
The computer as a tool to develop
mathematical problem solving
skills

UNSW Canberra

Tristram Alexander
School of Physical, Environmental
 and Mathematical Sciences
UNSW Canberra

Background: “Applied Nonlinear Dynamics” (3rd
year), “Engineering Problem Solving” (1st year)

A dedicated problem solving course for first year engineering students.
Algorithmic thinking and programming a key part of this course.

A third-year mathematics course aiming to give students some experience

with research using a computer.

Typically around 90% lecture
attendance.

Students from all over
Australia. Some international.
Clear career path on
graduation.

What we know about good problem solvers
(Whimbey)

1. Positive Attitude: strong belief that academic reasoning problems can be

solved through careful, persistent analysis.
2. Concern for Accuracy: take great care to understand the facts and

relationships in a problem fully and accurately. Almost compulsive in checking if
understanding is correct and complete.

3. Break the Problem into Parts: tackle piece by piece.
4. Avoid Guessing: work methodically, carefully, no jumps.
5. Active in Problem Solving: do things to try to understand and answer difficult

questions (e.g. reword, draw diagrams, ‘talk to themselves’).

All require the student to slow down, and have a belief that they can solve the
problem by working slowly through a problem, without relying solely on
intuitive leaps, and using techniques to reduce cognitive overload (Kahneman).

3

What aspect has the largest impact on
capability as a problem solver?

1. Attitude
2. Knowledge
3. Strategy
4. Experience
5. Creativity

What aspect has the largest impact on
capability as a problem solver?

1. Attitude
2. Knowledge
3. Strategy
4. Experience
5. Creativity
If students are intrinsically motivated (rather than extrinsically through
chasing a reward for instance) then many challenges of the teaching
and learning environment go away.

Ideally the student should:
• Have belief in success of their skills and process.
• Be motivated by learning goals (rather than performance goals).
• Be problem-finders rather than problem-followers.

Developing mental toughness: learning from
Polya’s mouse

“The landlady hurried into the backyard, put the mousetrap on the ground (it was an old-
fashioned trap, a cage with a trapdoor) and called to her daughter to fetch the cat. The mouse
in the trap seemed to understand the gist of these proceedings; he raced frantically in his
cage, threw himself violently against the bars, now on this side and then on the other, and in
the last moment he succeeded in squeezing himself through and disappeared in the
neighbour's field. There must have been on that side one slightly wider opening between the
bars of the mousetrap . . . I silently congratulated the mouse. He solved a great problem, and
gave a great example. That is the way to solve problems. We must try and try again until
eventually we recognize the slight difference between the various openings on which
everything depends. We must vary our trials so that we may explore all sides of the problem.
Indeed, we cannot know in advance on which side is the only practicable opening where we
can squeeze through.”

G. Polya “Mice and Men”

Psychological strategy (Zeitz)
Moral of Polya’s story: don’t give up easily, and don’t keep banging your head

senselessly against a wall, but instead vary the attempt each time.

“most beginners give up too soon, because they lack the mental toughness

attributes of confidence and concentration. It is hard to work on a problem if
you don 't believe that you can solve it, and it is impossible to keep working
past your ‘frustration threshold’”

 P. Zeitz, “The Art and Craft of Problem Solving”

How to increase frustration threshold? (the challenge for the teacher)
• Work on problems not exercises, so your brain gets a workout and your

subconscious gets used to success.
• Start with easy problems, to warm up, but then work on harder and harder problems

that continually challenge and stretch you to the limit.
• As confidence rises, so too does your frustration threshold.

Toughen up, loosen up and practice

Attitude and tool use

The frustration threshold is context dependent, and is determined by student
past experience in the particular context.

This has significant consequences for using tools in the classroom.

The majority of students have a low
frustration threshold when using a computer
(desktop or phone) for programming.

Past experience is that things “just work”, so
when suddenly faced with a situation where
things don’t work there is immediate
frustration.

This is compounded by easy access to
more familiar patterns of use which do work.
 http://www.thetealbrickroad.com/wp-

content/uploads/2015/10/fork-in-the-road.jpg

Implementation considerations (PC vs mobile)
Javascript (pros)
• Javascript is free and available on every platform
• All students have a device of some form, so useable in the lecture theatre
• Javascript is a relatively simple programming language
Javascript (cons)
• Phone has many more familiar uses, so easy to be side-tracked when using
• Requires control of a separate editor and use of two files to implement

Matlab (pros)
• Standard format (all students see the same thing)
• In-built editor and filesystem
• Many in-built routines, including for visualisation
Matlab (cons)
• Requires a computer lab
• In-built routines make it easy to default to using as a “black box”

Resource load: 15 students per lecturer/tutor when engaged in device use

M
ob

ile
 d

ev
ic

e
PC

An overview of the problem solving process:
mountaineering analogy (Zeitz)
1. Strategy: high level. E.g. climb easier

surrounding peaks to observe target
mountain from different angles.

