ar](#page-24-0)[e](#page-22-0) [di](#page-23-0)[s](#page-24-0)[c.](#page-22-0)

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Beltrami Half Sphere

Figure: Left: h-translation $z \rightarrow z - 2$. Right: h-rotation $z \rightarrow (z-3)/(z-1)$ corresponding to inversion in circles of radius 2 centered at $-1, 1$.

- Notice how lines in hyperbolic space are now semi-circles orthogonal to unit circle.
- Hyperbolic subspaces are hemispheres orthogonal to unit circle. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Beltrami Half Sphere

Figure: Left: a *limit* rotation $z \rightarrow z/(z+1)$ corresponding to inversion in two circles of radius 2 centered at −2, 2. Right: a map which is not a direct motion: $z \rightarrow z^3$.

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Klein Disc

Figure: Left: Construction of the Beltrami Half-Sphere (first step) and Klein Disc (second step). Right: phase plotting on Klein Disc for $z \rightarrow z$.

- **The Klein Disc.**
- Phase plotting rule is again inherited fr[om](#page-25-0) [P](#page-27-0)[¨o](#page-25-0)[in](#page-26-0)[c](#page-27-0)[ar](#page-22-0)[e](#page-23-0)[di](#page-30-0)[s](#page-7-0)[c](#page-8-0)[.](#page-29-0)

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Klein Disc

Figure: Left: h-translation $z \rightarrow z + 2$. Right: h-rotation $z \rightarrow (z-3)/(z-1)$ corresponding to inversion in circles of radius 2 centered at $-1, 1$.

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Klein Disc

Figure: Left: a *limit* rotation $z \rightarrow z/(z+1)$ corresponding to inversion in two circles of radius 2 centered at −2, 2. Right: a map which is not a direct motion: $z \rightarrow z^3$.

Poincaré Disc [Beltrami Half-Sphere](#page-23-0)

Klein Disc

Figure: Two more maps which are not direct motions. Left: $z \rightarrow \sinh(z)$. Right: $z \rightarrow \sin(z)$.

References I

- [1] Tristan Needham, Visual Complex Analysis.
- [2] Elias Wegert, Visual Complex Functions.
- [3] Complex Beauties Calendar [http://www.mathe.tu-freiberg.de/](http://www.mathe.tu-freiberg.de/fakultaet/information/math-calendar-2016) [fakultaet/information/math-calendar-2016](http://www.mathe.tu-freiberg.de/fakultaet/information/math-calendar-2016).

31 / 31

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ 「君」 めんぴ