Problem solving strategies for orientation
phase: “get hands dirty”, “make it easier”

2. Tactics: middle level. E.g. if crossing a
snowfield, go early in the morning.

Example problem solving tactics: “draw a
picture”, “factorise”

3. Tools: lowest level. To cross snowfield,
set up safety ropes, and use ice axes.

Example problem solving tools: “completing
the square”, “method of undetermined
coefficients”

The role of the computer in the problem solving
process?

The computer can serve a number of purposes. It can be used to:

1. uncover patterns and generate hypotheses;
2. explore different ways of approaching a problem;
3. develop and practice algorithmic thinking;
4. confirm or explore expected results;
5. engage in inquiry-based learning on research-level problems.

Primarily, I will look at using the computer to help develop problem solving
strategy.

It provides an avenue to “get your hands dirty”, and think about how to
“make it easier”.

Goals in terms of the student outcomes

[Outcome 1] Be able to demonstrate successful application of self-
learning skills

Specifically, be able to:
• Identify own thinking and problem solving approach and articulate this to

another.
• Self-assess progress towards achieving a given goal, and self-assess quality

of completion of the goal.
• Assess others in a constructive and unambiguous way and identify the

differences between own approach and that of another.
• Generate options when required, and be aware of any pitfalls or biases

when doing so [Creativity].
• Analyse options when required, and identify pros and cons, differences and

similarities [Analysis].
• Understand and seek to enact the mentality of a successful problem solver,

and demonstrate this through relevant examples (e.g. through presentation
of cases of non-obvious problems identified in daily and academic life).

Goals in terms of the student outcomes

[Outcome 2] Be able to successfully demonstrate a problem solving
process

Specifically, given a problem be able to:
• Identify the goals ("the unknown");
• Identify explicit and implicit assumptions;
• Represent the problem in multiple ways if required;
• Be able to represent graphically or in dot point form the background

knowledge needed to approach the problem, showing the relationships
between components, and be able to identify any areas which need further
investigation before the problem can be solved;

• Identify different strategies that may be used to solve the problem;
• Carry through a solution process methodically and without error;
• Reflect on the validity of a solution, the generality and limitations of the

method and solution, and identify any areas which could be improved.

Goals in terms of the student outcomes

[Outcome 3] Be able to successfully solve problems in a variety of
contexts

• Specifically, in the following areas:
• Context-free (e.g. puzzles)
• Mathematics (e.g. proof)
• Programming (e.g. numerical solution)
• Engineering (e.g. real-world problems, in the presence of constraints)
• Non-academic (e.g. decision making in life beyond class)

Goals when using a computer

• Develop confidence in using the computer to explore a problem
• Use a computer to get hands dirty and try multiple approaches
• Use a computer to see patterns and develop hypotheses

• Development of algorithmic thinking, and implementation on a computer
• Be able to compute and check solution of a problem, for which nature of

solution is known
• Be able to investigate a problem using a variety of computational methods,

and identify patterns and formulate hypotheses when the form of the
solution is unknown (research)

Building confidence with “simple” computation:
looking for patterns and generating hypotheses
The simplest engagement with the tool is repetitive calculation, which may be

carried out by hand, on a calculator, or using a spreadsheet.

Example problems which encourage the strategies “get your hands dirty” and

“make it easier”:

Solve:

Identify the pattern, come up with a conjecture for the general rule, and if you

can prove your conjecture:

1 1 1 1
1 2 2 3 3 4 99 100

+ + + +
⋅ ⋅ ⋅ ⋅

1 8 9
1 8 27 36
1 8 27 64 100

+ =
+ + =
+ + + =

When “brute force” becomes inefficient:
exploring multiple approaches

Brute force is often a go-to strategy for students, so problems which require
them to question this approach are useful. Questions such as “when to stop
calculating?” or “when to try a different approach?” then naturally emerge.

Example:

Find the smallest natural number in which all digits are 0s and 1s and which is
divisible by 225.

When patterns might not be obvious: the need
for multiple approaches
Word problems
Lockers in a row are numbered 1, 2, 3, . . . , 1000. At first, all the lockers are

closed. A person walks by and opens every other locker, starting with locker
#2. Thus lockers 2, 4, 6, . . . , 998, 1000 are open. Another person walks by,
and changes the “state” (i.e., closes a locker if it is open, opens a locker if it
is closed) of every third locker, starting with locker #3 . Then another person
changes the state of every fourth locker, starting with #4, etc . This process
continues until no more lockers can be altered. Come up with a conjecture,
which lockers will be closed?

Deduce a formula for:

2 2 2 21 3 5 (2 1)n+ + + + −

Not an obvious pattern

Algorithms and mathematical thinking: problem
solving driven by the computer
Algorithmic thinking: getting to a solution with a clear definition of the steps

needed.

Challenges:
• Awareness of what is even possible (types of step?) may be absent (skills

required: contextual reading, writing)
• Requires an iterative approach to solutions (a skill likely unfamiliar prior to

using computers)
• Thinking plus tool use requires skill and knowledge in multiple areas
• Frustration threshold may be low and unexpected knowledge barriers may

appear (for instance lack of understanding of what a file system is when
required to use files; inability to understand computer error messages;
inability to use help pages)

On the plus side, tackling algorithm development rewards all five aspects of a
good problem solver: Positive Attitude; Concern for Accuracy; Break the Problem
into Parts; Avoid Guessing; Active in Problem Solving

Introduction to algorithmic thinking through
device-free problems (development of confidence)

Example problems:

You have ten stacks of coins, each consisting of ten 50 cent pieces. One entire

stack is counterfeit, but you do not know which one. You do know the weight
of a genuine half-dollar and you are also told that each counterfeit coin
weighs one gram more than it should. You may weigh the coins on a scale.
What is the smallest number of weighings necessary to determine which
stack is counterfeit?

Devise a general procedure so that n persons can cut a cake into n portions in

such a way that everyone is satisfied that they have at least 1/n of the cake.

Exploration and discovery as a part of algorithm
development

Example: Babylonian method for finding square roots

Making the leap to code

“In teaching computing we seem to have overlooked or neglected what
corresponds to the reading stage in the process of learning to read and
write. To put it strongly, asking people to design and write programs early
on in their computing experience is like expecting that they be able to
competently write essays before that have learned to read or even to write
short sentences – it is expecting just too much of a lot of people. It also
probably explains why many otherwise very able people just don’t get
started in computing.” R.G. Dromey “How to Solve it by Computer”

Tips:
• Make execution visible.
• Start simply (E.g. “Given two variables a and b, exchange the values

 assigned to them”)
• Build up slowly.

Where to? The power of simulation
Exploring problems in probability:

Provides another tool for analysis and problem exploration, particularly useful
when stuck with analytical approach.

Where to? The power of simulation

Examining applied problems:

Computers and research

Enables the possibility of
approaching problems
for which analytical
solutions do not exist

In our curriculum at least,

this means problems
well beyond the familiar
types of systems studied
in the maths degree.

Reflection is a key

component of computer
based research

Summary

Some uses for the computer in mathematical problem solving:
1. uncover patterns and generate hypotheses;
2. explore different ways of approaching a problem;
3. develop and practice algorithmic thinking;
4. confirm or explore expected results;
5. engage in inquiry-based learning on research-level problems.

Graduate attributes to aim for: Positive Attitude; Concern for Accuracy;
Break the Problem into Parts; Avoid Guessing; Active in Problem Solving

Challenges: Low frustration threshold, many sources of temptation,
reflection needs to be an integral part of the process, requires high
resource load (15 students per lecturer/tutor).

Reward: Very satisfying to student if succeed.

	Slide Number 1
	Background: “Applied Nonlinear Dynamics” (3rd year), “Engineering Problem Solving” (1st year)
	What we know about good problem solvers (Whimbey)
	What aspect has the largest impact on capability as a problem solver?�
	What aspect has the largest impact on capability as a problem solver?�
	Developing mental toughness: learning from Polya’s mouse
	Psychological strategy (Zeitz)
	Attitude and tool use
	Implementation considerations (PC vs mobile)
	An overview of the problem solving process: mountaineering analogy (Zeitz)
	The role of the computer in the problem solving process?
	Goals in terms of the student outcomes
	Goals in terms of the student outcomes
	Goals in terms of the student outcomes
	Goals when using a computer
	Building confidence with “simple” computation: looking for patterns and generating hypotheses
	When “brute force” becomes inefficient: exploring multiple approaches
	When patterns might not be obvious: the need for multiple approaches
	Algorithms and mathematical thinking: problem solving driven by the computer
	Introduction to algorithmic thinking through device-free problems (development of confidence)
	Exploration and discovery as a part of algorithm development
	Making the leap to code
	Where to? The power of simulation
	Where to? The power of simulation
	Computers and research
	Summary

